COMMENTS ON SHEET 7

Exercise 1

The induced functor $L: C_1 \times_{\mathcal{C}_0} \mathcal{C}_2 \to \mathcal{D}_1 \times_{\mathcal{D}_0} \mathcal{D}_2$ is defined by $L(X_1, X_2, \alpha: F_1(X_1) \cong F_2(X_2)) = (L_1(X_1), L_2(X_2), L_0(\alpha): L_0(F_1(X_1)) \cong L_0(F_2(X_2)))$ on objects (note that $L_0 \circ F_1 = G_1 \circ L_1$ and $L_0 \circ F_2 = G_2 \circ L_2$ so the latter is indeed an object of $\mathcal{D}_1 \times_{\mathcal{D}_0} \mathcal{D}_2$) and by

$$L(f_1, f_2) = (L_1(f_1), L_2(f_2))$$

on morphisms.

To see that L is faithful if L_1 and L_2 are faithful note the commutative diagram

where the two vertical arrows are inclusions of subsets. Thus, if L_1 and L_2 are injective, then so is L.

Now assume that L_1 and L_2 are full and L_0 is faithful. Let

$$(g_1, g_2) \in \operatorname{Hom}((L_1(X_1), L_2(X_2), L_0(\alpha)), (L_1(X_1'), L_2(X_2'), L_0(\alpha'))).$$

Since L_1 and L_2 are full, there is $(f_1, f_2) \in \text{Hom}(X_1, X'_1) \times \text{Hom}(X_2, X'_2)$ such that $L_1(f_1) = g_1$ and $L_2(f_2) = g_2$. To show that (f_1, f_2) lies in the subset $\text{Hom}((X_1, X_2, \alpha), (X'_1, X'_2, \alpha'))$ we must show that the diagram

$$F_1(X_1) \xrightarrow{F_1(f_1)} F_1(X'_1)$$
$$\cong \downarrow^{\alpha} \qquad \cong \downarrow^{\alpha'}$$
$$F_2(X_2) \xrightarrow{F_2(f_2)} F_2(X'_2)$$

commutes. Since L_0 is faithful, we can check commutativity after applying L_0 to the diagram. But after applying L_0 the diagram does commute, because (g_1, g_2) is a morphism from $(L_1(X_1), L_2(X_2), L_0(\alpha))$ to $(L_1(X'_1), L_2(X'_2), L_0(\alpha'))$. Thus, L is full.

Now assume that L_1 and L_2 are essentially surjective and L_0 is fully faithful. Let $(Y_1, Y_2, \alpha: G_1(Y_1) \cong G_2(Y_2))$ be an object of $\mathcal{D}_1 \times_{\mathcal{D}_0} \mathcal{D}_2$. Since L_1 and L_2

Date: December 12, 2023.

are essentially surjective, we find $X_i \in C_i$ and isomorphisms $\beta_i \colon Y_i \cong L_i X_i$ for i = 1, 2. Now we have the solid portion of the following diagram

$$\begin{array}{c} G_1(Y_1) \xrightarrow{G_1(\beta_1)} G_1(L_1(X_1)) \\ \cong \downarrow^{\alpha} & \downarrow^{L_0(\bar{\alpha})} \\ G_2(Y_2) \xrightarrow{G_2(\beta_2)} G_2(L_2(X_2)) \end{array}$$

and we must find an isomorphism $\bar{\alpha}$: $F_1(X_1) \cong F_2(X_2)$ such that

$$L_0(\bar{\alpha}): \ L_0(F_1(X_1)) = G_1(L_1(X_1)) \xrightarrow{\cong} L_0(F_2(X_2)) = G_2(L_2(X_2))$$

makes the diagram commute. Indeed, then (β_1, β_2) would be an isomorphism from (Y_1, Y_2, α) to $(L_1(X_1), L_2(X_2), L_0(\bar{\alpha}))$ and the latter object is in the image of L. Since L_0 is full, there exists $\bar{\alpha} \colon F_1(X_1) \to F_2(X_2)$ such that

$$L(-) = C(2) = C(2)^{-1}$$

$$L_0(\bar{\alpha}) = G_2(\beta_2) \circ \alpha \circ G_1(\beta_1)^{-1},$$

and this choice obviously makes the diagram commute. Since L_0 is fully faithful, $\bar{\alpha}$ is an isomorphism, too.

It follows that L is essentially surjective.

Exercise 2

An object of Fun $(B\mathbb{Z}, \mathcal{G})$ is a pair (x, γ) , where x is an object of \mathcal{G} and γ is an automorphism of x. A morphism $f: (x_1, \gamma_1) \to (x_2, \gamma_2)$ is an isomorphism $f: x_1 \cong x_2$ such that the diagram

$$\begin{array}{c} x_1 \xrightarrow{f} x_2 \\ \downarrow^{\gamma} \qquad \downarrow^{\gamma_2} \\ x_1 \xrightarrow{f} x_2 \end{array}$$

commutes. Define a functor $I: \operatorname{Fun}(B\mathbb{Z}, \mathcal{G}) \to \mathcal{G} \times_{\mathcal{G} \times \mathcal{G}} \mathcal{G}$ by

$$I(x,\gamma) = (x, x, (\gamma, id))$$

on objects and by I(f) = (f, f) on morphisms. To see that I is an equivalence we define an inverse equivalence $P: \mathcal{G} \times_{\mathcal{G} \times \mathcal{G}} \mathcal{G} \to \operatorname{Fun}(B\mathbb{Z}, \mathcal{G})$ by

$$P(x, y, (\alpha, \beta)) = (x, \beta^{-1}\alpha)$$

on objects and by I(f,g) = f on morphisms. Let us check that this is indeed well-defined: Suppose $(f,g): (x_1, y_1, (\alpha_1, \beta_1)) \to (x_2, y_2, (\alpha_2, \beta_2))$ is a morphism in $\mathcal{G} \times_{\mathcal{G} \times \mathcal{G}} \mathcal{G}$. This means that the following diagram commutes

$$\begin{array}{c} (x_1, x_1) \xrightarrow{(f,f)} (x_2, x_2) \\ \downarrow^{(\alpha_1, \beta_1)} \qquad \downarrow^{(\alpha_2, \beta_2)} \\ (y_1, y_1) \xrightarrow{(g,g)} (y_2, y_2) \end{array}$$

To see that $P(f,g) = f: (x_1, \beta_1^{-1}\alpha_1) \to (x_2, \beta_2^{-1}\alpha_2)$ is indeed a morphism in $\operatorname{Fun}(B\mathbb{Z}, \mathcal{G})$ we must check that the diagram

$$\begin{array}{c} x_1 \xrightarrow{f} x_2 \\ \downarrow_{\beta_1^{-1}\alpha_1} & \downarrow_{\beta_2^{-1}\alpha_2} \\ x_1 \xrightarrow{f} x_2 \end{array}$$

commutes. And indeed,

$$\beta_2^{-1}\alpha_2 f = \beta_2^{-1} g \alpha_1 = f \beta_1^{-1} \alpha_1$$

by commutativity of the previous diagram.

It is clear that $PI = id_{\operatorname{Fun}(B\mathbb{Z},\mathcal{G})}$. The other composite IP sends a morphism $(f,g): (x_1, y_1, (\alpha_1, \beta_1)) \to (x_2, y_2, (\alpha_2, \beta_2))$ to the morphism

$$(f, f): (x_1, x_1, (\beta_1^{-1}\alpha_1, id)) \to (x_2, x_2, (\beta_2^{-1}\alpha_2, id)).$$

We must find a natural isomorphism $id_{\mathcal{G}\hat{\times}_{\mathcal{G}\times\mathcal{G}}\mathcal{G}} \cong IP$. The following diagrams constitute such a natural isomorphism:

$$(x_1, y_1, (\alpha_1, \beta_1)) \xrightarrow{(id, \beta_1^{-1})} (x_1, x_1, (\beta_1^{-1}\alpha_1, id))$$
$$\downarrow^{(f,g)} \qquad \qquad \downarrow^{(f,f)}$$
$$(x_2, y_2, (\alpha_2, \beta_2)) \xrightarrow{(id, \beta_2^{-1})} (x_2, x_2, (\beta_2^{-1}\alpha_2, id))$$

(i.e., (id, β_1^{-1}) is the component of the natural isomorphism at $(x_1, y_1, (\alpha_1, \beta_1))$).

Exercise 3

Let $G: \mathcal{G}_1 \to \mathcal{G}$ and $H: \mathcal{G}_0 \to \mathcal{G}$ be functors and $\eta: GF \cong H$ a natural isomorphism. Define a functor $\tilde{H}: \mathcal{G}_1 \to \mathcal{G}$ and a natural isomorphism $\tilde{\eta}: G \cong \tilde{H}$ as follows:

- For objects $F(x) \in \mathcal{G}_1$ we set $\tilde{H}(F(x)) := H(x)$ and $\tilde{\eta}_{F(x)} := \eta_x$.
- For objects $y \in \mathcal{G}_1$ that are not in the image of F we set $\tilde{H}(y) := G(y)$ and $\tilde{\eta}_y := id$.

• For any morphism $f: y \to z$ in \mathcal{G}_1 we define $\tilde{H}(f): \tilde{H}(y) \to \tilde{H}(z)$ so that the following diagram commutes:

$$\begin{array}{ccc}
G(y) & \xrightarrow{\tilde{\eta}_y} & \tilde{H}(y) \\
& & \downarrow^{G(f)} & \downarrow^{\tilde{H}(f)} \\
G(z) & \xrightarrow{\tilde{\eta}_z} & \tilde{H}(z)
\end{array}$$

This \tilde{H} does the job: It is a functor, and by construction $\tilde{\eta}: G \cong \tilde{H}$ is a natural isomorphism.

If the morphism $f: y \to z$ is in the image of F, i.e., $f = F(f'): F(y') \to F(z')$, then the above diagram reads

$$G(F(y')) \xrightarrow{\eta_{y'}} H(y')$$

$$\downarrow^{G(F(f'))} \qquad \downarrow^{\tilde{H}(F(f'))}$$

$$G(F(z')) \xrightarrow{\eta_{z'}} H(z')$$

and because $\eta: GF \cong H$ is a natural isomorphism, this implies that $\tilde{H}(F(f')) = H(f')$. So $F^*(\tilde{H}) = H$.

Finally, $F^*(\tilde{\eta}) = \eta$ (the natural transformation $F^*(\tilde{\eta})$ is by definition the one with $F^*(\tilde{\eta})_x := \tilde{\eta}_{F(x)}$).

Exercise 4

Let $A \subseteq X$ be half of a great circle connecting the north pole and the south pole. Let $U \subseteq X$ be a small open neighbourhood of the subspace $A \cup C \subseteq X$ and let $V \subseteq X$ be a small open neighbourhood of $S^2 \subseteq X$ (so V is S^2 together with two small segments of C sticking out of the north and the south pole, respectively).

Clearly, $U \cup V = X$, $U \simeq S^1$, $V \simeq S^2$ and $U \cap V \simeq *$. In particular, U, V and $U \cap V$ are path-connected, so we can apply the Seifert-van-Kampen theorem. Take $(0,0,1) \in U \cap V$ as the basepoint. Then, using the fact that $\pi_1(S^2, (0,0,1)) \cong 1$ and $\pi_1(S^1,1) \cong \mathbb{Z}$, up to natural isomorphism, the pushout diagram of the Seifert-van-Kampen theorem looks like

It follows that $\pi_1(X, (0, 0, 1)) \cong \mathbb{Z}$.

(Of course, one could also observe that there is a homotopy equivalence $X \simeq S^2 \vee S^1$, and so it follows from Example 2.68 in the lecture notes that $\pi_1(X) \cong \mathbb{Z}$.)