Exercise 3:

For the scheme (Y, \mathcal{O}_Y) and the closed subscheme Z, take an open affine cover $\{Y_i = \operatorname{Spec} A_i\}_{i \in I}$ of X. Let $Z_i := Z \cap Y_i$ be the closed subset of Y_i . By Ex2, we can assume that Z_i are underlying topological spaces of the scheme $(Z_i, \mathcal{O}_{Z_i} := \mathcal{O}_{\operatorname{Spec} A_i/I_i})$, where $I_i \subset A_i$ is an ideal with $I_i = \sqrt{I_i}$. Especially, Z_i are reduced. We denote the closed imbedding

$$\phi_i: Z_i \hookrightarrow Y_i.$$

The we have the following data:

- $Y_{ij} := Y_i \cap Y_j$, with structure sheaf $(\Psi_i, \Psi_i^{\sharp}) = \mathrm{Id} : Y_{ij} \to Y_{ji}$, with trivial gluing data for Y.
- $Z_{ij} := Z_i \cap Y_{ij}$ as topological space and $\mathcal{O}_{Z_{ij}} := \mathcal{O}_{Z_i|_{Z_{ij}}}$.
- Now we construct the gluing isomorphism

$$(\varphi_{ij}, \varphi_{ij}^{\sharp}): (Z_{ji}, \mathcal{O}_{Z_{ii}}) \to (Z_{ij}, \mathcal{O}_{Z_{ij}})$$

where $\varphi_{ij} = \text{Id}$ and we have the following commutative diagram

$$X_{ji} \xrightarrow{\Psi_{ij} = \operatorname{Id}} X_{ij} .$$

$$\downarrow^{\phi_j} \qquad \qquad \downarrow^{\phi_i} \qquad \qquad \downarrow^{\phi_i}$$

$$Z_{ji} \xrightarrow{\varphi_{ij} = \operatorname{Id}} Z_{ij} .$$

The sheaf morphism $\varphi_{ij}^{\sharp}: \mathcal{O}_{Z_{ij}} \to \varphi_{ij*}\mathcal{O}_{Z_{ji}}$ is defined as follows: for any open set $U \subset Z_{ij}$, and any section $s \in \mathcal{O}_{Z_{ij}}(U)$, since Z_i are closed subscheme of X_i , we can take a covering $U = \bigcup_{\alpha} W_{\alpha}$ of U, such that $s = \{[s_{\alpha}, W_{\alpha}]\}$, and s_{α} can be lift to elements \tilde{s}_{α} in $\mathcal{O}_{X_i}(V_{\alpha})$, where V_{α} is open in X_i and $V_{\alpha} \cap Z = W_{\alpha}$. Then φ_{ij}^{\sharp} is defined to be

$$\varphi_{ij}^{\sharp}(s) := \{ [\Psi_{ij}^{\sharp}(\tilde{s}_{\alpha}), W_{\alpha})] \},$$

where the equivalent class is get from the surjective map $\phi_j^{\sharp}: \mathcal{O}_{X_j} \to \phi_{j*}\mathcal{O}_{Z_j}$. This map is a well defined map, since two different lifting of s_{α} are upto a element evaluating zero at Z, and it will be killed after taking direct limit to get a section on $W_{\alpha} \subset Z_j$. And for the same reason, $\{[\Psi_{ij}^{\sharp}(\tilde{s}_{\alpha}), W_{\alpha})]\}$ is glued to a section in $\mathcal{O}_{Z_{ji}}(U)$. Then we get the morphism φ_{ij}^{\sharp} , Similarly we can construct the morphism φ_{ji}^{\sharp} . Easy to check that $(\varphi_{ij}, \varphi_{ij}^{\sharp})$ and $(\varphi_{ji}, \varphi_{ji}^{\sharp})$ are the inverse to each other. It is clear that we can check the three cocycle conditions $(\varphi_{ii}, \varphi_{ii}^{\sharp}) = id_{X_i};$ $(\varphi_{ij}, \varphi_{ij}^{\sharp}) = (\varphi_{ji}, \varphi_{ji}^{\sharp})^{-1};$ and $(\varphi_{ki}, \varphi_{ki}^{\sharp}) \circ (\varphi_{ij}, \varphi_{ij}^{\sharp}) = (\varphi_{kj}, \varphi_{kj}^{\sharp})$ by reducing them to the cocycle conditions for $\{(\Psi_{ij}, \Psi_{ij}^{\sharp})\}$, since the ambiguities envaluating zero along Z. With the new constructed gluing data, we get a scheme (Z, \mathcal{O}_Z) and morphism $(j, j^{\sharp}) : (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$, which is induced by $(\phi_i, \phi_i^{\sharp})$, since $(\phi_i, \phi_i^{\sharp})$ is compatible with the gluing data, i.e., $\phi_i|_{Z_{ij}} = \phi_j|_{Z_{ji}}$. (Z, \mathcal{O}_Z) is reduced since we can reduce it to each affine piece (Z_i, \mathcal{O}_{Z_i}) , which is reduced by construction.

Ex 4: " \subseteq " For all $a \in \mathfrak{a} \subset A$, then $\frac{a}{1} \in \mathfrak{a}A_{f_i}$ and $\varphi_i^{-1}(\frac{a}{1}) = a$.
" \supseteq " For any $a \in \bigcap_{i=1}^n \varphi_i^{-1}(\mathfrak{a}A_{f_i})$, $\varphi_i(a) = \frac{a}{1} \in \mathfrak{a}A_{f_i}$ for all i. Thus there exist $b_i \in \mathfrak{a}$ and $m_i \mathbb{Z}^{\geq 0}$ such that $\frac{a}{1} = \frac{b_i}{f_i^{m_i}}$ in A_{f_i} . Thus there exists n_i s.t. $f_i^{n_i}(af_i^{m_i} - b_i) = 0$ in A for all i. We can choose m and n large enough such that $f_i^n(af_i^m - b) = 0$ in A for all i. Especially, $f_i^{m+n}a \in \mathfrak{a}$ for all i. Since $\bigcup_{i=1}^n U_{f_i} = \bigcup_{i=1}^n (X - V(f_i)) = X$, we have $\bigcap_{i=1}^n V(f_i) = \emptyset = V(\frac{n}{i=1} < f_i >)$. This implies there exist $t_i \in A$ s.t. $1 = \sum_{i=1}^n t_i f_i$. Now we take large enough integer N such that $1 = (\sum_{i=1}^n t_i f_i)^N = \sum_k F_k(f_1, \dots, f_n)$, with each monomial containing at least one f_i of power great than n+m. Thus we have $a = a \cdot \sum_k F_k(f_1, \dots, f_n) \in \mathfrak{a}$.