

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2018/19

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry

Sheet 3

Unless specified otherwise, we will always work over an algebraically closed field k.

Exercise 1. (4 points) Birational maps come from isomorphisms of function fields Let $\phi : X \dashrightarrow Y$ be a rational map between affine algebraic varieties. Show that ϕ is birational if and only if $\phi^* : k(Y) \to k(X)$ is an isomorphism of fields.

Exercise 2. (4 points) Some basic facts about rational maps. Let $\varphi : X \dashrightarrow Y$ be a rational map between affine algebraic varieties.

- (a) Let $U := \operatorname{dom}(\varphi)$ be the domain of φ . Show that $\varphi|_U : U \to Y$ is continuous.
- (b) Let $\psi : X \dashrightarrow Y$ be another rational map. Suppose that there is a non-empty open subset $V \subset \operatorname{dom}(\varphi) \cap \operatorname{dom}(\psi)$ such that $\varphi|_V = \psi|_V$. Show that $\varphi = \psi$; that is, if $Y \subset \mathbb{A}_k^m$, $\varphi = (\varphi_1, \ldots, \varphi_m)$ and $\psi = (\psi_1, \ldots, \psi_m)$ for some rational functions $\varphi_i, \psi_i \in k(X)$, then $\varphi_i = \psi_i$ for all i.

Exercise 3. (4 points) Standard open subsets.

Let $X \subset \mathbb{A}^n_k$ be an affine algebraic set. Open subsets of X of the form $U_f := X \setminus V_X(f)$ for some $f \in k[X]$ are called standard open subsets of X.

(a) Let $f \in k[X]$ be non-zero. Show that $U_f \subset X$ is isomorphic to the affine algebraic set

 $Y \subset \mathbb{A}^n_k \times \mathbb{A}^1_k,$

cut out by the ideal that is generated by I(X) together with the function $t \cdot F - 1$, where $F \in k[x_1, \ldots, x_n]$ is a polynomial with $F|_X = f$ and where t denotes a coordinate function on \mathbb{A}_k^1 .

(b) In the notation of part (a), show that $k[U_f]$ is isomorphic to the localization $k[X]_f$ of k[X] at the multiplicative set $\{1, f, f^2, f^3, ...\}$.

Exercise 4. (4 points) Regular functions on $\mathbb{A}_k^2 \setminus \{0\}$. Consider the quasi-affine algebraic variety $X := \mathbb{A}_k^2 \setminus \{0\}$ and let $i : X \to \mathbb{A}_k^2$ be the inclusion. Show that the pullback map

$$i^*: k[\mathbb{A}^2_k] \to k[X]$$

is an isomorphism.

Hand in: before noon on Monday, November 5th in the appropriate box on the 1st floor.