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Let X be a smooth projective curve, i.e. a smooth projective variety of dimension one. A
divisor D on X is nothing but a Z-linear combination of points on X:

D =
∑
i

ai[xi],

with ai ∈ Z and xi ∈ X. We define the degree of D as

degD =
∑

ai.

This yields a group homomorphism

deg : DivX −→ Z.

We have seen in the lecture that this descends to a group homomorphism

deg : Cl(X) −→ Z,

i.e. deg(Div(f)) = 0 for all f ∈ k(X)∗.

We aim to apply this result to prove a version of Bezout’s theorem. For this, let F,G ∈
k[x0, x1, x2] be non-constant irreducible (or more general, square-free, which means that in
the decomposition of F and G into powers of irreducible factors, each irreducible factor
appears with exponent one) homogeneous polynomials, and consider the corresponding plane
curves

X := V (F ) ⊂ P2 and Y := V (G) ⊂ P2.

We assume that X and Y have no component in common and aim to compute the number of
intersection points X ∩ Y , counted with the correct multiplicities. For simplicity, we assume
that X is smooth (for the general case, one may pass to the normalization of X which is a
smooth projective model of X). We then define ](X ∩ Y ) as follows. Let E ∈ k[x0, x1, x2] be
a homogeneous polynomial of degree degG, such that

VP2(F,G,E) = ∅.

Then

f :=
G

E
|X ∈ k(X)

is a rational function whose divisor of zeros and poles

Div(f) = D −D′

with D,D′ ≥ 0 and such that D and D′ have no point in common, has the property that D
does not depend on E. We may then define

](X ∩ Y ) = degD.



Theorem 0.1 (Bezout’s Theorem). In the above notation

](X ∩ Y ) = degF · degG.

Proof. Let L ∈ k[x0, x1, x2] be a linear homogeneous polynomial such that V (L) is not
tangent to X at any x ∈ X. (This is possible, because the lines in P2 are parametrized by
P(k[x0, x1, x2](1)) ∼= P2, while the lines that are tangent to X correspond to the image of the
regular map

X → P(k[x0, x1, x2](1)), x 7→ dxF

and so they form a subset of dimension at most one of P(k[x0, x1, x2](1)) ∼= P2.) We may
additionally assume that

V (F,G,L) = ∅.

Hence, in the definition of ](X ∩ Y ) we can take E = LdegG. Then,

f :=
G

E
|X ∈ k(X)

is a rational function on X and we can write

Div(f) = D −D′

where D,D′ ≥ 0 are effective and have no points in common. Since deg(Div(f)) = 0, we find
that

](X ∩ Y ) = degD = degD′.

Since L is not tangent to X at any point, we have for all x ∈ X ∩ V (L) that the linear map

dxL : TX,x → k

is surjective. For x ∈ X ∩V (L), we conclude that the image of L in mX,x/m
2
X,x is a generator

and so L generates the maximal ideal mX,x ⊂ OX,x by Nakayama’s lemma. Since V (F,G,L) =
∅, G does not vanish at x ∈ X ∩ V (L) and so

G

LdegG
∈ Frac(OX,x),

where G ∈ OX,x is a unit and L ∈ OX,x is a uniformizer. Hence, x ∈ X ∩ V (L) appears in
Div(f) with coefficient −degG and so we conclude

](X ∩ Y ) = degD′ = degG · ](V (L) ∩X),

where ](V (L) ∩X) denotes the number of intersection points of V (L) and X. Since for all
x ∈ V (L) ∩X, the image of L in OX,x is a uniformizer, we find that L vanishes of order one
at x. Equivalently, the homogeneous polynomial F which cuts out X vanishes of order one
at x ∈ V (L). That is, the restriction of F to V (L) ∼= P1 is a polynomial of degree degF
without multiple zeros and so it has exactly degF many zeros. That is,

](V (L) ∩X) = degF

and so
](X ∩ Y ) = degF · degG,

as we want.
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