

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2023/24

28 November 2023

Topology I

Sheet 7

Exercise 1. Let there be given a commutative diagram of functors

$\mathcal{C}_1 \xrightarrow{F_1} \mathcal{C}_1$	$\mathcal{C}_0 \stackrel{F_2}{\longleftarrow}$	$-\mathcal{C}_2$
$\downarrow L_1 $ $\mathcal{D} G_1$	$\downarrow L_0$	$\downarrow L_2$

Show that it induces a canonical functor $\mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_2 \to \mathcal{D}_1 \times_{\mathcal{D}_0} \mathcal{D}_2$. Furthermore show that this functor is

- (1) fully faithful if L_i is fully faithful for all i = 0, 1, 2
- (2) essentially surjective if L_1 and L_2 are essentially surjective and L_0 is fully faithful.

Conclude that it is an equivalence of categories if L_i is an equivalence of categories for all i = 0, 1, 2.

Exercise 2. Let $B\mathbb{Z}$ denote the infinite cyclic group \mathbb{Z} viewed as a category with one object. Show that there is a natural equivalence of groupoids $\operatorname{Fun}(B\mathbb{Z}, \mathcal{G}) \simeq \mathcal{G} \times_{\mathcal{G} \times \mathcal{G}} \mathcal{G}$, where the weak pullback is formed with respect to the diagonal inclusions $\mathcal{G} \to \mathcal{G} \times \mathcal{G}$.

Exercise 3. Let $F: \mathcal{G}_0 \to \mathcal{G}_1$ be a functor of small groupoids which is injective on objects, and let \mathcal{G} be another groupoid. Show that the restriction functor $F^*: \operatorname{Fun}(\mathcal{G}_1, \mathcal{G}) \to \operatorname{Fun}(\mathcal{G}_0, \mathcal{G})$ is an isofibration.

Exercise 4. Let $C = \{(0,0,z) \in \mathbb{R}^3 \mid -1 \leq z \leq 1\}$ and $X = S^2 \cup C$ viewed as a subspace of \mathbb{R}^3 . Compute the fundamental group of X.

This sheet will be discussed in the week of 4 December 2023.