Exercise 3: b)

For the scheme (X, \mathcal{O}_X) , take an open affine cover $\{X_i = \operatorname{Spec} A_i\}_{i \in I}$ of X. Then since X_i are subschemes of X, we have natural gluing data:

• $X_{ij} := X_i \cap X_j$, with structure sheaf $\mathcal{O}_X|_{X_{ij}} = \mathcal{O}_{\text{Spec }A_i}|_{X_{ij}}$. • Isomorpism between the open subschemes $(\varphi_{ij}, \varphi_{ij}^{\sharp}) : (X_{ji}, \mathcal{O}_X|_{X_{ji}}) \to (X_{ij}, \mathcal{O}_X|_{X_{ij}})$. Here on the topological spaces we have $\varphi_{ij} = id$.

• Those data satisfies: $(\varphi_{ii}, \varphi_{ii}^{\sharp}) = id_{X_i}; (\varphi_{ij}, \varphi_{ij}^{\sharp}) = (\varphi_{ji}, \varphi_{ji}^{\sharp})^{-1};$ and $(\varphi_{ki}, \varphi_{ki}^{\sharp}) \circ (\varphi_{ij}, \varphi_{ij}^{\sharp}) = (\varphi_{kj}, \varphi_{kj}^{\sharp}).$ In the previous tutorial class, we have already seen that the projection morthpism

$$p_i: A_i \to A_i^{\mathrm{red}} := A_i / \operatorname{nil} A_i$$

induces an homeomorphism

$$(f_i, f_i^{\sharp})$$
: Spec $A_i^{\text{red}} \cong$ Spec $A_i = X_i$

as topological spaces.

Now we consider the following data:

Define the affine scheme X_i^{red} := Spec A_i^{red}.
Now we define the scheme X_{ij}^{red}. The underlying topological space is defined to be the open subset f_i⁻¹(X_{ij}) and the structure sheaf is defined to be $\mathcal{O}_{\text{Spec }A_i^{\text{red}}}|_{f_i^{-1}(X_{ij})}$.

• We construct the gluing isomorphism

$$(\varphi_{ij}^{\mathrm{red}},\varphi_{ij}^{\mathrm{red}\,\sharp}):(X_{ji}^{\mathrm{red}},\mathcal{O}_{X_{ji}^{\mathrm{red}}})\to(X_{ij}^{\mathrm{red}},\mathcal{O}_{X_{ij}^{\mathrm{red}}})$$

where $\varphi_{ij}^{\text{red}}$ is defined to be the continuous map making the following diagram commutative

$$\begin{array}{ccc} X_{ji} \xrightarrow{\varphi_{ij} = Id} & X_{ij} \\ \uparrow & & & \\ f_j & & & \\ & & & \\ X_{ji}^{\text{red}} \xrightarrow{\varphi_{ij}^{\text{red}}} & X_{ij}^{\text{red}} \end{array}$$

i.e., $\varphi_{ij}^{\text{red}} = f_i^{-1} \circ f_j$. Also, the sheaf morphism $\varphi_{ij}^{\text{red}\,\sharp}$ is defined as follows: for any open set $U \subset X_{ij}^{\text{red}}$, and any section $s \in \mathcal{O}_{X_{ij}^{\text{red}}}(U) = \mathcal{O}_{\text{Spec } A_i^{\text{red}}}(U)$, we can take a cover $U = \bigcup_{\alpha} W_{\alpha}$ of U, such that $s = \{[s_{\alpha}, W_{\alpha}]\}$, and s_{α} can be lift to elements \tilde{s}_{α} in $\mathcal{O}_{\operatorname{Spec} A_i}(f_i^{-1}(W_{\alpha}))$. Then $\varphi_{ij}^{\operatorname{red} \sharp}$ is defined to be

$$\varphi_{ij}^{\mathrm{red}\,\sharp}(s) := \{ [f_j^\sharp \circ \varphi_{ij}^\sharp(\tilde{s}_\alpha), \varphi_{ji}^{\mathrm{red}}(W_\alpha)] \}.$$

This map is a well defined map, since two different lifting of s_{α} are up to a nilpotent element, and f_{j}^{\sharp} kills the nilpotent element. And for the same reason, $\{[f_j^{\sharp} \circ \varphi_{ij}^{\sharp}(\tilde{s}_{\alpha}), \varphi_{ji}^{\mathrm{red}}(W_{\alpha})]\}$ is glued to a section in $\mathcal{O}_{\mathrm{Spec}\,A_j}(\varphi_{ji}^{\mathrm{red}}(U))$. Similarly we can construct the morphism φ_{ji}^{\sharp} . Localize everything at $x \in X_{ij}^{\text{red}}$ (which corresponds to a prime ideal $P \subset A_i$ and $P' \subset A_j$ via homeomorphisms f_i and $f_j \circ \varphi_{ji}^{\text{red}}$, we also denote their image in the reduced ring A_i^{red} and A_j^{red} to be $\bar{P}, \bar{P'}, \text{resp.}$) we get the following diagram

which implies $(\varphi_{ij}^{\text{red}}, \varphi_{ij}^{\text{red}\,\sharp})$ are isomorphisms. It is clear that we can check the three cocycle conditions $(\varphi_{ii}^{\text{red}}, \varphi_{ii}^{\text{red}\,\sharp}) = id_{X_i}; (\varphi_{ij}^{\text{red}}, \varphi_{ij}^{\text{red}\,\sharp}) = (\varphi_{ji}^{\text{red}\,\sharp}, \varphi_{ji}^{\text{red}\,\sharp})^{-1};$ and $(\varphi_{ki}^{\text{red}\,\sharp}, \varphi_{ki}^{\text{red}\,\sharp}) \circ (\varphi_{ij}^{\text{red}\,\sharp}, \varphi_{ij}^{\text{red}\,\sharp}) = (\varphi_{kj}^{\text{red}\,\sharp}, \varphi_{kj}^{\text{red}\,\sharp})$ by reducing them to the

cocycle conditions for $\{(\varphi_{ij}, \varphi_{ij}^{\sharp})\}$, since the ambiguities are nilpotents. With the new constructed gluing data, we get a scheme $(X^{\text{red}}, \mathcal{O}_{X^{\text{red}}})$ and morphism $(j, j^{\sharp}) : (X^{\text{red}}, \mathcal{O}_{X^{\text{red}}}) \to (X, \mathcal{O}_X)$, which is induced by (f_i, f_i^{\sharp}) , since (f_i, f_i^{\sharp}) is compatible with the gluing data.

c) When Y is affine, say $Y = \operatorname{Spec} A$, let $p : A \to A^{\operatorname{red}} := A/\operatorname{nil} A$ be the projection (corresponds to $\tau :$ Spec $A^{\operatorname{red}} \to \operatorname{Spec} A$). We have a homomorphism $\varphi : A \to \mathcal{O}_X(X)$ induced by f. Since $\ker p = \operatorname{nil} A \subset \ker \varphi$, we have a unique homorphism $\phi : A^{\operatorname{red}} \to \mathcal{O}_X(X)$. Hence we get a morphism $(g, g^{\sharp}) : (X, \mathcal{O}_X) \to (Y^{\operatorname{red}}, \mathcal{O}_{Y^{\operatorname{red}}})$, where $g := \tau^{-1} \circ f$ on the topological space, and $g^{\sharp} : \mathcal{O}_{Y^{\operatorname{red}}} \to g_* \mathcal{O}_X$ is induced by ϕ . The uniqueness follows from the uniqueness of the morphism ϕ .

In general, we consider the morphism $f: X \to Y$ between two schemes with X reduced. Then on the underlying topological spaces we have the morphism $g := j^{-1} \circ f$. Now we need to define $g^{\sharp}: \mathcal{O}_{Y^{\text{red}}} \to g_*\mathcal{O}_X$. Just as in the proof of b), we take affine open cover $\{Y_i := \text{Spec } A_i\}_{i \in I}$ of Y, then we get a covering $X_i := f^{-1}(Y_i)$ of X. By the previous discussion, we have morphisms

$$(g_i, g_i^{\sharp}) : (X_i, \mathcal{O}_{X_i}) \to (\operatorname{Spec} A_i^{\operatorname{red}}, \mathcal{O}_{\operatorname{Spec} A_i^{\operatorname{red}}})$$

Note that $\{(g_i, g_i^{\sharp})\}$ commute with gluing morphisms, since $\tau_i : \operatorname{Spec} A_i^{\operatorname{red}} \to \operatorname{Spec} A_i$ are compatible with the gluing data for Y^{red} as described in b). Thus (g_i, g_i^{\sharp}) are glued to a morphism (g, g^{\sharp}) , which is unique by the uniqueness of (g_i, g_i^{\sharp}) .

Exercise 4: 1) Since φ preserves the grading, the ideal $\langle \varphi(S_+) \rangle$ generated by $\varphi(S_+)$ is a homogeneous ideal. Thus $U := \{P \in \operatorname{Proj} T | P \not\supseteq \varphi(S_+)\} = \operatorname{Proj} T - V_{\operatorname{Proj} T}(\langle \varphi(S_+) \rangle)$, which is an open set.

2) For any point $P \in U$, there exists a homogeneous element $f \in S_+$ s.t., $P \notin V(\varphi(f))$. As usual, we denote $\operatorname{Proj} T - V(\varphi(f))$ by $U_{\varphi(f)}^+$. Then $P \in U_{\varphi(f)}^+ \subset U$. Then U is covered by standard open sets. Note that $\varphi : S \to T$ induces

$$\varphi_{(f)}: S_{(f)} \to T_{\varphi(f)}; \frac{s}{f^m} \mapsto \frac{\varphi(s)}{\varphi(f)^m}.$$

This implies the morphism of schemes $\psi_f : U_{\varphi(f)}^+ \to U_f^+ \subset \operatorname{Proj} S$. For the overlap

$$U^+_{\varphi(f)} \cap U^+_{\varphi(g)} = \operatorname{Proj} T - V(\varphi(fg)) = U^+_{\varphi(fg)}$$

we have the following two morphisms

$$S_{(f)} \to (S_{(f)})_{\frac{g^{\deg f}}{f^{\deg g}}} \cong S_{(fg)} \to T_{\varphi(fg)}$$

and

$$S_{(g)} \to (S_{(g)})_{\frac{f^{\deg g}}{g^{\deg f}}} \cong S_{(gf)} \to T_{\varphi(gf)}$$

which implies two morphisms of schemes

$$\psi_f|_{U^+_{\varphi(fg)}} : U^+_{\varphi(fg)} \to \operatorname{Spec} S_{(f)} \subset \operatorname{Proj} S$$

and

$$\psi_g|_{U^+_{\varphi(gf)}} : U^+_{\varphi(gf)} \to \operatorname{Spec} S_{(g)} \subset \operatorname{Proj} S.$$

The above two morphisms are the coincide with each other since the above two algebra maps $S_{(f)} \to S_{(fg)}$ and $S_{(g)} \to S_{(gf)}$ induce the incusions and the $S_{(fg)} \to T_{\varphi(fg)}$ and $S_{(gf)} \to T_{\varphi(gf)}$ are the same map induced by φ . Thus we can glue the scheme morphisms ψ_f to get a natural morphism $\psi : U \to \operatorname{Proj} S$.