

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2023/24

7 November 2023

Topology I

Sheet 4

Exercise 1. Let X be a topological space and $A \subseteq X$ a subset. For $x \in X$ show that $x \in \overline{A}$ if and only if there is a filter \mathcal{F} on A converging to x in the sense that $\mathcal{U}(x) \cap A \subseteq \mathcal{F}$, where $\mathcal{U}(x)$ is the neighbourhood filter of x.

Exercise 2. Let X be a compact Hausdorff space and let $x \in X$. Show that the connected component C(x) of x is precisely the intersection of all open and closed subsets of X containing x.

Exercise 3. Let $f: X \to Y$ be a quotient map and suppose that f is *proper*, that is, if $K \subseteq Y$ is compact, then $f^{-1}(K) \subseteq X$ is compact as well. Show that for any space Z the induced map

$$f^* \colon \operatorname{Map}(Y, Z) \to \operatorname{Map}(X, Z)$$

 $g \mapsto gf$

is an embedding.

Exercise 4. Show that for any X, Y, Z the map

$$\begin{split} \operatorname{Map}(X,Y) \times Z &\to \operatorname{Map}(X,Y \times Z) \\ (f,z) &\mapsto (x \mapsto (f(x),z)) \end{split}$$

is continuous.

Exercise 5. Let $\mathbb{K} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} and consider the projective space \mathbb{KP}^n .

- (a) Show that \mathbb{KP}^n is Hausdorff.
- (b) Let $S^n \subseteq \mathbb{R}^{n+1}$ be the unit sphere. Show that the inclusion $S^n \hookrightarrow \mathbb{R}^{n+1} \setminus \{0\}$ descends to a homeomorphism $S^n / \sim \cong \mathbb{RP}^n$, where \sim is the equivalence relation generated by $x \sim -x$ for all $x \in S^n$.
- (c) Similarly, show that \mathbb{KP}^n for $\mathbb{K} = \mathbb{C}$, \mathbb{H} is homeomorphic to the quotient of a sphere by a suitable equivalence relation.

This sheet will be discussed in the week of 13 November 2023.