

Winter term 2023/24
5 December 2023

Topology I

Sheet 8

Exercise 1. Consider the set $S=\left\{\left.\left(\frac{2 k+1}{2}, \frac{1}{2}\right) \right\rvert\, k=0, \ldots, n-1\right\} \subseteq \mathbb{R}^{2}$. Show that $\mathbb{R}^{2} \backslash S$ is homotopy equivalent to a wedge $\bigvee^{n} S^{1}$. (If $S^{\prime} \subseteq \mathbb{R}^{2}$ is more generally a subset of cardinality n, there is a homeomorphism $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\varphi\left(S^{\prime}\right)=S$, hence also a homotopy equivalence $\mathbb{R}^{2} \backslash S^{\prime} \simeq$ $\bigvee^{n} S^{1}$.)

Exercise 2. For an integer $g \geq 0$ let Σ_{g} be the quotient space obtained by identifying the sides of a filled regular $4 g$-gon in \mathbb{R}^{2} as in the following picture:

Show that there is a pushout diagram

where $\alpha: S^{1} \rightarrow \bigvee^{2 g} S^{1}$ is an suitable map determined by the word $x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} \cdots x_{g} y_{g} x_{g}^{-1} y_{g}^{-1}$.

Exercise 3. Let G be a group acting continuously on a space X. Recall that the action is free if, for all $x \in X, g x=x$ implies $g=e$. We call the action proper if, for all compact $K \subseteq X$, the set $\{g \in G \mid g K \cap K \neq \emptyset\}$ is finite.
(a) Show that if X is locally compact and Hausdorff, then the action of G on X is covering like if it is free and proper.
(b) Show that the implication of (a) does not hold if X is not assumed Hausdorff.
[Hint: For example, consider the space $X \sqcup X$ with topology $\{U \sqcup U \mid U \subseteq X$ open $\}$ and C_{2}-action given by swapping the two copies of X.]

Exercise 4. Let $p: E \rightarrow B$ be a covering map.
(a) Show that p is open.
(b) Show that if p is surjective, then p is a quotient map.
(c) Show that if B is connected and E is non-empty, then p is surjective.
(d) Show that if B is locally (path-)connected, then so is E. Show that this fails to hold if "locally" is replaced by "globally".

Exercise 5. Let $p: E \rightarrow B$ be a covering map and $f: B^{\prime} \rightarrow B$ a map. Consider the pullback

(a) Show that the induced map $p^{\prime}: E \times{ }_{B} B^{\prime} \rightarrow B^{\prime}$ is also a covering map.
(b) Show that the assignment $(p, E, B) \mapsto\left(p^{\prime}, E \times_{B} B^{\prime}, B^{\prime}\right)$ induced by f defines a functor

$$
f^{*}: \operatorname{Cov}(B) \rightarrow \operatorname{Cov}\left(B^{\prime}\right)
$$

from the category of coverings over B to the category of coverings over B^{\prime}.

This sheet will be discussed in the week of 11 December 2023.

