

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT



Wintersemester 2018/19

Prof. Dr. Stefan Schreieder Dr. Feng Hao

## Algebraic Geometry

Sheet 10

Unless specified otherwise, we will always work over an algebraically closed field k.

## Exercise 1. (4 points) Rational maps on normal varieties

Let X be a normal quasi-projective variety and let  $Y \subset \mathbb{P}^m$  be a projective variety. Let  $f: X \dashrightarrow Y$  be a rational map. Show that f is regular in codimension one, that is,

 $\dim(X \setminus \operatorname{dom}(f)) \le \dim(X) - 2.$ 

**Hint:** Reduce to the case where X is affine and  $Y = \mathbb{P}^m$ . Assume for a contradiction that  $Z \subset X$  is an irreducible closed subset of codimension one such that  $Z \cap \text{dom}(f) = \emptyset$ . Deduce a contradiction from the fact that  $\mathcal{O}_{X,Z}$  is normal of dimension one, hence a discrete valuation ring.

## Exercise 2. (4 points) Birational smooth projective curves are isomorphic

Let X and Y be smooth projective curves, i.e. smooth projective varieties of dimension one. Show that X and Y are isomorphic if and only if they are birationally equivalent.

Hint: Use Exercise 1.

**Exercise 3.** (4 points) Class group of  $\mathbb{P}^n$ .

Let  $n \geq 1$  be a positive integer. Show that  $\operatorname{Cl}(\mathbb{P}^n) \cong \mathbb{Z}[H]$ , where  $H \subset \mathbb{P}^n$  is a hyperplane, i.e. a subvariety given by the vanishing of a homogeneous polynomial of degree one.

**Exercise 4.** (4 points) The class group of smooth projective curves.

Let X be a smooth projective curve, i.e. a smooth projective variety of dimension one. Let  $\operatorname{Cl}^0(X)$  be the kernel of the degree map deg :  $\operatorname{Cl}(X) \to \mathbb{Z}$ . For a fixed base point  $x_0 \in X$ , consider the map

 $\Phi: X \longrightarrow \operatorname{Cl}^0(X), \quad x \mapsto x - x_0.$ 

Show that the above map is injective, unless X is isomorphic to  $\mathbb{P}^1$ . In particular,  $\operatorname{Cl}(X) \cong \mathbb{Z}$  holds if and only if  $X \cong \mathbb{P}^1$ .

**Hint:** If  $\Phi$  is not injective, then there are two different points  $x, y \in X$  with  $x \sim y$ , i.e. there is a rational function  $\varphi$  with  $\text{Div}(\varphi) = x - y$ . Show that  $\varphi$  corresponds to a rational map  $X \to \mathbb{P}^1$ , which is a morphism by Exercise 1. Use the Fact about degrees of maps between smooth projective curves from the lecture to conclude that  $\varphi$  is an isomorphism.

Exercise 5. (10 extra points) A collection of small exercises to repeat what you have learned so far.

- (a) Let  $f : X \to Y$  be a regular map between quasi-projective varieties. Is it true that f is an isomorphism if it is bijective?
- (b) Consider the subrings  $R := k[t^3, t^7]$  and  $S := k[t^3, t^4]$  of the polynomial ring k[t]. Let  $\varphi : R \to S$  be the inclusion. Find affine varieties X and Y with k[X] = S and k[Y] = R and a regular map  $f : X \to Y$  such that  $f^* : k[Y] \to k[X]$  coincides with  $\varphi$ .
- (c) Let  $f: X \to Y$  be a regular map between quasi-projective varieties. Suppose that there is a point  $y \in Y$  such that  $f^{-1}(y) = \{x\}$  consists of a single point. Show that dim  $Y \ge \dim X$ . Show further that dim  $Y = \dim X$  if f is dominant. Is it true that in this situation f is necessarily birational, if it is dominant?
- (d) Give an example of a birational map between projective varieties which is not an isomorphism.
- (e) Give an example of a projective variety which has exactly one singular point. Can you similarly give an example with n singular points, where n is any given natural number?
- (f) Let X be an affine variety. Assume that X is isomorphic to a projective variety. Show that X is a point.
- (g) Let X be a quasi-projective variety. Show that

$$\dim X = \min\{\dim(T_{X,x}) \mid x \in X)\}.$$

- (h) Compute the normalization of the affine variety  $Y := V(x_1^2 x_2^5) \subset \mathbb{A}^2$ .
- (i) Let  $X = V(F) \subset \mathbb{P}^n$  be the projective set defined by a homogeneous polynomial F. Show that X is irreducible, if it is smooth.
- (j) Assume that the ground field k has characteristic different from 2. Determine whether the following projective algebraic sets X are smooth, and compute its singular points if X is singular:
  - (1)  $X = V_{\mathbb{P}^3}(x_0^2 x_0x_2 x_1x_3, x_1x_2 x_0x_3 x_2x_3);$
  - (2)  $X = V_{\mathbb{P}^4}(x_0x_1 x_2^2 x_3^2, x_0x_1 + x_2x_3 + x_4^2).$

Hand in: before noon on Monday, January 7th in the appropriate box on the 1st floor.