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Unless specified otherwise, we will always work over an algebraically closed field k.

Exercise 1. (4 points) Rational maps on normal varieties

Let X be a normal quasi-projective variety and let Y ⊂ Pm be a projective variety. Let f : X 99K Y

be a rational map. Show that f is regular in codimensino one, that is,

dim(X \ dom(f)) ≤ dim(X)− 2.

Hint: Reduce to the case where X is affine and Y = Pm. Assume for a contradiction that Z ⊂ X is

an irreducible closed subset of codimension one such that Z ∩ dom(f) = ∅. Deduce a contradiction

from the fact that OX,Z is normal of dimension one, hence a discrete valuation ring.

Exercise 2. (4 points) Birational smooth projective curves are isomorphic

Let X and Y be smooth projective curves, i.e. smooth projective varieties of dimension one. Show

that X and Y are isomorphic if and only if they are birationally equivalent.

Hint: Use Exercise 1.

Exercise 3. (4 points) Class group of Pn.

Let n ≥ 1 be a positive integer. Show that Cl(Pn) ∼= Z[H], where H ⊂ Pn is a hyperplane, i.e. a

subvariety given by the vanishing of a homogeneous polynomial of degree one.

Exercise 4. (4 points) The class group of smooth projective curves.

Let X be a smooth projective curve, i.e. a smooth projective variety of dimension one. Let Cl0(X) be

the kernel of the degree map deg : Cl(X)→ Z. For a fixed base point x0 ∈ X, consider the map

Φ : X −→ Cl0(X), x 7→ x− x0.

Show that the above map is injective, unless X is isomorphic to P1. In particular, Cl(X) ∼= Z holds if

and only if X ∼= P1.

Hint: If Φ is not injective, then there are two different points x, y ∈ X with x ∼ y, i.e. there is a

rational function ϕ with Div(ϕ) = x− y. Show that ϕ corresponds to a rational map X 99K P1, which

is a morphism by Exercise 1. Use the Fact about degrees of maps between smooth projective curves

from the lecture to conclude that ϕ is an isomorphism.
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Exercise 5. (10 extra points) A collection of small exercises to repeat what you have learned so far.

(a) Let f : X → Y be a regular map between quasi-projective varieties. Is it true that f is an

isomorphism if it is bijective?

(b) Consider the subrings R := k[t3, t7] and S := k[t3, t4] of the polynomial ring k[t]. Let ϕ : R → S

be the inclusion. Find affine varieties X and Y with k[X] = S and k[Y ] = R and a regular map

f : X → Y such that f∗ : k[Y ]→ k[X] coincides with ϕ.

(c) Let f : X → Y be a regular map between quasi-projective varieties. Suppose that there is a point

y ∈ Y such that f−1(y) = {x} consists of a single point. Show that dimY ≥ dimX. Show further

that dimY = dimX if f is dominant. Is it true that in this situation f is necessarily birational,

if it is dominant?

(d) Give an example of a birational map between projective varieties which is not an isomorphism.

(e) Give an example of a projective variety which has exactly one singular point. Can you similarly

give an example with n singular points, where n is any given natural number?

(f) Let X be an affine variety. Assume that X is isomorphic to a projective variety. Show that X is

a point.

(g) Let X be a quasi-projective variety. Show that

dimX = min{dim(TX,x) | x ∈ X)}.

(h) Compute the normalization of the affine variety Y := V (x21 − x52) ⊂ A2.

(i) Let X = V (F ) ⊂ Pn be the projective set defined by a homogeneous polynomial F . Show that X

is irreducible, if it is smooth.

(j) Assume that the ground field k has characteristic different from 2. Determine whether the following

projective algebraic sets X are smooth, and compute its singular points if X is singular:

(1) X = VP3(x20 − x0x2 − x1x3, x1x2 − x0x3 − x2x3);

(2) X = VP4(x0x1 − x22 − x23, x0x1 + x2x3 + x24).

Hand in: before noon on Monday, January 7th in the appropriate box on the 1st floor.
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