

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2019

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry 2

Sheet 11

Exercise 1. (4 points) Weighted projective space.

Let k be a field and let n and d be a positive integers. Consider the graded ring $S := k[y, x_0, x_1, \dots, x_n]$, where y has weight d and each x_i has weight 1. Let $X = \operatorname{Proj} S$ and consider the sheaf

$$\mathcal{O}_X(m) := \widetilde{S(m)}.$$

- (a) Show that $\mathcal{O}_X(m)$ is locally free if $d \mid m$.
- (b) Show that $\mathcal{O}_X(1)$ is not locally free if d > 1.

(**Hint:** Show that $\mathcal{O}_X(1)$ is not free locally around $\mathfrak{p} := (x_0, x_1, \dots, x_n) \in \operatorname{Proj} S$ by considering the stalk $\mathcal{O}_X(1)_{\mathfrak{p}}$.)

Exercise 2. (4 points) Closed subscheme of weighted projective space

Consider the graded ring $S := k[y, x_0, x_1, \dots, x_n]$ from Exercise 1. Let *e* be a positive integer and let $f \in k[x_0, x_1, \dots, x_n]$ be homogeneous of degree *ed*. Consider the closed subscheme

 $i: Y := \operatorname{Proj}(S/(y^e - f)) \hookrightarrow X.$

(a) Show that the inclusion $k[x_0, \ldots, x_n] \subset S$ induces a finite morphism

$$p: Y \longrightarrow \mathbb{P}_k^n = \operatorname{Proj} k[x_0, \dots, x_n].$$

- (b) Assume that Y is integral. Show that $\deg(p) = e$, where $\deg(p)$ is defined as the degree of the field extension $\kappa(\eta_{\mathbb{P}_k^n}) \subset \kappa(\eta_Y)$ given by the residue fields of the generic points of \mathbb{P}_k^n and Y.
- (c) Show that $p^*\mathcal{O}_{\mathbb{P}^n_h}(1) \cong i^*\mathcal{O}_X(1)$. In particular, $i^*\mathcal{O}_X(1)$ is locally free of rank one.

(**Remark:** This does not contradict Exercise 1(b) above, as one can show that in fact $\mathcal{O}_X(1)$ is locally free away from the point $\mathfrak{p} := (x_0, x_1, \dots, x_n) \in \operatorname{Proj} S$ and this point does not lie on Y.)

Exercise 3. (4 points) Global sections of $\mathcal{O}(1)$ on weighted projective space

Let k be a field. Let $d_0 \leq d_1 \leq \cdots \leq d_n$ be a sequence of positive integers and let $S := k[z_0, \ldots z_n]$ be the graded k-algebra with $|z_i| = d_i$. Let $X := \operatorname{Proj} S$ and consider $\mathcal{O}_X(j) := \widetilde{S(j)}$ for some $j \in \mathbb{Z}$. Show that the natural map

$$S_j \longrightarrow \Gamma(X, \mathcal{O}_X(j)), \quad f \mapsto \left(\mathfrak{p} \mapsto \frac{f}{1} \in S(j)_{(\mathfrak{p})}\right)$$

is an isomorphism. Use this to compute $\Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(j))$ for all j, where k denotes an arbitrary field.

Exercise 4. (4 points) $M \mapsto \widetilde{M}$ might not be an embedding in the graded case. Give an example of a graded ring S with $X = \operatorname{Proj} S \neq \emptyset$ and a graded S-module M with $M_0 \neq 0$, such that $\widetilde{M} = 0$. Conclude that in general the natural map

$$M_0 \longrightarrow \Gamma(X, M)$$

does not need to be injective.

Hand in: before noon on Monday, July 15th in the appropriate box on the 1st floor.