

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Dr. Mark Hamilton Danu Thung

Summer semester 2017

Lecture: Riemann surfaces Exercise sheet 4

Exercise 1. Consider the Weierstrass \wp_{Γ} -function from exercise sheet 3 as a branched covering $\mathbb{C}/\Gamma \to \mathbb{C}P^1$. Show that it is two-sheeted, and use the fact that its derivative is an odd function to show that it has exactly four branch points.

Exercise 2. Show that every holomorphic map from the sphere \mathbb{CP}^1 to a torus \mathbb{C}/Γ is constant, i.e. there are no branched coverings $f: \mathbb{CP}^1 \to \mathbb{C}/\Gamma$.

Exercise 3. Let $f: \mathbb{C}/\Gamma \to \mathbb{C}/\Gamma'$ be a branched covering with f([0]) = [0].

- (a) Show that there exists some $\alpha \in \mathbb{C}^*$ such that $\alpha \Gamma \subset \Gamma'$ and $f([z]) = [\alpha z]$ for every $[z] \in \mathbb{C}/\Gamma$.
- (b) Show that f is in fact unbranched, and the number of sheets equals the index $[\Gamma' : \alpha \Gamma]$.
- (c) Construct *n*-sheeted holomorphic coverings of the standard torus $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}i)$ to itself, for any $n \in \mathbb{N}$ such that there exist $k, l \in \mathbb{N}_0$ which satisfy $n = k^2 + l^2$.

Please hand in your solutions at the start of the exercise class on Monday, May 29, 2017.