

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Dr. Mark Hamilton Danu Thung

Summer semester 2017

Lecture: Riemann surfaces Exercise sheet 5

Exercise 1.

(a) Show that any automorphism of $\mathbb{C}P^1 = \mathbb{C} \cup \{\infty\}$ is given by a map $f : \mathbb{C}P^1 \to \mathbb{C}P^1$ of the form

$$f(z) = rac{az+b}{cz+d}$$
 with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2,\mathbb{C}).$

Hint: Use the fact that any meromorphic function on $\mathbb{C}P^1$ is rational.

- (b) On exercise sheet 3, you showed that any biholomorphic map defined on the complement of a finite subset P of a Riemann surface X extends to a automorphism of X. Use this to determine the automorphisms of C, of C* = C \ {0}, and of C \ {0,1}.
- (c) Bonus: Show that $Aut(\mathbb{C} \setminus \{0, 1, z\})$ (here, $z \notin \{0, 1\}$) contains at least one non-trivial element.

Exercise 2. Let X be a Riemann surface.

- (a) For an open subset $U \subset X$ let $\mathcal{B}(U) \subset \mathcal{O}(U)$ be the set of bounded, holomorphic functions $f: U \to \mathbb{C}$. Prove that \mathcal{B} defines a presheaf, but not a sheaf on X.
- (b) Define $\mathcal{F}(U) = \mathcal{O}^*(U) / \exp \mathcal{O}(U)$. Show that this gives rise to another presheaf on X which is not a sheaf.

Exercise 3. Let (\mathcal{F}, ρ) be a presheaf of Abelian groups on a topological space X and \mathcal{F}_x , $x \in X$ its stalks. We define the *sheafification* or *associated sheaf* of \mathcal{F} , denoted by \mathcal{F}^{\sharp} , as follows. For any open subset $U \subset X$, let $\mathcal{F}^{\sharp}(U)$ be the set of families $(\varphi_x)_{x \in U}$ of elements $\varphi_x \in \mathcal{F}_x$ with the following property: For every $x \in U$, there exists some open neighborhood $V \subset U$ and some $f \in \mathcal{F}(V)$ such that $\varphi_y = \rho_y^V(f)$ for every $y \in V$.

- (a) Show that \mathcal{F}^{\sharp} , with the natural restriction homomorphisms $(\rho^{\sharp})_{V}^{U}((\varphi_{x})_{x\in U}) = (\varphi_{x})_{x\in V}$, where $U, V \subset X$ are open sets, defines a sheaf.
- (b) For any open $U \subset X$ open, define $\alpha_U \colon \mathcal{F}(U) \to \mathcal{F}^{\sharp}(U)$ by $\alpha_U(f) = (\rho_x^U(f))_{x \in U}$. Check that this map is well-defined and that it yields a *homomorphism* α of presheaves, i.e. it commutes with the restriction homomorphisms.
- (c) Show that this map induces bijections $\alpha_x \colon \mathcal{F}_x \to \mathcal{F}_x^{\sharp}$ for every $x \in X$.
- (d) Determine the sheafifications of the presheaves of the previous exercise.

Please hand in your solutions at the start of the exercise class on Monday, June 12, 2017.