Topology I

Sheet 5

Exercise 1. Let $\left(X, \mathcal{O}_{X}\right)$ be a topological space. To X we can associate a new topological space X^{+} as follows: The underlying set of X^{+}is $X \cup\{\infty\}$, where ∞ is a new point not previously in X, and the topology on X^{+}is defined by

$$
\mathcal{O}_{X^{+}}=\mathcal{O}_{X} \cup\{(X \backslash K) \cup\{\infty\} \mid K \subseteq X \text { compact and closed }\}
$$

If X is locally compact, non-compact, and Hausdorff, then $X \hookrightarrow X^{+}$is usually called the one-point compactification of X.
(a) Show that $\mathcal{O}_{X^{+}}$is a topology on X^{+}.
(b) Show that X^{+}is compact, and that X^{+}is Hausdorff if X is locally compact and Hausdorff (does weakly locally compact suffice?)
(c) Show that $(X \times Y)^{+} \cong X^{+} \wedge Y^{+}$for all locally compact Hausdorff spaces X and Y.
(d) Show that $\left(\mathbb{R}^{n}\right)^{+} \cong S^{n}$ for all $n \geq 0$. Conclude that $S^{n} \wedge S^{m} \cong S^{n+m}$ for all $n, m \geq 0$.

Exercise 2. Show that the space

$$
S=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x m \text { for some } m \in \mathbb{Q}\right\}
$$

is contractible, but does not deformation retract onto $(1,0)$. [Hint: Show that if a space X deformation retracts onto a point $x_{0} \in X$, then for each neighbourhood V of x_{0} there is a neighbourhood $U \subseteq V$ of x_{0} such that the inclusion $U \hookrightarrow V$ is homotopic to the constant map at x_{0}.]

Exercise 3. Let \mathcal{C} be a category with finite products. In particular, \mathcal{C} has a terminal object $1_{\mathcal{C}} \in \mathcal{C}$ and there are canonical isomorphisms $M \times 1_{\mathcal{C}} \cong M \cong 1_{\mathcal{C}} \times M$. A monoid in \mathcal{C} is a triple (M, μ, η) consisting of an object $M \in \mathcal{C}$ and morphisms $\mu: M \times M \rightarrow M$ and $\eta: 1_{\mathcal{C}} \rightarrow M$ such that the following diagrams commute:
(Unitality)

(Associativity)

Here the isomorphisms are the canonical ones. We say that (M, μ, η) is a group in \mathcal{C} if there is a morphism inv: $M \rightarrow M$ such that the following diagrams commute:

Here $\Delta=(i d, i d): M \rightarrow M \times M$ is the diagonal.
(a) Show that a monoid or group in Set is a monoid respectively group in the usual sense.
(b) Let $\operatorname{pr}_{1}: M \times M \rightarrow M$ be the projection onto the first factor. Show that a monoid (M, μ, η) in \mathcal{C} is a group if and only if the morphism $\left(\mathrm{pr}_{1}, \mu\right): M \times M \rightarrow M \times M$ is an isomorphism.
(c) Show that a monoid (M, μ, η) in \mathcal{C} is a group if and only if for all $X \in \mathcal{C}$ the set $\operatorname{Hom}_{\mathcal{C}}(X, M)$ together with the maps

$$
\operatorname{Hom}_{\mathcal{C}}(X, M) \times \operatorname{Hom}_{\mathcal{C}}(X, M) \cong \operatorname{Hom}_{\mathcal{C}}(X, M \times M) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(X, \mu)} \operatorname{Hom}_{\mathcal{C}}(X, M)
$$

and $\operatorname{Hom}_{\mathcal{C}}(X, \eta): \operatorname{Hom}_{\mathcal{C}}\left(X, 1_{\mathcal{C}}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, M)$ is a group, natural in X.
(d) Prove the following categorical version of the Eckman-Hilton argument: Suppose that $M \in$ \mathcal{C} carries two monoid structures $\left(M, \star, \eta_{\star}\right)$ and $\left(M, \circ, \eta_{\circ}\right)$ which make the following diagram commute:

Here $\tau=\left(\mathrm{pr}_{2}, \mathrm{pr}_{1}\right): M \times M \rightarrow M \times M$ is the morphism swapping the two factors. Show that $\star=\circ$ and both products are commutative.

This sheet will be discussed in the week of 20 November 2023.

