Topology I

Sheet 3

Exercise 1. For a space X let $\pi_{0}(X)$ denote the set of path-connected components of X and let $\pi(X)$ denote the set of connected components of X.
(a) Show that the assignments $X \mapsto \pi_{0}(X)$ and $X \mapsto \pi(X)$ define functors Top \rightarrow Set.
(b) Prove that π_{0} and π commute with finite products.

Exercise 2. For a space X let $\pi(X)$ be the set of connected components endowed with the quotient topology induced by the canonical surjection $q: X \rightarrow \pi(X)$. Let td-spaces \subseteq Top denote the full subcategory of totally disconnected spaces.
(a) Show that $X \mapsto \pi(X)$ defines a functor π : Top \rightarrow td-spaces; in particular, $\pi(X)$ with the quotient topology is totally disconnected.
(b) Show that π : Top \rightarrow td-spaces is left-adjoint to the inclusion td-spaces \subseteq Top, that is, show that for every map $f: X \rightarrow Y$ where Y is totally disconnected there exists a unique map $\bar{f}: \pi(X) \rightarrow Y$ such that $\bar{f} q=f$.
(c) Let $\left\{X_{i}\right\}_{i \in I}$ be a family of totally disconnected spaces and $Y \subseteq \prod_{i \in I} X_{i}$ a subspace. Show that Y is totally disconnected. [Hint: Show that products of totally disconnected spaces are totally disconnected, and subspaces of totally disconnected spaces are totally disconnected.]

Exercise 3. Show that a space X is compact if and only if it satisfies the following condition: For every family $\left\{Z_{i}\right\}_{i \in I}$ of closed subsets of X, where I is a set, if $\bigcap_{j \in J} Z_{j} \neq \emptyset$ for all finite subsets $J \subset I$, then $\bigcap_{i \in I} Z_{i} \neq \emptyset$.

Exercise 4. Give an example of a space that is compact but not locally compact, and prove that this is so.

Exercise 5. For a map $p: X \rightarrow Y$ let $X \times_{Y} X$ denote the pullback of the diagram $X \xrightarrow{p} Y \stackrel{p}{\leftarrow} X$, that is, $X \times_{Y} X$ may be taken as the subspace of $X \times X$ defined by

$$
X \times_{Y} X=\left\{\left(x_{1}, x_{2}\right) \in X \times X \mid p\left(x_{1}\right)=p\left(x_{2}\right)\right\}
$$

Let $\Delta=\left\{(x, x) \in X \times_{Y} X \mid x \in X\right\}$ be the diagonal subspace. Show that Δ is closed in $X \times_{Y} X$ if and only if for every $\left(x_{1}, x_{2}\right) \in X \times_{Y} X$ with $x_{1} \neq x_{2}$ there are open sets $U_{1}, U_{2} \subseteq X$ such that $x_{1} \in U_{1}, x_{2} \in U_{2}$ and $U_{1} \cap U_{2}=\emptyset$. In particular, deduce that X is Hausdorff if and only if the diagonal $\Delta \subseteq X \times X$ is closed.

