

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2023/24

17 October 2023

Topology I

Sheet 1

Exercise 1. Let \mathcal{O} be the cofinite topology on the set $\mathbb{N} = \{0, 1, 2, ...\}$ of natural numbers. Prove that $(\mathbb{N}, \mathcal{O})$ is not metrizable by showing the following:

- (a) Any two non-empty open sets $U, V \in \mathcal{O}$ have non-empty intersection.
- (b) If X is a non-empty metrizable space for which any two non-empty open sets have non-empty intersection, then |X| = 1, i.e., X is a one-point space.

Exercise 2. Let X be a set and let $T \subseteq \mathcal{P}(X)$ be a set of subsets of X. Prove that

$$\mathcal{S}_T = \left\{ \bigcup_{i \in I} A_i \mid I \text{ is a set and } \forall i \in I \text{ there is a finite subset } J_i \subseteq T \text{ such that } A_i = \bigcap_{B \in J_i} B \right\}$$

is a topology on X.

Exercise 3. Let \mathcal{O} and \mathcal{O}' be two topologies on a set X. Decide under which condition on \mathcal{O} and \mathcal{O}' the identity map $id: X \to X$ is continuous with respect to \mathcal{O} and \mathcal{O}' .

Exercise 4. Let $X = \{a, b\}$ be a set with two elements.

- (a) Give a list of all topologies on X, and decide which ones are homeomorphic.
- (b) Consider the unit interval $[0,1] \subseteq \mathbb{R}$ with the standard topology. Describe the quotient topology on [0,1]/[0,1), and decide which of the topologies in (a) it corresponds to.

Exercise 5. Let X be a topological space and I a set. Let there be given for each $i \in I$ a subset $A_i \subseteq X$ such that $X = \bigcup_{i \in I} A_i$ and $A_i \cap A_j = \emptyset$ for all $i \neq j$. Prove that the canonical map $\coprod_{i \in I} A_i \to X$ is a homeomorphism if and only if each A_i is open and closed in X.

This sheet will be discussed in the week of 23 October 2023.