

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Dr. Mark Hamilton Danu Thung

Summer semester 2017

Lecture: Riemann surfaces Exercise sheet 10

Exercise 1. Let D be a divisor on \mathbb{CP}^1 . Use the Riemann-Roch theorem to prove:

- (a) dim $H^0(\mathbb{C}P^1, \mathcal{O}_D) = \max(0, 1 + \deg D).$
- (b) dim $H^1(\mathbb{CP}^1, \mathcal{O}_D) = \max(0, -1 \deg D).$

Exercise 2. Let $X = \mathbb{C}/\Gamma$ be a torus and consider the divisor P which vanishes everywhere except at the point $P \in X$, where it takes the value 1.

(a) Show that

$$\dim H^0(X, \mathcal{O}_{nP}) = \begin{cases} 0 & n < 0\\ 1 & n = 0\\ n & n \ge 1 \end{cases}$$

Hint: For the last case, start with the case n = 1 and proceed by induction, making use of the Weierstrass \wp -function.

(b) Calculate dim $H^1(X, \mathcal{O}_{nP})$ by means of the Riemann-Roch theorem.

Exercise 3. Let \mathfrak{D} denote the sheaf of divisors on a Riemann surface X, defined as follows: For every open $U \subset X$, $\mathfrak{D}(U)$ consists of all maps $D: U \to \mathbb{Z}$ such that, for every compact subset $K \subset U$, there are only finitely many points in K where D does not vanish.

- (a) Show that \mathfrak{D} is indeed a sheaf.
- (b) Show that $H^1(X, \mathfrak{D}) = 0$, imitating the proof that $H^1(X, \mathcal{E}) = 0$, using an integervalued (discontinuous) partition of unity.
- (c) Let \mathcal{M}^* be the sheaf that assigns to any open set $U \subset X$ the set of meromorphic functions which do not vanish identically on any connected component of U. Let β : $\mathcal{M}^* \to \mathfrak{D}$ be the map that assigns to every meromorphic function its divisor. Show that there is a short exact sequence

 $0\longrightarrow \mathcal{O}^*\longrightarrow \mathcal{M}^*\longrightarrow \mathfrak{D}\longrightarrow 0$

and, in particular, there exists a long exact sequence

$$0 \to H^0(X, \mathcal{O}^*) \to H^0(X, \mathcal{M}^*) \to \operatorname{Div}(X) \to H^1(X, \mathcal{O}^*) \to H^1(X, \mathcal{M}^*) \to 0$$

Please hand in your solutions at the start of the exercise class on Monday, July 17, 2017.