

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2023/24

14 November 2023

Topology I

Sheet 5

Exercise 1. Let (X, \mathcal{O}_X) be a topological space. To X we can associate a new topological space X^+ as follows: The underlying set of X^+ is $X \cup \{\infty\}$, where ∞ is a new point not previously in X, and the topology on X^+ is defined by

 $\mathcal{O}_{X^+} = \mathcal{O}_X \cup \{(X \setminus K) \cup \{\infty\} \mid K \subseteq X \text{ compact and closed} \}.$

If X is locally compact, non-compact, and Hausdorff, then $X \hookrightarrow X^+$ is usually called the one-point compactification of X.

- (a) Show that \mathcal{O}_{X^+} is a topology on X^+ .
- (b) Show that X^+ is compact, and that X^+ is Hausdorff if X is locally compact and Hausdorff (does weakly locally compact suffice?)
- (c) Show that $(X \times Y)^+ \cong X^+ \wedge Y^+$ for all locally compact Hausdorff spaces X and Y.
- (d) Show that $(\mathbb{R}^n)^+ \cong S^n$ for all $n \ge 0$. Conclude that $S^n \wedge S^m \cong S^{n+m}$ for all $n, m \ge 0$.

Exercise 2. Show that the space

$$S = \{ (x, y) \in \mathbb{R}^2 \mid y = xm \text{ for some } m \in \mathbb{Q} \}$$

is contractible, but does not deformation retract onto (1, 0). [Hint: Show that if a space X deformation retracts onto a point $x_0 \in X$, then for each neighbourhood V of x_0 there is a neighbourhood $U \subseteq V$ of x_0 such that the inclusion $U \hookrightarrow V$ is homotopic to the constant map at x_0 .]

Exercise 3. Let \mathcal{C} be a category with finite products. In particular, \mathcal{C} has a terminal object $1_{\mathcal{C}} \in \mathcal{C}$ and there are canonical isomorphisms $M \times 1_{\mathcal{C}} \cong M \cong 1_{\mathcal{C}} \times M$. A monoid in \mathcal{C} is a triple (M, μ, η) consisting of an object $M \in \mathcal{C}$ and morphisms $\mu \colon M \times M \to M$ and $\eta \colon 1_{\mathcal{C}} \to M$ such that the following diagrams commute:

(Unitality)

(Associativity)

$$\begin{array}{ccc} (M \times M) \times M \xrightarrow{\cong} M \times (M \times M) \xrightarrow{id \times \mu} M \times M \\ & & & & \downarrow^{\mu \times id} & & & \downarrow^{\mu} \\ M \times M \xrightarrow{\mu} & & & M \end{array}$$

Here the isomorphisms are the canonical ones. We say that (M, μ, η) is a group in C if there is a morphism inv: $M \to M$ such that the following diagrams commute:

Here $\Delta = (id, id)$: $M \to M \times M$ is the diagonal.

- (a) Show that a monoid or group in Set is a monoid respectively group in the usual sense.
- (b) Let $\operatorname{pr}_1: M \times M \to M$ be the projection onto the first factor. Show that a monoid (M, μ, η) in \mathcal{C} is a group if and only if the morphism $(\operatorname{pr}_1, \mu): M \times M \to M \times M$ is an isomorphism.
- (c) Show that a monoid (M, μ, η) in \mathcal{C} is a group if and only if for all $X \in \mathcal{C}$ the set $\operatorname{Hom}_{\mathcal{C}}(X, M)$ together with the maps

$$\operatorname{Hom}_{\mathcal{C}}(X,M) \times \operatorname{Hom}_{\mathcal{C}}(X,M) \cong \operatorname{Hom}_{\mathcal{C}}(X,M \times M) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(X,\mu)} \operatorname{Hom}_{\mathcal{C}}(X,M)$$

тт

and $\operatorname{Hom}_{\mathcal{C}}(X,\eta)$: $\operatorname{Hom}_{\mathcal{C}}(X,1_{\mathcal{C}}) \to \operatorname{Hom}_{\mathcal{C}}(X,M)$ is a group, natural in X.

(d) Prove the following categorical version of the Eckman-Hilton argument: Suppose that $M \in C$ carries two monoid structures (M, \star, η_{\star}) and (M, \circ, η_{\circ}) which make the following diagram commute:

$$\begin{array}{cccc} M \times M \times M \times M \stackrel{id \times \tau \times id}{\longrightarrow} M \times M \times M \times M \xrightarrow{\circ \times \circ} M \times M \\ & & \downarrow^{\star \times \star} & & \downarrow^{\star} \\ M \times M \xrightarrow{\circ} & M \end{array}$$

Here $\tau = (\mathrm{pr}_2, \mathrm{pr}_1)$: $M \times M \to M \times M$ is the morphism swapping the two factors. Show that $\star = \circ$ and both products are commutative.

This sheet will be discussed in the week of 20 November 2023.