

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2019

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry 2

Sheet 3

Exercise 1. (4 points) Standard open subsets are affine

Let A be a ring. Recall that the standard open subsets of Spec A are of the form $U_f = \text{Spec } A \setminus V(f)$, where $f \in A$. Show that for any $f \in A$, the locally ringed spaces

 $(U_f, \mathcal{O}_{\operatorname{Spec} A}|_{U_f})$ and $(\operatorname{Spec} A_f, \mathcal{O}_{\operatorname{Spec} A_f})$

are isomorphic to each other.

Exercise 2. (4 points) Standard open subsets form a basis

- (a) Let A be a ring. Show that the standard open subsets of Spec A form a basis of the topology of Spec A.
- (b) Conclude from the previous exercise that for any scheme X, for any point $p \in X$ and for any open neighbourhood $V \subset X$ of p, there is a neighbourhood $U \subset V$ of p which is an affine scheme. That is, affine schemes form a basis for the topology of any scheme.

Exercise 3. (4 points) When is Spec A Hausdorff? Let A be a ring. Show that Spec A is Hausdorff if and only if any prime ideal of A is maximal.

Exercise 4. (4 points) Maps of locally ringed spaces.

- (a) Let $\varphi : k \to K$ be a homomorphism of fields. (Note that φ is automatically injective and so φ yields a field extension.) Let $X = \operatorname{Spec} K$ and $Y = \operatorname{Spec} k$. Describe the induced map $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of locally ringed spaces.
- (b) Let A be a ring and let $I \subset A$ be an ideal. Describe the map of locally ringed spaces that is induced by the quotient map $\varphi : A \to A/I$.
- (c) Let A be a ring and let $S \subset A$ be a multiplicative subset. Describe the map of locally ringed spaces that is induced by the natural map $\varphi : A \to S^{-1}A$.

Hand in: before noon on Monday, May 13th in the appropriate box on the 1st floor.