Ex 2.

Proof. Tt suffices to show if f: X --+ Y is a birational map, then X =Y.

Let g : Y --» X be the inverse of f. Then the compositions f o g and go f are identities on an open set U C X
and V C Y, resp. Also, by Ex 1, we know that f and g can be extended to regular maps. Hence fog:Y — Y
is a regular map which is an identity on an open set V of Y, so is g o f. Assume Y C P" with homogeneous
coordinates zg, 1, ..., Z,. For any points = [zg : ...: x,] €V, fog(x) = [Fo(x):...: Fp(z)] =[zo: ... zp).
Hence fog(x) =z for any z € Y. O

Ex 5. (d) Let X =P! and YV := Vp2 (7227 — 23). Let
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be the morphism maps [t,1] to [t?,¢%,1] and [1 : 0] to [0 : 1 : 0]. Then the restriction map ¢|x_[1.0) : A! —
V(X2—X3) C P2~V (x2) = A?, where X; = &, is the normalization map of the cusp in Homework sheet 9, Ex3.

(e) For any integer n > 1, we take the following curve in P? with homogeneous coordinates [z : y : 2].
VP? (SC(LU - a12)2 . ((E — anz)2 + yQ’rL—',-l)7

with a; are distinct from each other and a; # 0. Then using Jacobian criterion, we see that the only singular
points are [a; : 0:1],[a2: 0:1],...,[a, : 0:1].

(f) If X is an affine and projective variety. Notice first any regular function over X is a constant function. Then
K[X] % k. Hence X = pt.

(g) X is a quasi-projective variety. If x € X is a singular point, then dim7Tx , > dim, X = dim X. If z € X
is a smooth point, then dimTx ;, = dim; X = dim X. Also, since the smooth locus of X is not empty. Thus
dim X = min{dimTx , | x € X}.

(i) X = V(F) C P". We can assume that the homogeneous polynomial F' = F; ... F, with F; being irreducible,
and F; and Fj are mutrually coprime. Assume X is not irreducible, then s > 1. Let G = F5 ... Fy. Then we
have X = V(F1)UV(G), and V(F1)NV(G) # 0 by Krull’s Hauptidealsatz. Then by Homework 8 Ex4, we have
for any x € V(F1) N V(G), z is a singular point of X, which is a contradiction.

(i)
(1) Let f1 = x% — xor2 — x1x3 and fo = x1x9 — T3 — Tox3. Then the Jacobian Matrix of fq, fo is
2%0 — T2 —I3 —X0 —X1
—X3 o 1 — T3 —Tog— X2

Assume that there is a singular point [zg : 1 : 23 : 3] in X. Note first 25 # 0, otherwise, x3 = 0, which implies
x; = 0 for all 7.

Let A be a constant such that 1) 2zg — xe = —Ax3; 2) —x3 = Axe; 3) —x9 = A(x1 —23); 4) —x1 = AM(—20 — T2).
4)+3)+2) implies (—A? — 1)z = 2)\%xy. Also, 1)+2) implies 22¢(A? + 1)z2. Hence we have —(A\? 4 1)? = 4)\?
by z2 # 0. Hence A # 0. Hence z3 # 0.

Now by second and last column of the Jacobian matrix, we have zgxs + xox3 + z122 = 0. Thus x5 = 0 by
fo =0. Hence x1 = 0. Plug z; = 0 in fy = 0, we have xg = —x5. Plug xp = —x2 in f; = 0, we get zg = 22 = 0,
which is a contradiction. Hence X is smooth.

(2) Let f1 = zox1 — 23 — 22 and fo = o7y + 223 + 3. Then the Jacobian Matrix of f1, fo is

1 Xo —2$2 —2.%3 0
1 T T3 To 21y

Assume that there is a singular point [zg : 21 : 22 : 23] in X. Let A be a constant such that 1) 7 = Azq; 2)
To = ATo; 3) —2x9 = Axg; 4) —2x3 = Ax9; 5) 0 = A2z4.



First notice that X\ # 0, otherwise g = 1 = o = 3 = x4 = 0, which is a contradiction. Thus A # 0, and
x4 = 0. Claim that x5 = 0. If not, then x1, x5, x3 are all nonzero. Hence A = 1. Then we get x5 = 0 by equations
3)4), which is a contradiction. Thus we get singular points [1:0:0:0:0],[0:1:0:0:0].



