
Ex 2.

Proof. It suffices to show if f : X 99K Y is a birational map, then X ∼= Y .
Let g : Y 99K X be the inverse of f . Then the compositions f ◦ g and g ◦ f are identities on an open set U ⊂ X
and V ⊂ Y , resp. Also, by Ex 1, we know that f and g can be extended to regular maps. Hence f ◦ g : Y → Y
is a regular map which is an identity on an open set V of Y , so is g ◦ f . Assume Y ⊂ Pn with homogeneous
coordinates x0, x1, . . . , xn. For any points x = [x0 : . . . : xn] ∈ V , f ◦ g(x) = [F0(x) : . . . : Fn(x)] = [x0 : . . . : xn].
Hence f ◦ g(x) = x for any x ∈ Y .

Ex 5. (d) Let X = P1 and Y := VP2(x2x
2
1 − x30). Let

φ : X → Y

be the morphism maps [t, 1] to [t2, t3, 1] and [1 : 0] to [0 : 1 : 0]. Then the restriction map φ|X−[1:0] : A1 →
V (X2

1−X3
0 ) ⊂ P2−V (x2) ∼= A2, where Xi = xi

x2
, is the normalization map of the cusp in Homework sheet 9, Ex3.

(e) For any integer n ≥ 1, we take the following curve in P2 with homogeneous coordinates [x : y : z].

VP2(x(x− a1z)2 . . . (x− anz)2 + y2n+1),

with ai are distinct from each other and ai 6= 0. Then using Jacobian criterion, we see that the only singular
points are [a1 : 0 : 1], [a2 : 0 : 1], . . . , [an : 0 : 1].

(f) If X is an affine and projective variety. Notice first any regular function over X is a constant function. Then
K[X] ∼= k. Hence X ∼= pt.

(g) X is a quasi-projective variety. If x ∈ X is a singular point, then dimTX,x > dimxX = dimX. If x ∈ X
is a smooth point, then dimTX,x = dimxX = dimX. Also, since the smooth locus of X is not empty. Thus
dimX = min{dimTX,x | x ∈ X}.

(i) X = V (F ) ⊂ Pn. We can assume that the homogeneous polynomial F = F1 . . . Fs, with Fi being irreducible,
and Fi and Fj are mutrually coprime. Assume X is not irreducible, then s > 1. Let G = F2 . . . Fs. Then we
have X = V (F1)∪V (G), and V (F1)∩V (G) 6= ∅ by Krull’s Hauptidealsatz. Then by Homework 8 Ex4, we have
for any x ∈ V (F1) ∩ V (G), x is a singular point of X, which is a contradiction.

(j)
(1) Let f1 = x20 − x0x2 − x1x3 and f2 = x1x2 − x0x3 − x2x3. Then the Jacobian Matrix of f1, f2 is[

2x0 − x2 −x3 −x0 −x1
−x3 x2 x1 − x3 −x0 − x2

]
Assume that there is a singular point [x0 : x1 : x2 : x3] in X. Note first x2 6= 0, otherwise, x3 = 0, which implies
xi = 0 for all i.
Let λ be a constant such that 1) 2x0 − x2 = −λx3; 2) −x3 = λx2; 3) −x0 = λ(x1 − x3); 4) −x1 = λ(−x0 − x2).
4)+3)+2) implies (−λ2 − 1)x0 = 2λ2x2. Also, 1)+2) implies 2x0(λ2 + 1)x2. Hence we have −(λ2 + 1)2 = 4λ2

by x2 6= 0. Hence λ 6= 0. Hence x3 6= 0.
Now by second and last column of the Jacobian matrix, we have x0x3 + x2x3 + x1x2 = 0. Thus x2 = 0 by
f2 = 0. Hence x1 = 0. Plug x1 = 0 in f2 = 0, we have x0 = −x2. Plug x0 = −x2 in f1 = 0, we get x0 = x2 = 0,
which is a contradiction. Hence X is smooth.

(2) Let f1 = x0x1 − x22 − x23 and f2 = x0x1 + x2x3 + x24. Then the Jacobian Matrix of f1, f2 is[
x1 x0 −2x2 −2x3 0
x1 x0 x3 x2 2x4

]
Assume that there is a singular point [x0 : x1 : x2 : x3] in X. Let λ be a constant such that 1) x1 = λx1; 2)
x0 = λx0; 3) −2x2 = λx3; 4) −2x3 = λx2; 5) 0 = λ2x4.

1



First notice that λ 6= 0, otherwise x0 = x1 = x2 = x3 = x4 = 0, which is a contradiction. Thus λ 6= 0, and
x4 = 0. Claim that x2 = 0. If not, then x1, x2, x3 are all nonzero. Hence λ = 1. Then we get x2 = 0 by equations
3)4), which is a contradiction. Thus we get singular points [1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0].
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