

Winter term 2023/24
23 January 2024

Topology I

Sheet 13

Exercise 1. Prove Corollary 4.35 from the lecture: Let (X, x) and (Y, y) be pointed spaces such that the respective basepoints have pointed contractible open neighbourhoods. Then, for all $n \geq 0$, there is a canonical isomorphism $\tilde{H}_{n}(X) \oplus \tilde{H}_{n}(Y) \cong \tilde{H}_{n}(X \vee Y)$.

Exercise 2. Let R be a ring. Let there be given a commutative diagram of (left) R-modules

of which both rows are exact sequences. Show that there is an exact sequence

$$
\operatorname{ker}\left(f^{\prime}\right) \rightarrow \operatorname{ker}(f) \rightarrow \operatorname{ker}\left(f^{\prime \prime}\right) \rightarrow \operatorname{coker}\left(f^{\prime}\right) \rightarrow \operatorname{coker}(f) \rightarrow \operatorname{coker}\left(f^{\prime \prime}\right)
$$

Exercise 3. Let there be given a commutative diagram of (left) R-modules

of which both rows are exact. Prove:
(a) If b and d are surjective and e is injective, then c is surjective.
(b) If b and d are injective and a is surjective, then c is injective.
(c) If b and d are isomorphims, a is surjective and e is injective, then c is an isomorphism.

Exercise 4. Let R be a ring and let I be the chain complex of R-modules with $I_{0}=R \oplus R, I_{1}=R$ and $I_{n}=0$ for all $n \neq 0,1$ and differential $d_{I}: I_{1} \rightarrow I_{0}$ given by $d_{I}(r)=(r,-r)$. Let $C, D \in \operatorname{Ch}(R)$ be two chain complexes of left R-modules.
(a) Show that the total complex of $I \otimes_{R} C$ (as defined in Remark 4.50) takes the following form: In degree n it is given by $\left(I \otimes_{R} C\right)_{n}=C_{n} \oplus C_{n} \oplus C_{n-1}$, and the differential is given by

$$
\begin{aligned}
d_{C}: C_{n} \oplus C_{n} \oplus C_{n-1} & \rightarrow C_{n-1} \oplus C_{n-1} \oplus C_{n-2} \\
(x, y, z) & \mapsto(d x+z, d y-z,-d z) .
\end{aligned}
$$

(b) Show that chain maps $I \otimes_{R} C \rightarrow D$ correspond one-to-one to triples (f, g, h), where $f, g: C \rightarrow D$ are chain maps and h is a chain homotopy between f and g.

