

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT



Sommersemester 2019

Prof. Dr. Stefan Schreieder Dr. Feng Hao

## Algebraic Geometry 2

Sheet 7

Exercise 1. (4 points) Locally of finite type

Let  $f: X \to Y$  be a morphism of schemes. Show that f is locally of finite type if and only if for any affine open subset  $V = \operatorname{Spec} A \subset Y$ ,  $f^{-1}(V)$  can be covered by affine open subsets  $U_i = \operatorname{Spec} B_i$  for A-algebras  $B_i$  that are of finite type over A (i.e. finitely generated as A-algebras).

## Exercise 2. (4 points) Generically finite morphisms

Let  $f: X \to Y$  be a morphism between integral schemes. We say that f is dominant, if the image of f is dense in Y. We say that f is generically finite, if  $f^{-1}(\eta)$  is finite for the generic point  $\eta \in Y$ . Assume that f is of finite type, dominant and generically finite. Show that there is a non-empty open subset  $U \subset Y$ , such that  $f^{-1}(U) \to U$  is a finite morphism of schemes (where  $f^{-1}(U) \subset X$  carries the canonical open subscheme structure).

(Hint: Show first that the function field of X is a finite field extension of the function field of Y.)

## Exercise 3. (4 points) Closed points of finite type schemes are dense

Let X be a scheme of finite type over a field. Show that the closed points of X are dense. Give an example to show that this does not need to be true if X is not of finite type.

## Exercise 4. (4 points) Properties of morphisms of finite type

A morphism of schemes  $f: X \to Y$  is quasi-compact if there is an open affine covering  $Y = \bigcup V_i$  such that  $f^{-1}(V_i)$  is quasi-compact for all *i*. You may use without proof that this is equivalent to asking that for any open affine subset  $V \subset Y$ ,  $f^{-1}(V)$  is quasi-compact. Prove the following assertions:

Prove the following assertions:

- (a) A closed immersion is a morphism of finite type.
- (b) An open immersion which is quasi-compact is of finite type.
- (c) The composition of morphisms of finite type is of finite type.
- (d) If  $f: X \to Y$  is quasi-compact and  $g: Y \to Z$  is any morphism such that  $g \circ f$  is of finite type, then f is of finite type.

Hand in: before noon on Monday, June 17th in the appropriate box on the 1st floor.