

Winter term 2023/24

Topology I

Sheet 2

Exercise 1. Let X be a topological space and $A \subseteq X$ a subspace.
(a) Under what conditions on A is the canonical map $X \rightarrow X / A$ open?
(b) Let $B \subseteq A$ be another subspace. Show that A / B is naturally a subspace of X / B and there is a homeomorphism $(X / B) /(A / B) \cong X / A$.

Exercise 2. Let G be a group acting continuously on a topological space X.
(a) Show that the canonical map $X \rightarrow X / G$ is open.
(b) Suppose that $H \leq G$ is a normal subgroup. Show that G / H acts continuously on X / H and there is a homeomorphism $(X / H) /(G / H) \cong X / G$.

Exercise 3. Consider the semi-direct product $\mathbb{Z} \rtimes \mathbb{Z}$ for \mathbb{Z} acting on itself via sign: The underlying set of $\mathbb{Z} \rtimes \mathbb{Z}$ is $\mathbb{Z} \times \mathbb{Z}$ and the group law • is defined by

$$
(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a+(-1)^{b} a^{\prime}, b+b^{\prime}\right) \quad(a, b),\left(a^{\prime}, b^{\prime}\right) \in \mathbb{Z}^{2} .
$$

(a) Show that $\mathbb{Z} \rtimes \mathbb{Z}$ is generated by $S=(1,0)$ and $T=(0,1)$, and that $\mathbb{Z} \rtimes \mathbb{Z}$ acts continuously on \mathbb{R}^{2} by $S(x, y)=(x, y+1)$ and $T(x, y)=(x+1,-y)$ for all $(x, y) \in \mathbb{R}^{2}$. The quotient $K=\mathbb{R}^{2} / \mathbb{Z} \rtimes \mathbb{Z}$ is called the Klein bottle.
(b) Exhibit \mathbb{Z}^{2} as an index two subgroup of $\mathbb{Z} \rtimes \mathbb{Z}$.
(c) Let C_{2} be a cyclic group of order two. Show that there is a continuous action of C_{2} on the 2-torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and a map $T^{2} \rightarrow K$ inducing a homeomorphism $T^{2} / C_{2} \cong K$.
(d) Show that the unit square $[0,1]^{2} \subseteq \mathbb{R}^{2}$ is a fundamental domain for the action of both \mathbb{Z}^{2} and $\mathbb{Z} \rtimes \mathbb{Z}$. Describe both T^{2} and K as quotient spaces of $[0,1]^{2}$ by a suitable equivalence relation.

Exercise 4. Let X be a topological space and $f: X \rightarrow X$ a map. Define the mapping torus of f to be the space $T_{f}=(X \times[0,1]) / \sim$ where \sim is the equivalence relation generated by $(x, 1) \sim(f(x), 0)$ for all $x \in X$.
(a) Show that the projection onto $[0,1]$ induces a continuous map $T_{f} \rightarrow S^{1}$.
(b) Show that the Klein bottle K is homeomorphic to the mapping torus of $f: S^{1} \rightarrow S^{1}, f(z)=z^{-1}$.
(c) Describe the composite map $T^{2} \rightarrow K \rightarrow S^{1}$ (cf. Exercise 3 (c)).

Exercise 5. Let G be a group acting continuously on a space X. Let $f_{1}, f_{2}: G \times X \rightarrow X$ be the maps defined by $f_{1}(g, x)=x$ and $f_{2}(g, x)=g x$, respectively. Compute the coequaliser of f_{1} and f_{2}.

Exercise 6. Let $p>1$ be an integer and let q_{1}, \ldots, q_{n} be integers coprime to p. An action of the cyclic group C_{p} on \mathbb{C}^{n} is generated by

$$
\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(e^{2 \pi i q_{1} / p} z_{1}, \ldots, e^{2 \pi i q_{n} / p} z_{n}\right)
$$

In the lecture we wrote $\mathbb{C}\left(q_{1}\right) \oplus \cdots \oplus \mathbb{C}\left(q_{n}\right)$ for \mathbb{C}^{n} equipped with this action. Show that the induced action on the unit sphere $S\left(\mathbb{C}\left(q_{1}\right) \oplus \cdots \oplus \mathbb{C}\left(q_{n}\right)\right) \cong S^{2 n-1}$ is free.

