

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2019

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry 2

Sheet 12

Exercise 1. (4 points) Injective objects in the category of abelian groups.

Show that an abelian group G is an injective object in the category of abelian groups if and only if it is divisible, which means that for any positive integer n, multiplication with n yields a surjection $[n]: G \to G$.

Exercise 2. (4 points) Ext groups

Let $\mathcal{A}b$ be the category of abelian groups. Recall that for any abelian group G, the functor $\operatorname{Hom}(G, -)$: $\mathcal{A}b \to \mathcal{A}b$ is a covariant left exact functor. By Exercise 2, applied to $R = \mathbb{Z}$, the category of abelian groups has enough injective objects. We may therefore define the right derived functors of $\operatorname{Hom}(G, -)$; we denote them by

$$\operatorname{Ext}^{i}(G, -) := R^{i} \operatorname{Hom}(G, -).$$

(a) Show that $\operatorname{Ext}^{i}(G,\mathbb{Z})=0$ and $\operatorname{Ext}^{i}(G,\mathbb{Z}/2)=0$ for all $i \geq 2$ and all abelian groups G.

(**Hint:** Find an injective resolutions of \mathbb{Z} and $\mathbb{Z}/2$ of suitable length.)

- (b) Compute $\operatorname{Ext}^{i}(\mathbb{Z}, \mathbb{Z}/2)$ for i = 0, 1.
- (c) Compute $\operatorname{Ext}^{i}(\mathbb{Z}/2,\mathbb{Z})$ for i = 0, 1.

Exercise 3. (4 points) Extensions of abelian groups

For any abelian groups (or *R*-modules) *A* and *B*, we consider the set of extensions of *A* by *B*, i.e. short exact sequences $0 \to B \to E \to A \to 0$, where *E* is some abelian group. We denote by Ext(A, B) the set of such extensions modulo the equivalence relation, where we say that two extensions $0 \to B \to E \to A \to 0$ and $0 \to B \to E' \to A \to 0$ are equivalent if there is an isomorphism $E \cong E'$ of groups which is compatible with the identity on the subgroup *B* and the quotient group *A*, respectively.

(a) Show that any extension $0 \to B \to E \to A \to 0$ gives rise to an element $\varphi_E \in \text{Ext}^1(A, B)$.

(**Hint:** Pick an injective resolution $B \to J^*$ of B and use it to compute $\text{Ext}^1(A, B)$ explicitly.)

- (b) Show that $\varphi_E = 0 \in \text{Ext}^1(A, B)$ if and only if $E \cong A \oplus B$ is isomorphic to the trivial extension.
- (c) One can show that the map

$$\operatorname{Ext}(A,B) \to \operatorname{Ext}^1(A,B), \quad E \mapsto \varphi_E$$

that you defined above is in fact a bijection. Use this fact (without proof) to deduce from Exercise 2 a complete description of all extensions (up to isomorphisms) of \mathbb{Z} by $\mathbb{Z}/2$, and of $\mathbb{Z}/2$ by \mathbb{Z} .

Exercise 4. (6 points) The category of R-modules has enough injectives

Let R be a ring. The purpose of this exercise is to show that the category of R-modules has enough injective objects. We will break up the prove in several small steps.

For any *R*-module M, we define $M^{\vee} := \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z})$ as the group of all group homomorphisms $M \to \mathbb{Q}/\mathbb{Z}$. Clearly, the *R*-module structure on *M* yields a canonical *R*-module structure on M^{\vee} .

(a) Show that for any R-module M, there is a natural isomorphism of R-modules

$$\operatorname{Hom}_R(M, R^{\vee}) \cong M^{\vee}.$$

(b) Show that R^{\vee} is an injective object in the category of *R*-modules.

(**Hint:** for any inclusion of *R*-modules $M \subset N$, you need to show that the induced map $\operatorname{Hom}_R(N, R^{\vee}) \to \operatorname{Hom}_R(M, R^{\vee})$ is surjective. To this end, you may use part (a) and Exercise 1.)

(c) Conclude from parts (a) and (b) that $M \mapsto M^{\vee}$ yields an exact contravariant functor from the category of *R*-modules to itself.

(**Hint:** You may use without proof that for any *R*-module N, $\operatorname{Hom}_{R}(-, N)$ is a contravariant left exact functor.)

(d) For any R-module M, define the free R-module

$$F(M) := \bigoplus_{m \in M} R \cdot [m]$$

with basis indexed by the elements of M. Consider the natural map $F(M) \twoheadrightarrow M$ and convince yourself that it is surjective. Conclude from (c) that the induced map $M^{\vee} \to F(M)^{\vee}$ is injective.

- (e) Show that the evaluation map $M \to (M^{\vee})^{\vee}$ is an injective morphism of *R*-modules. Conclude from part (d) that the composition $M \to (M^{\vee})^{\vee} \to F(M^{\vee})^{\vee}$ is an injective morphism of *R*-modules.
- (f) Show that $F(M^{\vee})^{\vee} \cong \prod_{m \in M^{\vee}} R^{\vee}$ is a direct product of copies of R^{\vee} that are indexed by the elements of M^{\vee} . Conclude from part (b) that $F(M^{\vee})^{\vee}$ is an injective object in the category of R-module. Conclude finally from part (e) that the category of R-modules has enough injectives.

Hand in: before noon on Monday, July 22nd in the appropriate box on the 1st floor.