

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

24 October 2023

Winter term 2023/24

Topology I

Sheet 2

Exercise 1. Let X be a topological space and $A \subseteq X$ a subspace.

- (a) Under what conditions on A is the canonical map $X \to X/A$ open?
- (b) Let $B \subseteq A$ be another subspace. Show that A/B is naturally a subspace of X/B and there is a homeomorphism $(X/B)/(A/B) \cong X/A$.

Exercise 2. Let G be a group acting continuously on a topological space X.

- (a) Show that the canonical map $X \to X/G$ is open.
- (b) Suppose that $H \leq G$ is a normal subgroup. Show that G/H acts continuously on X/H and there is a homeomorphism $(X/H)/(G/H) \cong X/G$.

Exercise 3. Consider the semi-direct product $\mathbb{Z} \rtimes \mathbb{Z}$ for \mathbb{Z} acting on itself via sign: The underlying set of $\mathbb{Z} \rtimes \mathbb{Z}$ is $\mathbb{Z} \times \mathbb{Z}$ and the group law \cdot is defined by

$$(a,b) \cdot (a',b') = (a + (-1)^{b}a', b + b') \quad (a,b), (a',b') \in \mathbb{Z}^{2}$$

- (a) Show that $\mathbb{Z} \rtimes \mathbb{Z}$ is generated by S = (1,0) and T = (0,1), and that $\mathbb{Z} \rtimes \mathbb{Z}$ acts continuously on \mathbb{R}^2 by S(x,y) = (x,y+1) and T(x,y) = (x+1,-y) for all $(x,y) \in \mathbb{R}^2$. The quotient $K = \mathbb{R}^2/\mathbb{Z} \rtimes \mathbb{Z}$ is called the Klein bottle.
- (b) Exhibit \mathbb{Z}^2 as an index two subgroup of $\mathbb{Z} \rtimes \mathbb{Z}$.
- (c) Let C_2 be a cyclic group of order two. Show that there is a continuous action of C_2 on the 2-torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ and a map $T^2 \to K$ inducing a homeomorphism $T^2/C_2 \cong K$.
- (d) Show that the unit square $[0,1]^2 \subseteq \mathbb{R}^2$ is a fundamental domain for the action of both \mathbb{Z}^2 and $\mathbb{Z} \rtimes \mathbb{Z}$. Describe both T^2 and K as quotient spaces of $[0,1]^2$ by a suitable equivalence relation.

Exercise 4. Let X be a topological space and $f: X \to X$ a map. Define the mapping torus of f to be the space $T_f = (X \times [0,1]) / \sim$ where \sim is the equivalence relation generated by $(x,1) \sim (f(x),0)$ for all $x \in X$.

- (a) Show that the projection onto [0, 1] induces a continuous map $T_f \to S^1$.
- (b) Show that the Klein bottle K is homeomorphic to the mapping torus of $f: S^1 \to S^1, f(z) = z^{-1}$.
- (c) Describe the composite map $T^2 \to K \to S^1$ (cf. Exercise 3 (c)).

(please turn)

Exercise 5. Let G be a group acting continuously on a space X. Let $f_1, f_2: G \times X \to X$ be the maps defined by $f_1(g, x) = x$ and $f_2(g, x) = gx$, respectively. Compute the coequaliser of f_1 and f_2 .

Exercise 6. Let p > 1 be an integer and let q_1, \ldots, q_n be integers coprime to p. An action of the cyclic group C_p on \mathbb{C}^n is generated by

$$(z_1,\ldots,z_n)\mapsto (e^{2\pi iq_1/p}z_1,\ldots,e^{2\pi iq_n/p}z_n).$$

In the lecture we wrote $\mathbb{C}(q_1) \oplus \cdots \oplus \mathbb{C}(q_n)$ for \mathbb{C}^n equipped with this action. Show that the induced action on the unit sphere $S(\mathbb{C}(q_1) \oplus \cdots \oplus \mathbb{C}(q_n)) \cong S^{2n-1}$ is free.

This sheet will be discussed in the week of 30 October 2023.