Exercise 2: For the second part of the this exercise, we want to construct the fibre product $\mathbb{P}^1 \times \mathbb{P}^1$. Cover left hand side \mathbb{P}^1 by two affine lines $\operatorname{Spec} k[u]$ and $\operatorname{Spec} k[v]$ and right hand side \mathbb{P}^1 by two affine lines Spec k[s] and Spec k[t]. As what we did in the first part, we take two steps. Firstly, we have two copies of Spec k[s] and Spec k[t]. As what we did in the first part, we take two steps. Firstly, we have two copies of affine planes $U_1 = \operatorname{Spec} k[u] \times \operatorname{Spec} k[t] \cong \mathbb{A}^2$, and $U_2 = \operatorname{Spec} k[u] \times \operatorname{Spec} k[s] \cong \mathbb{A}^2$, with two open sub-sets Spec $k[u] \times \operatorname{Spec} k[t, t^{-1}]$, and Spec $k[u] \times \operatorname{Spec} k[s, s^{-1}]$, respectively, with two inclusions induced by natural morphisms of commutative rings $k[u, t] \to k[u, t, t^{-1}]$ and $k[u, s] \to k[u, s, s^{-1}]$. Then we glue U_1 and U_2 through the isomorphism $\phi_1 : k[u, t, t^{-1}] \to k[u, s, s^{-1}]; t \mapsto s^{-1}$. Then we get a scheme $V_1 = \operatorname{Spec} k[u] \times \mathbb{P}^1$. Similarly we get $V_2 = \operatorname{Spec} k[v] \times \mathbb{P}^1$. As the second step, we consider open subsets $\operatorname{Spec} k[u, u^{-1}] \times \mathbb{P}^1 \subset \operatorname{Spec} k[u] \times \mathbb{P}^1$ and $\operatorname{Spec} k[v, v^{-1}] \times \mathbb{P}^1 \subset \operatorname{Spec} k[v] \times \mathbb{P}^1$ with two inclusions induced by universal property of fibre product and natural morphisms of commutative rings $k[u] \to k[u, v^{-1}]$ and $k[u] \to k[u, v^{-1}]$. Then we have V_1 and V_2 and V_3 and natural morphisms of commutative rings $k[u] \to k[u, u^{-1}]$ and $k[v] \to k[v, v^{-1}]$. Then glue V_1 and V_2 through the isomorphism ϕ_2 : Spec $k[u, u^{-1}] \times \mathbb{P}^1 \to \text{Spec } k[v, v^{-1}] \times \mathbb{P}^1$; $u \mapsto v^{-1}$. At the end, we get the fibre product $\mathbb{P}^1 \times \mathbb{P}^1$. It is reduced and irreducible, since we can cover it by \mathbb{A}^2 , which is dense, reduced and irreducible.

Exercise 4: (c) By Ex1 of Sheet 4, we know that the k-rational point of Spec k[x] are of type (x - a) for $a \in k$. The scheme theoretic fiber of the morphism

$$f: \operatorname{Spec} k[x, y]/(xy) \to \operatorname{Spec} k[x]$$

over the point p = (x - a) is $f^{-1}(p) = \frac{k[x]}{(x-a)} \otimes \frac{k[x,y]}{(xy)}$, where we note that $\frac{k[x]}{(x-a)} = k(p)$ the residue field of p. Hence $f^{-1}(p) = \frac{k[x,y]}{(xy,x-a)} = \frac{k[y]}{(ay)}$. 1) If $a \neq 0$, i.e., a is a unit, then $\frac{k[y]}{(ay)} \cong k$. Hence $f^{-1}(p)$ is Spec k, which is irreducible, reduced, and connected.

2) If a = 0, then $\frac{k[y]}{(ay)} \cong k[y]$. Hence $f^{-1}(p)$ is Spec k[y], which is irreducible, reduced, and connected.