

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Dr. Mark Hamilton Danu Thung

Summer semester 2017

Lecture: Riemann surfaces Exercise sheet 1

Exercise 1. Let $\Gamma = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ and $\Gamma' = \mathbb{Z}\omega'_1 + \mathbb{Z}\omega'_2$ be two lattices in the complex plane \mathbb{C} . Show that $\Gamma = \Gamma'$ if and only if there exists a matrix

$$A \in \mathrm{GL}(2,\mathbb{Z})$$

(with det $A = \pm 1$) such that

$$\left(\begin{array}{c}\omega_1'\\\omega_2'\end{array}\right) = A \left(\begin{array}{c}\omega_1\\\omega_2\end{array}\right).$$

Exercise 2.

- (a) Let $\Gamma, \Gamma' \subset \mathbb{C}$ be two lattices. Suppose that $\alpha \in \mathbb{C}^*$ satisfies $\alpha \Gamma \subset \Gamma'$. Show that the map $\mathbb{C} \to \mathbb{C}, z \mapsto \alpha z$ induces a holomorphic map $\mathbb{C}/\Gamma \to \mathbb{C}/\Gamma$ and that this map is biholomorphic if and only if $\alpha \Gamma = \Gamma'$.
- (b) Prove that every complex torus $X = \mathbb{C}/\Gamma$ is isomorphic to a complex torus of the form

$$X(\tau) = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau),$$

where $\tau \in \mathbb{C}$ satisfies $\operatorname{Im}(\tau) > 0$.

(c) Suppose

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z}) \quad \text{and} \quad \operatorname{Im}(\tau) > 0.$$

Let

$$\tau' = \frac{a\tau + b}{c\tau + d}.$$

Show that $Im(\tau') > 0$ and that the complex tori $X(\tau)$ and $X(\tau')$ are isomorphic.

Exercise 3. Suppose

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2, \mathbb{C})$$

and define the fractional linear transformation

$$f(z) = \frac{az+b}{cz+d}.$$

Prove that f defines a meromorphic function on \mathbb{CP}^1 and that the induced map $f: \mathbb{CP}^1 \to \mathbb{CP}^1$ is biholomorphic, i.e. an automorphism of \mathbb{CP}^1 .

Please hand in your solutions at the start of the exercise class on Monday, May 8, 2017.