COMMENTS ON SHEET 8

Exercise 1

First note that there is a deformation retraction of \mathbb{R}^{2} onto $[-1,1]^{2}$ defined as follows:

$$
\begin{aligned}
h_{o}: \mathbb{R}^{2} \times[0,1] & \rightarrow \mathbb{R}^{2} \\
(x, t) & \mapsto \begin{cases}\frac{x}{(1-t)+t\|x\|_{\infty}} & \text { if }\|x\|_{\infty}>1 \\
x & \text { if }\|x\|_{\infty} \leq 1\end{cases}
\end{aligned}
$$

where $\|\cdot\|_{\infty}$ is the maximum norm on \mathbb{R}^{2}. Similarly, there is a deformation retraction of $[-1,1]^{2} \backslash\{(0,0)\}$ onto $\partial[-1,1]^{2}$ defined by

$$
\begin{aligned}
h_{i}:[-1,1]^{2} \backslash\{(0,0)\} \times[0,1] & \rightarrow[-1,1]^{2} \backslash\{(0,0)\} \\
(x, t) & \mapsto \frac{x}{(1-t)+t\|x\|_{\infty}}
\end{aligned}
$$

Let $A_{k}=[k, k+1] \times[0,1], k=0, \ldots, n-1$ and $A=\bigcup_{k=0}^{n-1} A_{k} \subseteq \mathbb{R}^{2}$. Note that $S \subseteq A$. Let $\phi:\left(\mathbb{R}^{2}, A\right) \rightarrow\left(\mathbb{R}^{2},[-1,1]^{2}\right)$ be a relative homeomorphism, i.e., a homeomorphism of \mathbb{R}^{2} that restricts to a homeomorphism from A onto $[-1,1]^{2}$. Then

$$
\mathbb{R}^{2} \times[0,1] \xrightarrow{\phi \times i d} \mathbb{R}^{2} \times[0,1] \xrightarrow{h_{o}} \mathbb{R}^{2} \xrightarrow{\phi^{-1}} \mathbb{R}^{2}
$$

is a deformation retraction of \mathbb{R}^{2} onto A, giving a homotopy equivalence $\mathbb{R}^{2} \backslash S \simeq$ $A \backslash S$.

Let $p_{k}=\left(\frac{2 k+1}{2}, \frac{1}{2}\right) \in A_{k}$ and let $\psi_{k}:\left(A_{k}, p_{k}\right) \rightarrow\left([-1,1]^{2},(0,0)\right)$ be a relative homeomorphism. Then

$$
A_{k} \backslash\left\{p_{k}\right\} \times[0,1] \xrightarrow{\psi_{k} \times i d}[-1,1]^{2} \backslash\{(0,0)\} \times[0,1] \xrightarrow{h_{i}}[-1,1]^{2} \backslash\{(0,0)\} \xrightarrow{\psi_{k}^{-1}} A_{k} \backslash\left\{p_{k}\right\}
$$

is a deformation retraction of $A_{k} \backslash\left\{p_{k}\right\}$ onto its boundary. The $\psi_{k}, k=0, \ldots, n-1$ combine to give a deformation retraction of $A \backslash S$ onto the graph $G=[0, n] \times$ $\{0,1\} \cup \bigsqcup_{k=0}^{n}\{k\} \times[0,1]$. But G is homotopy equivalent to a wedge of n circles by Exercise 3, Sheet 6.

Exercise 2

By radial projection onto the circumference of the polygon we may assume that Σ_{g} is obtained as a quotient of a disc D^{2}, whose boundary circle is divided into $4 g$ arcs of equal length, by an equivalence relation \sim that identifies the boundary arcs in the obvious way. In particular, there is a homeomorphism $\phi: \partial D^{2} / \sim \cong \bigvee^{2 g} S^{1}$.

The attaching map $\alpha: S^{1} \rightarrow \bigvee^{2 g} S^{1}$ is then simply the composite of $S^{1}=$ $\partial D^{2} \rightarrow \partial D^{2} / \sim$ with ϕ. The projection $D^{2} \rightarrow D^{2} / \sim$ and the map $\phi^{-1} \alpha: S^{1} \rightarrow$ $\partial D^{2} / \sim$ induce a continuous bijection

$$
\operatorname{pushout}\left(D^{2} \stackrel{i}{\leftarrow} S^{1} \xrightarrow{\alpha} \bigvee^{2 g} S^{1}\right) \rightarrow D^{2} / \sim=\Sigma_{g}
$$

It is a homeomorphism, because the domain is compact and the codomain is Hausdorff.

Exercise 3

(a) For every $x \in X$ and $g \in G, g \neq e$ there is an open $x \in U \subseteq X$ such that $U \cap g U=\emptyset$. Indeed, the action is free, so $x \neq g x$, and X is Hausdorff, so there are open neighbourhoods V_{1} of x and V_{2} of $g x$ such that $V_{1} \cap V_{2}=\emptyset$. Then define $U:=g^{-1}\left(g\left(V_{1}\right) \cap V_{2}\right)$.

Now let $x \in X$ be fixed. Since X is locally compact, we can pick a compact neighbourhood $x \in K \subseteq X$. Since the action is proper, the set

$$
S=\{g \in G \backslash\{e\} \mid g(K) \cap K \neq \emptyset\}
$$

is finite. By the previous paragraph, we find for each $g \in S$ an open neighbourhood $x \in U_{g} \subseteq K$ such that $g\left(U_{g}\right) \cap U_{g}=\emptyset$. Then $U:=\bigcap_{g \in S} U_{g}$ is an open neighbourhood of x such that $g(U) \cap U=\emptyset$ for all $g \in G \backslash\{e\}$. This means that the action is covering-like.
(b) Let X be non-empty and $X \sqcup X$ as in the hint. The action of C_{2} on $X \sqcup X$ is obviously continuous, free, and it is proper because C_{2} is finite. But it is not covering like, because for any open $U \sqcup U \subseteq X \sqcup X$ we have that $\tau(U \sqcup U)=U \sqcup U$, where $\tau \in C_{2}$ is the non-trivial element.

Concretely, we can choose $X=*$, then $X \sqcup X$ is the space with two points and indiscrete topology. This satisfies all the assumptions of (a) except it is not Hausdorff. The fold map $* \sqcup * \rightarrow *$ (which is the projection wrt to the C_{2}-action) is not a covering map, and hence C_{2} does not act covering-like: if it were a covering map, it would be a trivial covering (because the base space is a single point), i.e., $* \sqcup * \cong * \amalg *$ (the coproduct), but this is not the case.

Exercise 4

(a) To show that $p: E \rightarrow B$ is open we show that every $x \in E$ has an open neighbourhood $V \subseteq E$ which is mapped by p homeomorphically onto an open subset $p(V) \subseteq B$. By definition of a covering, $p(x)$ has an open neighbourhood
$U \subseteq B$ such that $\left.p\right|_{p^{-1}(U)}$ is a trivial covering, i.e., there is a homeomorphism $\varphi: p^{-1}(U) \cong U \times F$ over U with F discrete. Let $z \in F$ such that $\varphi(x) \in U \times\{z\}$. Then $V:=\varphi^{-1}(U \times\{z\})$ is an open neighbourhood of x and it is mapped by p homeomorphically onto U.
(b) Let $U \subseteq B$ and suppose that $p^{-1}(U) \subseteq E$ is open. As p is surjective, $U=p\left(p^{-1}(U)\right)$, and this is open, because p is open by (a). It follows that p is a quotient map. (This shows that an open surjective map is a quotient map.)
(c) We will show that $\operatorname{im}(p)$ is open and closed and non-empty.

Openness was shown in (a).
The image is non-empty, because E is assumed non-empty.
To show that $\operatorname{im}(p)$ is closed, let $x \in B \backslash \operatorname{im}(p)$. By definition of a covering, there is an open subset $x \in U \subseteq B$ and a homeomorphism $p^{-1}(U) \cong U \times F$ over U with F discrete. But since $x \notin \operatorname{im}(p)$, we must have $F=\emptyset$. Hence, $p^{-1}(U)=\emptyset$, so $U \subseteq B \backslash \operatorname{im}(p)$ showing that $B \backslash \operatorname{im}(p)$ is open.
(d) Let $x \in E$ and let $V \subseteq E$ be an open neighbourhood of x. By (a), $p(V)$ is an open neighbourhood of $p(x)$. Since B is locally (path-)connected, we find a (path)connected neighbourhood $U \subseteq p(V)$ of $p(x)$. Wlog, we may assume U is such that $\left.p\right|_{p^{-1}(U)}$ is a trivial covering, i.e., there is a homeomorphism $\varphi: p^{-1}(U) \cong$ $U \times F$ over U with F discrete. If $z \in F$ is such that $\varphi(x) \in U \times\{z\}$, then $\varphi^{-1}(U \times\{z\}) \subseteq V$ is a (path-)connected neighbourhood of x.

With "globally" insetad of "locally" this is not true: Just take a trivial covering with more than one sheet and (path-)connected base space.

Exercise 5

(a) We'll show that if $p: E \rightarrow B$ is a trivial covering, i.e., if there is a discrete space F and a commutative diagram

then $p^{\prime}: B^{\prime} \times_{B} E \rightarrow B^{\prime}$ is a trivial covering, too. Indeed, the map

$$
\begin{aligned}
\varphi^{\prime}: B^{\prime} \times_{B} E & \rightarrow B^{\prime} \times F \\
(x, u) & \mapsto\left(x, \operatorname{pr}_{2}(\varphi(u))\right)
\end{aligned}
$$

is a homeomorphism with inverse

$$
\begin{aligned}
B^{\prime} \times F & \rightarrow B^{\prime} \times_{B} E \\
(x, v) & \mapsto\left(x, \varphi^{-1}(f(x), v)\right)
\end{aligned}
$$

and clearly, the diagram

commutes.
Now suppose that $p: E \rightarrow B$ is any covering map. Given $x \in B^{\prime}$ there is an open neighbourhood $U \subseteq B$ of $f(x)$ such that p is trivial over U. But then, by the previous paragraph, p^{\prime} is trivial over $f^{-1}(U)$. So p^{\prime} is a covering map.
(b) Let $\alpha:\left(p_{1}, E_{1}, B\right) \rightarrow\left(p_{2}, E_{2}, B\right)$ be a map of coverings, i.e., $\alpha: E_{1} \rightarrow E_{2}$ is a map such that

commutes. Define

$$
\begin{aligned}
f^{*}(\alpha): B^{\prime} \times_{B} E_{1} & \rightarrow B^{\prime} \times_{B} E_{2} \\
(x, u) & \mapsto(x, \alpha(u))
\end{aligned}
$$

This is well-defined, because $f(x)=p_{1}(x)=p_{2}(\alpha(u))$, as required.
Clearly, $f^{*}(\alpha)$ is continuous and satisfies $p_{2}^{\prime} \circ f^{*}(\alpha)=p_{1}^{\prime}$, so $f^{*}(\alpha)$ is a map of coverings. It is also clear that $f^{*}(i d)=i d$ and $f^{*}(\alpha \beta)=f^{*}(\alpha) f^{*}(\beta)$.

