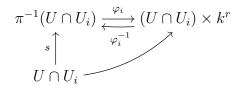
EX SHEET 12

Ex4. (b) We want to show that the sheaf \mathcal{E} of regular sections of vector bundle $\pi: E \to X$ is an \mathcal{O}_X -module. To fixed the notation, let (U_i, φ_i) be the local trivialization in the definite of π . For any open set, $s \in \mathcal{E}(U)$ and $f \in \mathcal{O}_X(U)$, we first define action $f \cdot s$. By sheaf condition we just need to define $f|_{U \cap U_i} \cdot s|_{U \cap U_i}$ over $U \cap U_i$, and check that $(f|_{U \cap U_i} \cdot s|_{U \cap U_i})|_{U_i \cap U_j \cap U} = (f|_{U \cap U_j} \cdot s|_{U \cap U_j})|_{U_i \cap U_j \cap U}$.

By the commutative diagram



we define

$$f|_{U\cap U_i} \cdot s|_{U\cap U_i} := \varphi_i^{-1} \circ (f \cdot \varphi_i \circ s|_{U\cap U_i}).$$

Notice that.

$$(f|_{U\cap U_i} \cdot s|_{U\cap U_i})|_{U_i \cap U_j \cap U} = \varphi_i^{-1} \circ (f \cdot \varphi_i \circ s|_{U\cap U_i \cap U_j})$$
$$= \varphi_j^{-1} \circ \varphi_j \circ \varphi_i^{-1} (f \cdot \varphi_i \circ \varphi_j^{-1} \circ \varphi_j \circ s|_{U\cap U_i \cap U_j})$$
$$= \varphi_j^{-1} \circ (f \cdot \varphi_j \circ s|_{U\cap U_i \cap U_j})$$
$$= (f|_{U\cap U_i} \cdot s|_{U\cap U_i})|_{U_i \cap U_i \cap U_i}.$$

Thus by the sheaf condition for \mathcal{E} , we have $f \cdot s$ is a well defined section in $\mathcal{E}(U)$. It is trivial that with this action, $\mathcal{E}(U)$ is a $\mathcal{O}_X(U)$ -module.

(c) To show \mathcal{E} is locally free, we just need to show that over each U_i , we have the isomorphism of \mathcal{O}_{U_i} -module isomorphism

$$\mathcal{E}|_{U_i} \simeq \mathcal{O}_{U_i}^{\oplus r}$$

In fact, over each $V \subset U_i$ we define the morphism between \mathcal{O}_{U_i} -modules

$$\Phi_i(V) : \mathcal{E}|_{U_i}(V) \longrightarrow \mathcal{O}_{U_i}(V)^{\oplus i}$$
$$s \longmapsto \varphi_i \circ s$$

Note that since

$$\Phi_i(V)(f \cdot s) = \varphi_i \circ f \cdot s = f(\varphi_i \circ s) = f\Phi_i(V)(s),$$

Date: January 23, 2019.

EX SHEET 12

 φ_i is an $\mathcal{O}_{U_i}(V)$ -module morphism. Note also since φ_i is an isomorphism, $\Phi_i(V)$ is an isomorphism between two $\mathcal{O}_{U_i}(V)$ -modules for any open set $V \subset U_i$. Thus

$$\mathcal{E}|_{U_i} \simeq \mathcal{O}_{U_i}^{\oplus r}$$

(d)(Remark) Given any lcally free sheaf \mathcal{E} of rank r, we want to construct the corresponding algebraic vector bundle E. Cover $X = \bigcup U_i$ such that there is an isomorphism of \mathcal{O}_{U_i} -modules $\phi_i : \mathcal{E}|_{U_i} \to \mathcal{O}_{U_i}^{\oplus r}$. Note that since ϕ_i are \mathcal{O}_{U_i} -module isomorphism, we have over $U_i \cap U_j$, $\phi_j \circ \phi_i^{-1} : \mathcal{O}_{U_i \cap U_j}^{\oplus r} \to \mathcal{O}_{U_i \cap U_j}^{\oplus r}$ is an isomorphism of free $\mathcal{O}_{U_i \cap U_j}$ -modules, i.e., $\phi_j \circ \phi_i^{-1}$ is an invertible matrix of regular function over $U_i \cap U_j$. Also, with these gluing data, we get an quasi-projective variety E out of open covers $U_i \times \mathbb{A}_k^r$.