COMMENTS ON SHEET 8

Exercise 1

First note that there is a deformation retraction of \mathbb{R}^2 onto $[-1, 1]^2$ defined as follows:

$$\begin{split} h_o \colon \ \mathbb{R}^2 \times [0,1] &\to \mathbb{R}^2 \\ (x,t) &\mapsto \begin{cases} \frac{x}{(1-t)+t||x||_{\infty}} & \text{if } ||x||_{\infty} > 1 \\ x & \text{if } ||x||_{\infty} \le 1 \end{cases} \end{split}$$

where $|| \cdot ||_{\infty}$ is the maximum norm on \mathbb{R}^2 . Similarly, there is a deformation retraction of $[-1,1]^2 \setminus \{(0,0)\}$ onto $\partial [-1,1]^2$ defined by

$$h_i: \ [-1,1]^2 \setminus \{(0,0)\} \times [0,1] \to [-1,1]^2 \setminus \{(0,0)\}$$
$$(x,t) \mapsto \frac{x}{(1-t)+t||x||_{\infty}}$$

Let $A_k = [k, k+1] \times [0, 1]$, $k = 0, \ldots, n-1$ and $A = \bigcup_{k=0}^{n-1} A_k \subseteq \mathbb{R}^2$. Note that $S \subseteq A$. Let $\phi \colon (\mathbb{R}^2, A) \to (\mathbb{R}^2, [-1, 1]^2)$ be a relative homeomorphism, i.e., a homeomorphism of \mathbb{R}^2 that restricts to a homeomorphism from A onto $[-1, 1]^2$. Then

$$\mathbb{R}^2 \times [0,1] \xrightarrow{\phi \times id} \mathbb{R}^2 \times [0,1] \xrightarrow{h_o} \mathbb{R}^2 \xrightarrow{\phi^{-1}} \mathbb{R}^2$$

is a deformation retraction of \mathbb{R}^2 onto A, giving a homotopy equivalence $\mathbb{R}^2 \backslash S \simeq A \backslash S$.

Let $p_k = (\frac{2k+1}{2}, \frac{1}{2}) \in A_k$ and let $\psi_k \colon (A_k, p_k) \to ([-1, 1]^2, (0, 0))$ be a relative homeomorphism. Then

$$A_k \setminus \{p_k\} \times [0,1] \xrightarrow{\psi_k \times id} [-1,1]^2 \setminus \{(0,0)\} \times [0,1] \xrightarrow{h_i} [-1,1]^2 \setminus \{(0,0)\} \xrightarrow{\psi_k^{-1}} A_k \setminus \{p_k\}$$

is a deformation retraction of $A_k \setminus \{p_k\}$ onto its boundary. The $\psi_k, k = 0, \ldots, n-1$ combine to give a deformation retraction of $A \setminus S$ onto the graph $G = [0, n] \times \{0, 1\} \cup \bigsqcup_{k=0}^{n} \{k\} \times [0, 1]$. But G is homotopy equivalent to a wedge of n circles by Exercise 3, Sheet 6.

Exercise 2

Date: December 14, 2023.

COMMENTS ON SHEET 8

By radial projection onto the circumference of the polygon we may assume that Σ_g is obtained as a quotient of a disc D^2 , whose boundary circle is divided into 4g arcs of equal length, by an equivalence relation ~ that identifies the boundary arcs in the obvious way. In particular, there is a homeomorphism $\phi: \partial D^2 / \sim \cong \bigvee^{2g} S^1$.

The attaching map $\alpha: S^1 \to \bigvee^{2g} S^1$ is then simply the composite of $S^1 = \partial D^2 \to \partial D^2 / \sim$ with ϕ . The projection $D^2 \to D^2 / \sim$ and the map $\phi^{-1} \alpha: S^1 \to \partial D^2 / \sim$ induce a continuous bijection

pushout
$$(D^2 \xleftarrow{i} S^1 \xrightarrow{\alpha} \bigvee^{2g} S^1) \to D^2 / \sim = \Sigma_g$$

It is a homeomorphism, because the domain is compact and the codomain is Hausdorff.

Exercise 3

(a) For every $x \in X$ and $g \in G$, $g \neq e$ there is an open $x \in U \subseteq X$ such that $U \cap gU = \emptyset$. Indeed, the action is free, so $x \neq gx$, and X is Hausdorff, so there are open neighbourhoods V_1 of x and V_2 of gx such that $V_1 \cap V_2 = \emptyset$. Then define $U := g^{-1}(g(V_1) \cap V_2)$.

Now let $x \in X$ be fixed. Since X is locally compact, we can pick a compact neighbourhood $x \in K \subseteq X$. Since the action is proper, the set

$$S = \{g \in G \setminus \{e\} \mid g(K) \cap K \neq \emptyset\}$$

is finite. By the previous paragraph, we find for each $g \in S$ an open neighbourhood $x \in U_g \subseteq K$ such that $g(U_g) \cap U_g = \emptyset$. Then $U := \bigcap_{g \in S} U_g$ is an open neighbourhood of x such that $g(U) \cap U = \emptyset$ for all $g \in G \setminus \{e\}$. This means that the action is covering-like.

(b) Let X be non-empty and $X \sqcup X$ as in the hint. The action of C_2 on $X \sqcup X$ is obviously continuous, free, and it is proper because C_2 is finite. But it is not covering like, because for any open $U \sqcup U \subseteq X \sqcup X$ we have that $\tau(U \sqcup U) = U \sqcup U$, where $\tau \in C_2$ is the non-trivial element.

Concretely, we can choose X = *, then $X \sqcup X$ is the space with two points and indiscrete topology. This satisfies all the assumptions of (a) except it is not Hausdorff. The fold map $* \sqcup * \to *$ (which is the projection wrt to the C_2 -action) is not a covering map, and hence C_2 does not act covering-like: if it were a covering map, it would be a trivial covering (because the base space is a single point), i.e., $* \sqcup * \cong * \amalg *$ (the coproduct), but this is not the case.

Exercise 4

(a) To show that $p: E \to B$ is open we show that every $x \in E$ has an open neighbourhood $V \subseteq E$ which is mapped by p homeomorphically onto an open subset $p(V) \subseteq B$. By definition of a covering, p(x) has an open neighbourhood $U \subseteq B$ such that $p|_{p^{-1}(U)}$ is a trivial covering, i.e., there is a homeomorphism $\varphi: p^{-1}(U) \cong U \times F$ over U with F discrete. Let $z \in F$ such that $\varphi(x) \in U \times \{z\}$. Then $V := \varphi^{-1}(U \times \{z\})$ is an open neighbourhood of x and it is mapped by p homeomorphically onto U.

(b) Let $U \subseteq B$ and suppose that $p^{-1}(U) \subseteq E$ is open. As p is surjective, $U = p(p^{-1}(U))$, and this is open, because p is open by (a). It follows that p is a quotient map. (This shows that an open surjective map is a quotient map.)

(c) We will show that im(p) is open and closed and non-empty.

Openness was shown in (a).

The image is non-empty, because E is assumed non-empty.

To show that $\operatorname{im}(p)$ is closed, let $x \in B \setminus \operatorname{im}(p)$. By definition of a covering, there is an open subset $x \in U \subseteq B$ and a homeomorphism $p^{-1}(U) \cong U \times F$ over U with F discrete. But since $x \notin \operatorname{im}(p)$, we must have $F = \emptyset$. Hence, $p^{-1}(U) = \emptyset$, so $U \subseteq B \setminus \operatorname{im}(p)$ showing that $B \setminus \operatorname{im}(p)$ is open.

(d) Let $x \in E$ and let $V \subseteq E$ be an open neighbourhood of x. By (a), p(V) is an open neighbourhood of p(x). Since B is locally (path-)connected, we find a (path-)connected neighbourhood $U \subseteq p(V)$ of p(x). Wlog, we may assume U is such that $p|_{p^{-1}(U)}$ is a trivial covering, i.e., there is a homeomorphism $\varphi \colon p^{-1}(U) \cong U \times F$ over U with F discrete. If $z \in F$ is such that $\varphi(x) \in U \times \{z\}$, then $\varphi^{-1}(U \times \{z\}) \subseteq V$ is a (path-)connected neighbourhood of x.

With "globally" insetad of "locally" this is not true: Just take a trivial covering with more than one sheet and (path-)connected base space.

Exercise 5

(a) We'll show that if $p: E \to B$ is a trivial covering, i.e., if there is a discrete space F and a commutative diagram

then $p': B' \times_B E \to B'$ is a trivial covering, too. Indeed, the map

$$\varphi' \colon B' \times_B E \to B' \times F$$
$$(x, u) \mapsto (x, \operatorname{pr}_2(\varphi(u)))$$

is a homeomorphism with inverse

$$B' \times F \to B' \times_B E$$
$$(x, v) \mapsto (x, \varphi^{-1}(f(x), v))$$

and clearly, the diagram

commutes.

Now suppose that $p: E \to B$ is any covering map. Given $x \in B'$ there is an open neighbourhood $U \subseteq B$ of f(x) such that p is trivial over U. But then, by the previous paragraph, p' is trivial over $f^{-1}(U)$. So p' is a covering map.

(b) Let $\alpha: (p_1, E_1, B) \to (p_2, E_2, B)$ be a map of coverings, i.e., $\alpha: E_1 \to E_2$ is a map such that

commutes. Define

$$f^*(\alpha): B' \times_B E_1 \to B' \times_B E_2$$
$$(x, u) \mapsto (x, \alpha(u))$$

This is well-defined, because $f(x) = p_1(x) = p_2(\alpha(u))$, as required.

Clearly, $f^*(\alpha)$ is continuous and satisfies $p'_2 \circ f^*(\alpha) = p'_1$, so $f^*(\alpha)$ is a map of coverings. It is also clear that $f^*(id) = id$ and $f^*(\alpha\beta) = f^*(\alpha)f^*(\beta)$.