

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2019

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry 2

Sheet 6

Exercise 1. (4 points) An interesting example of a non-noetherian scheme Let k be a field. Consider the ring

$$A := \frac{k[x][y_{\lambda} \mid \lambda \in k]}{\langle (x - \lambda)y_{\lambda}, y_{\lambda}^2 \mid \lambda \in k \rangle},$$

with associated affine scheme $X := \operatorname{Spec} A$.

- (a) Show that the underlying topological space of X is noetherian.
- (b) Show that all local rings of X are noetherian.
- (c) Show that X is not a noetherian scheme if k is infinite.

Exercise 2. (4 points) Closed subschemes

(a) Let A be a ring. Show that there is a bijection between the ideals of A and the closed subschemes of $X = \operatorname{Spec} A$;

(Hint: A crucial step here is to prove first that any closed subscheme of an affine scheme is affine.)

(b) Find all closed subschemes of $X = \operatorname{Spec} A$, where $A = k[x, y]/(x^2, y^2)$ for a field k, and indicate which of these closed subschemes are contained in each other.

Exercise 3. (4 points) Closed subsets have a unique reduced subscheme structure Let (Y, \mathcal{O}_Y) be a scheme, and let $Z \subset Y$ be a closed subset. Show that there is a unique closed immersion

$$(f, f^{\sharp}): (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y),$$

such that f(X) = Z and (X, \mathcal{O}_X) is reduced.

Exercise 4. (4 points) A step in the proof of Proposition 7.13

Let A be a ring, $f_1, \ldots, f_n \in A$ such that $X = \operatorname{Spec} A = \bigcup_{i=1}^n U_{f_i}$ is covered by the standard open subsets $U_{f_i} = \operatorname{Spec} A_{f_i}$. Let $\varphi_i : A \to A_{f_i}$ be the canonical homomorphism. Show that for any ideal $\mathfrak{a} \subset A$, we have

$$\mathfrak{a} = \bigcap_{i=1}^n \varphi_i^{-1}(\mathfrak{a} \cdot A_{f_i}).$$

Hand in: before noon on Monday, June 3rd in the appropriate box on the 1st floor.