

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2019

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry 2

Sheet 5

Exercise 1. (4 points) *Projective space*

Let R be a ring and consider the graded ring $S := R[x_0, x_1, \ldots, x_n]$, where deg $x_i = 1$ for all *i*. Show that \mathbb{P}^n_R is naturally isomorphic to Proj S.

Exercise 2. (4 points) Proj(S)

Let k be a field and consider the graded ring $R := k[x_0, x_1, \ldots, x_n]$, where deg $x_i = 1$ for all i. Let $I \subset R$ be a homogeneous ideal which does not contain R_+ . Denote the quotient ring R/I by S.

- (a) Show that $\operatorname{Proj} S$ can be covered by n+1 affine schemes.
- (b) Assume that I = (f) is generated by a single homogeneous polynomial f. Describe the affine schemes from item (a) explicitly in this case.

Exercise 3. (4 points) Reduced schemes

A scheme (X, \mathcal{O}_X) is reduced if for every open subset $U \subset X$, the ring $\mathcal{O}_X(U)$ has no nilpotent elements.

- (a) Show that (X, \mathcal{O}_X) is reduced if and only if for every $p \in X$, the local ring $\mathcal{O}_{X,p}$ has no nilpotent elements.
- (b) Let (X, \mathcal{O}_X) be a scheme. Show that there is a canonical reduced scheme $(X^{\text{red}}, \mathcal{O}_{X^{\text{red}}})$ with a morphism

$$(j, j^{\sharp}) : (X^{\operatorname{red}}, \mathcal{O}_{X^{\operatorname{red}}}) \to (X, \mathcal{O}_X)$$

such that the underlying topological spaces of X^{red} and X coincide and $j: X^{\text{red}} \to X$ is the identity.

Hint: Realize X via a gluing data of affine schemes Spec A_i and show that this gluing data gives a caoncical gluing data for the affine schemes $\operatorname{Spec} A_i^{\operatorname{red}}$, where A_i^{red} denotes the quotient of A_i by its nilradical (i.e. the ideal of all nilpotent elements of A_i).

(c) Let $f: X \to Y$ be a morphism of schemes with X reduced. Show that f factors through a unique morphism $g: X \to Y^{\text{red}}$.

Exercise 4. (4 points) Morphisms induced by homomorphisms of graded rings Let $\varphi: S \to T$ be a homomorphism of graded rings which preserves the gradings. Show that

$$U := \{ \mathfrak{p} \in \operatorname{Proj} T \mid \mathfrak{p} \not\supseteq \varphi(S_+) \}$$

is an open subset of $\operatorname{Proj} T$, and that φ induces a natural morphism of schemes $f: U \to \operatorname{Proj} S$.

Hand in: before noon on Monday, May 27th in the appropriate box on the 1st floor.