

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2023/24

23 January 2024

Topology I

Sheet 13

Exercise 1. Prove Corollary 4.35 from the lecture: Let (X, x) and (Y, y) be pointed spaces such that the respective basepoints have pointed contractible open neighbourhoods. Then, for all $n \ge 0$, there is a canonical isomorphism $\tilde{H}_n(X) \oplus \tilde{H}_n(Y) \cong \tilde{H}_n(X \lor Y)$.

Exercise 2. Let R be a ring. Let there be given a commutative diagram of (left) R-modules

of which both rows are exact sequences. Show that there is an exact sequence

$$\ker(f') \to \ker(f) \to \ker(f'') \to \operatorname{coker}(f') \to \operatorname{coker}(f) \to \operatorname{coker}(f'') \,.$$

Exercise 3. Let there be given a commutative diagram of (left) *R*-modules

<i>A</i> ——	$\rightarrow B$ —	$\rightarrow C$ —	$\rightarrow D$ —	$\rightarrow E$
$ _a$	b	c	d	e
¥				V
A'	$\rightarrow B'$ —	$\rightarrow C'$ —	$\rightarrow D'$ —	$\rightarrow E'$

of which both rows are exact. Prove:

- (a) If b and d are surjective and e is injective, then c is surjective.
- (b) If b and d are injective and a is surjective, then c is injective.
- (c) If b and d are isomorphims, a is surjective and e is injective, then c is an isomorphism.

(please turn)

Exercise 4. Let R be a ring and let I be the chain complex of R-modules with $I_0 = R \oplus R$, $I_1 = R$ and $I_n = 0$ for all $n \neq 0, 1$ and differential $d_I: I_1 \to I_0$ given by $d_I(r) = (r, -r)$. Let $C, D \in Ch(R)$ be two chain complexes of left R-modules.

(a) Show that the total complex of $I \otimes_R C$ (as defined in Remark 4.50) takes the following form: In degree *n* it is given by $(I \otimes_R C)_n = C_n \oplus C_n \oplus C_{n-1}$, and the differential is given by

$$d_C \colon C_n \oplus C_n \oplus C_{n-1} \to C_{n-1} \oplus C_{n-1} \oplus C_{n-2}$$
$$(x, y, z) \mapsto (dx + z, dy - z, -dz).$$

(b) Show that chain maps $I \otimes_R C \to D$ correspond one-to-one to triples (f, g, h), where $f, g: C \to D$ are chain maps and h is a chain homotopy between f and g.

This sheet will be discussed in the week of 29 January 2024.

2