

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2023/24

16 January 2024

Topology I

Sheet 12

Exercise 1. Let $n \ge 1$ and let there be given a continuous map $f: S^n \to S^n$. Prove:

- (a) If $f(x) \neq x$ for all $x \in S^n$, then $\deg(f) = (-1)^{n+1}$.
- (b) If $f(x) \neq -x$ for all $x \in S^n$, then $\deg(f) = 1$.
- (c) If n is even, then every map $g: \mathbb{R}P^n \to \mathbb{R}P^n$ has a fixed point, i.e., a point $z \in \mathbb{R}P^n$ with g(z) = z.
- (d) If n is odd, then there exists a map $g: \mathbb{R}P^n \to \mathbb{R}P^n$ without fixed points.

Exercise 2. Recall that, given a space X and an integer $n \ge 0$, the abelian group of singular *n*-simplices in X is

$$C_n^{\text{sing}}(X) = \mathbb{Z}[\text{Hom}_{\text{Top}}(\Delta_{\text{Top}}^n, X)].$$

Recall further the natural homomorphism $d_n \colon C_n^{\text{sing}}(X) \to C_{n-1}^{\text{sing}}(X)$.

- (a) Show that the natural transformation $d_n: C_n^{\text{sing}}(-) \to C_{n-1}^{\text{sing}}(-)$ corresponds, via the Yoneda lemma, to an element $\partial \Delta_{\text{Top}}^n \in C_{n-1}^{\text{sing}}(\Delta_{\text{Top}}^n)$.
- (b) Determine $\partial \Delta_{\text{Top}}^n$.

Exercise 3. Let R be a ring (associative, with unit). Recall that a sequence of left R-modules

$$M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{n-1}} M_n$$

is called *exact* if $im(f_{i-1}) = ker(f_i)$ for all i = 1, ..., n-1. Given left *R*-modules *F* and *P*, prove that the following are equivalent:

- (a) There exists a map $f: F \to F$ with $f^2 = f$ and $im(f) \cong P$.
- (b) There is an exact sequence of left R-modules

$$0 \to K \to F \xrightarrow{g} P \to 0$$

and a map $s: P \to F$ such that $gs = id_P$.

(c) There is a left *R*-module *K* and an isomorphism $F \cong K \oplus P$.

(please turn)

Exercise 4. Let R be a commutative ring and $0 \to M \to N \to L \to 0$ an exact sequence of R-modules. Let K be another R-module. Prove:

- (a) The induced sequence $M \otimes_R K \to N \otimes_R K \to L \otimes_R K \to 0$ is exact.
- (b) The induced sequence $0 \to \operatorname{Hom}_R(K, M) \to \operatorname{Hom}_R(K, N) \to \operatorname{Hom}_R(K, L)$ is exact.
- (c) The induced sequences $0 \to M \otimes_R K \to N \otimes_R K$ and $\operatorname{Hom}_R(K, N) \to \operatorname{Hom}_R(K, L) \to 0$ are not, in general, exact.

Recall that an *R*-module *K* is called *flat* if, for any exact sequence $0 \to M \to N \to L \to 0$, the induced sequence $0 \to M \otimes_R K \to N \otimes_R K$ is exact, and *projective* if for any such sequence $\operatorname{Hom}_R(K, N) \to \operatorname{Hom}_R(K, L) \to 0$ is exact. Also recall that *K* is *free* if it is of the form $K \cong \bigoplus_{s \in S} R$ for some set *S*.

- (d) Show that, for an R-module P, the following are equivalent:
 - (i) P is projective.
 - (ii) Given a surjective map $f: N \to L$ and a map $g: P \to L$ there is a map $\bar{g}: P \to N$ such that $f\bar{g} = g$.
 - (iii) There exist R-modules F and K, with F free, and an isomorphism $F \cong K \oplus P$.
- (e) Show that a free *R*-module is projective, and a projective *R*-module is flat.
- (f*) Let I be a small filtered category and $\operatorname{Fun}(I, \operatorname{Mod}(R))$ the category of I-shaped diagrams of *R*-modules. Show that colim: $\operatorname{Fun}(I, \operatorname{Mod}(R)) \to \operatorname{Mod}(R)$ is an exact functor, i.e., given an exact sequence $0 \to F \to G \to H \to 0$ in $\operatorname{Fun}(I, \operatorname{Mod}(R))$, the induced sequence of *R*-modules $0 \to \operatorname{colim}(F) \to \operatorname{colim}(G) \to \operatorname{colim}(H) \to 0$ is exact. Conclude that if $F \in \operatorname{Fun}(I, \operatorname{Mod}(R))$ with F(i) flat for every $i \in I$, then $\operatorname{colim}(F)$ is flat.

This sheet will be discussed in the week of 22 January 2024.