SHEET4, EX1

Ex1: After doing linear change of coordinates, we can assume $0 \in X$. Let $\lambda_i = \frac{x_i}{x_1}, i \ge 2$. After plugging $x_i = \lambda_i x_1$ into the defining polynomial f, we get

$$f(x_1,\lambda_2x_1,\ldots,\lambda_nx_1) = x_1(a(\lambda_2,\ldots,\lambda_n)x_1 - b(\lambda_2,\ldots,\lambda_n)),$$

with $a, b \in k[\lambda_2, \ldots, \lambda_n]$.

Case 1: If $b \neq 0$, then we use the pair of rational maps

$$\varphi: X \to \mathbb{A}_k^{n-1}; (x_1, \dots, x_n) \mapsto (\frac{x_2}{x_1}, \dots, \frac{x_n}{x_1})$$

(here WLOG we assume there is a point (a_1, \ldots, a_n) in X such that $a_1 \neq 0$), and

$$\psi : \mathbb{A}_k^{n-1} \to X; (\lambda_2, \dots, \lambda_n) \mapsto (\frac{b}{a}, \frac{b}{a}\lambda_2, \dots, \frac{b}{a}\lambda_n),$$

where a, b are polynomials defined above.

Case 2: If b = 0, then f is of form $a_1 x_1^2 + \ldots + a_n x_n^2$ $(n \ge 3$ and at least three of a_i are nonzero, by irreducibility of f) after a linear change of coordinates. Then we need to choose another starting point (in case 1, it is the origin) to project X to affine space \mathbb{A}_k^{n-1} . With out losing of generality, we can assume that $a_1 \ne 0, a_2 \ne 0$ and $a_3 \ne 0$. For this we need to do the following change of coordinates:

 $y_1=x_1-1, y_2=x_2-\xi, y_i=x_i \text{ for } i\neq 1,2,$ where $\xi\in k$ and $\xi^2=-\frac{a_1}{a_2}.$ Then after doing this change of coordinates, we get

$$f = a_1 y_1^2 + a_2 y_2^2 + \ldots + a_n y_n^2 + 2a_1 y_1 + 2\xi a_2 y_2$$

Since a_1, a_2, a_3 are nonzero, there are two of them such that $a_i \neq -a_j$, say $a_1 \neq -a_2$. Then $\xi \neq 1$. Hence plugging in $y_i = \lambda_i y_1$, we get

$$f = y_1(a(\lambda_2,\ldots,\lambda_n)y_1 - b(\lambda_2,\ldots,\lambda_n)),$$

with $b \neq 0$. Then as that in case 1. We define the pair of rational maps

$$\varphi: X \to \mathbb{A}_k^{n-1}; (y_1, \dots, y_n) \mapsto (\frac{y_2}{y_1}, \dots, \frac{y_n}{y_1})$$

and

$$\psi: \mathbb{A}_k^{n-1} \to X; (\lambda_2, \dots, \lambda_n) \mapsto (\frac{b}{a}, \frac{b}{a}\lambda_2, \dots, \frac{b}{a}\lambda_n),$$

where a, b are polynomials defined above. Then it is easy to check that this pair of rational maps will show that φ is a birational map.