
COMMENTS ON SHEET 8

Exercise 1

First note that there is a deformation retraction of R2 onto [−1, 1]2 defined as
follows:

ho : R2 × [0, 1]→ R2

(x, t) 7→

{
x

(1−t)+t||x||∞ if ||x||∞ > 1

x if ||x||∞ ≤ 1

where || · ||∞ is the maximum norm on R2. Similarly, there is a deformation
retraction of [−1, 1]2\{(0, 0)} onto ∂[−1, 1]2 defined by

hi : [−1, 1]2\{(0, 0)} × [0, 1]→ [−1, 1]2\{(0, 0)}

(x, t) 7→ x

(1− t) + t||x||∞

Let Ak = [k, k + 1] × [0, 1], k = 0, . . . , n − 1 and A =
⋃n−1
k=0 Ak ⊆ R2. Note

that S ⊆ A. Let φ : (R2, A)→ (R2, [−1, 1]2) be a relative homeomorphism, i.e., a
homeomorphism of R2 that restricts to a homeomorphism from A onto [−1, 1]2.
Then

R2 × [0, 1]
φ×id−−−→ R2 × [0, 1]

ho−→ R2 φ−1

−−→ R2

is a deformation retraction of R2 onto A, giving a homotopy equivalence R2\S '
A\S.

Let pk = (2k+1
2
, 1
2
) ∈ Ak and let ψk : (Ak, pk) → ([−1, 1]2, (0, 0)) be a relative

homeomorphism. Then

Ak\{pk} × [0, 1]
ψk×id−−−→ [−1, 1]2\{(0, 0)} × [0, 1]

hi−→ [−1, 1]2\{(0, 0)}
ψ−1
k−−→ Ak\{pk}

is a deformation retraction of Ak\{pk} onto its boundary. The ψk, k = 0, . . . , n−1
combine to give a deformation retraction of A\S onto the graph G = [0, n] ×
{0, 1} ∪

⊔n
k=0{k} × [0, 1]. But G is homotopy equivalent to a wedge of n circles

by Exercise 3, Sheet 6.
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By radial projection onto the circumference of the polygon we may assume that
Σg is obtained as a quotient of a disc D2, whose boundary circle is divided into 4g
arcs of equal length, by an equivalence relation ∼ that identifies the boundary arcs
in the obvious way. In particular, there is a homeomorphism φ : ∂D2/ ∼∼=

∨2g S1.
The attaching map α : S1 →

∨2g S1 is then simply the composite of S1 =
∂D2 → ∂D2/ ∼ with φ. The projection D2 → D2/ ∼ and the map φ−1α : S1 →
∂D2/ ∼ induce a continuous bijection

pushout(D2 i←− S1 α−→
2g∨
S1)→ D2/ ∼= Σg

It is a homeomorphism, because the domain is compact and the codomain is
Hausdorff.

Exercise 3

(a) For every x ∈ X and g ∈ G, g 6= e there is an open x ∈ U ⊆ X such that
U ∩ gU = ∅. Indeed, the action is free, so x 6= gx, and X is Hausdorff, so there
are open neighbourhoods V1 of x and V2 of gx such that V1 ∩ V2 = ∅. Then define
U := g−1(g(V1) ∩ V2).

Now let x ∈ X be fixed. Since X is locally compact, we can pick a compact
neighbourhood x ∈ K ⊆ X. Since the action is proper, the set

S = {g ∈ G\{e} | g(K) ∩K 6= ∅}
is finite. By the previous paragraph, we find for each g ∈ S an open neighbour-
hood x ∈ Ug ⊆ K such that g(Ug) ∩ Ug = ∅. Then U :=

⋂
g∈S Ug is an open

neighbourhood of x such that g(U) ∩ U = ∅ for all g ∈ G\{e}. This means that
the action is covering-like.

(b) Let X be non-empty and X tX as in the hint. The action of C2 on X tX
is obviously continuous, free, and it is proper because C2 is finite. But it is not
covering like, because for any open UtU ⊆ XtX we have that τ(UtU) = UtU ,
where τ ∈ C2 is the non-trivial element.

Concretely, we can choose X = ∗, then X t X is the space with two points
and indiscrete topology. This satisfies all the assumptions of (a) except it is not
Hausdorff. The fold map ∗t∗ → ∗ (which is the projection wrt to the C2-action)
is not a covering map, and hence C2 does not act covering-like: if it were a covering
map, it would be a trivial covering (because the base space is a single point), i.e.,
∗ t ∗ ∼= ∗ q ∗ (the coproduct), but this is not the case.

Exercise 4

(a) To show that p : E → B is open we show that every x ∈ E has an open
neighbourhood V ⊆ E which is mapped by p homeomorphically onto an open
subset p(V ) ⊆ B. By definition of a covering, p(x) has an open neighbourhood



COMMENTS ON SHEET 8 3

U ⊆ B such that p|p−1(U) is a trivial covering, i.e., there is a homeomorphism
ϕ : p−1(U) ∼= U ×F over U with F discrete. Let z ∈ F such that ϕ(x) ∈ U ×{z}.
Then V := ϕ−1(U × {z}) is an open neighbourhood of x and it is mapped by p
homeomorphically onto U .

(b) Let U ⊆ B and suppose that p−1(U) ⊆ E is open. As p is surjective,
U = p(p−1(U)), and this is open, because p is open by (a). It follows that p is a
quotient map. (This shows that an open surjective map is a quotient map.)

(c) We will show that im(p) is open and closed and non-empty.
Openness was shown in (a).
The image is non-empty, because E is assumed non-empty.
To show that im(p) is closed, let x ∈ B\im(p). By definition of a covering,

there is an open subset x ∈ U ⊆ B and a homeomorphism p−1(U) ∼= U × F over
U with F discrete. But since x 6∈ im(p), we must have F = ∅. Hence, p−1(U) = ∅,
so U ⊆ B\im(p) showing that B\im(p) is open.

(d) Let x ∈ E and let V ⊆ E be an open neighbourhood of x. By (a), p(V ) is an
open neighbourhood of p(x). Since B is locally (path-)connected, we find a (path-
)connected neighbourhood U ⊆ p(V ) of p(x). Wlog, we may assume U is such
that p|p−1(U) is a trivial covering, i.e., there is a homeomorphism ϕ : p−1(U) ∼=
U × F over U with F discrete. If z ∈ F is such that ϕ(x) ∈ U × {z}, then
ϕ−1(U × {z}) ⊆ V is a (path-)connected neighbourhood of x.

With “globally” insetad of “locally” this is not true: Just take a trivial covering
with more than one sheet and (path-)connected base space.

Exercise 5

(a) We’ll show that if p : E → B is a trivial covering, i.e., if there is a discrete
space F and a commutative diagram

E
ϕ

∼=
//

p
��

B × F

pr1
{{

B

then p′ : B′ ×B E → B′ is a trivial covering, too. Indeed, the map

ϕ′ : B′ ×B E → B′ × F
(x, u) 7→ (x, pr2(ϕ(u)))

is a homeomorphism with inverse

B′ × F → B′ ×B E
(x, v) 7→ (x, ϕ−1(f(x), v))
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and clearly, the diagram

B′ ×B E
ϕ′

∼=
//

p′ $$

B′ × F

pr1
{{

B′

commutes.
Now suppose that p : E → B is any covering map. Given x ∈ B′ there is an

open neighbourhood U ⊆ B of f(x) such that p is trivial over U . But then, by
the previous paragraph, p′ is trivial over f−1(U). So p′ is a covering map.

(b) Let α : (p1, E1, B)→ (p2, E2, B) be a map of coverings, i.e., α : E1 → E2 is
a map such that

E1
α

//

p1
  

E2

p2
~~

B

commutes. Define

f ∗(α) : B′ ×B E1 → B′ ×B E2

(x, u) 7→ (x, α(u))

This is well-defined, because f(x) = p1(x) = p2(α(u)), as required.
Clearly, f ∗(α) is continuous and satisfies p′2 ◦ f ∗(α) = p′1, so f ∗(α) is a map of

coverings. It is also clear that f ∗(id) = id and f ∗(αβ) = f ∗(α)f ∗(β).


