COMMENTS ON SHEET 7

Exercise 1

The induced functor $L: \mathcal{C}_{1} \hat{\times}_{\mathcal{C}_{0}} \mathcal{C}_{2} \rightarrow \mathcal{D}_{1} \hat{\times}_{\mathcal{D}_{0}} \mathcal{D}_{2}$ is defined by $L\left(X_{1}, X_{2}, \alpha: F_{1}\left(X_{1}\right) \cong F_{2}\left(X_{2}\right)\right)=\left(L_{1}\left(X_{1}\right), L_{2}\left(X_{2}\right), L_{0}(\alpha): L_{0}\left(F_{1}\left(X_{1}\right)\right) \cong L_{0}\left(F_{2}\left(X_{2}\right)\right)\right)$
on objects (note that $L_{0} \circ F_{1}=G_{1} \circ L_{1}$ and $L_{0} \circ F_{2}=G_{2} \circ L_{2}$ so the latter is indeed an object of $\mathcal{D}_{1} \hat{\times}_{\mathcal{D}_{0}} \mathcal{D}_{2}$) and by

$$
L\left(f_{1}, f_{2}\right)=\left(L_{1}\left(f_{1}\right), L_{2}\left(f_{2}\right)\right)
$$

on morphisms.
To see that L is faithful if L_{1} and L_{2} are faithful note the commutative diagram

where the two vertical arrows are inclusions of subsets. Thus, if L_{1} and L_{2} are injective, then so is L.

Now assume that L_{1} and L_{2} are full and L_{0} is faithful. Let

$$
\left(g_{1}, g_{2}\right) \in \operatorname{Hom}\left(\left(L_{1}\left(X_{1}\right), L_{2}\left(X_{2}\right), L_{0}(\alpha)\right),\left(L_{1}\left(X_{1}^{\prime}\right), L_{2}\left(X_{2}^{\prime}\right), L_{0}\left(\alpha^{\prime}\right)\right)\right)
$$

Since L_{1} and L_{2} are full, there is $\left(f_{1}, f_{2}\right) \in \operatorname{Hom}\left(X_{1}, X_{1}^{\prime}\right) \times \operatorname{Hom}\left(X_{2}, X_{2}^{\prime}\right)$ such that $L_{1}\left(f_{1}\right)=g_{1}$ and $L_{2}\left(f_{2}\right)=g_{2}$. To show that $\left(f_{1}, f_{2}\right)$ lies in the subset $\operatorname{Hom}\left(\left(X_{1}, X_{2}, \alpha\right),\left(X_{1}^{\prime}, X_{2}^{\prime}, \alpha^{\prime}\right)\right)$ we must show that the diagram

commutes. Since L_{0} is faithful, we can check commutativity after applying L_{0} to the diagram. But after applying L_{0} the diagram does commute, because (g_{1}, g_{2}) is a morphism from $\left(L_{1}\left(X_{1}\right), L_{2}\left(X_{2}\right), L_{0}(\alpha)\right)$ to $\left(L_{1}\left(X_{1}^{\prime}\right), L_{2}\left(X_{2}^{\prime}\right), L_{0}\left(\alpha^{\prime}\right)\right)$. Thus, L is full.

Now assume that L_{1} and L_{2} are essentially surjective and L_{0} is fully faithful. Let $\left(Y_{1}, Y_{2}, \alpha: G_{1}\left(Y_{1}\right) \cong G_{2}\left(Y_{2}\right)\right)$ be an object of $\mathcal{D}_{1} \hat{\times}_{\mathcal{D}_{0}} \mathcal{D}_{2}$. Since L_{1} and L_{2}
are essentially surjective, we find $X_{i} \in \mathcal{C}_{i}$ and isomorphisms $\beta_{i}: Y_{i} \cong L_{i} X_{i}$ for $i=1,2$. Now we have the solid portion of the following diagram
and we must find an isomorphism $\bar{\alpha}: F_{1}\left(X_{1}\right) \cong F_{2}\left(X_{2}\right)$ such that

$$
L_{0}(\bar{\alpha}): L_{0}\left(F_{1}\left(X_{1}\right)\right)=G_{1}\left(L_{1}\left(X_{1}\right)\right) \stackrel{\cong}{\rightarrow} L_{0}\left(F_{2}\left(X_{2}\right)\right)=G_{2}\left(L_{2}\left(X_{2}\right)\right)
$$

makes the diagram commute. Indeed, then $\left(\beta_{1}, \beta_{2}\right)$ would be an isomorphism from $\left(Y_{1}, Y_{2}, \alpha\right)$ to $\left(L_{1}\left(X_{1}\right), L_{2}\left(X_{2}\right), L_{0}(\bar{\alpha})\right)$ and the latter object is in the image of L.

Since L_{0} is full, there exists $\bar{\alpha}: F_{1}\left(X_{1}\right) \rightarrow F_{2}\left(X_{2}\right)$ such that

$$
L_{0}(\bar{\alpha})=G_{2}\left(\beta_{2}\right) \circ \alpha \circ G_{1}\left(\beta_{1}\right)^{-1}
$$

and this choice obviously makes the diagram commute. Since L_{0} is fully faithful, $\bar{\alpha}$ is an isomorphism, too.

It follows that L is essentially surjective.

Exercise 2

An object of $\operatorname{Fun}(B \mathbb{Z}, \mathcal{G})$ is a pair (x, γ), where x is an object of \mathcal{G} and γ is an automorphism of x. A morphism $f:\left(x_{1}, \gamma_{1}\right) \rightarrow\left(x_{2}, \gamma_{2}\right)$ is an isomorphism $f: x_{1} \cong x_{2}$ such that the diagram

commutes. Define a functor $I: \operatorname{Fun}(B \mathbb{Z}, \mathcal{G}) \rightarrow \mathcal{G} \hat{\times}_{\mathcal{G} \times \mathcal{G}} \mathcal{G}$ by

$$
I(x, \gamma)=(x, x,(\gamma, i d))
$$

on objects and by $I(f)=(f, f)$ on morphisms. To see that I is an equivalence we define an inverse equivalence $P: \mathcal{G} \times_{\mathcal{G} \times \mathcal{G}} \mathcal{G} \rightarrow \operatorname{Fun}(B \mathbb{Z}, \mathcal{G})$ by

$$
P(x, y,(\alpha, \beta))=\left(x, \beta^{-1} \alpha\right)
$$

on objects and by $I(f, g)=f$ on morphisms. Let us check that this is indeed well-defined: $\operatorname{Suppose}(f, g):\left(x_{1}, y_{1},\left(\alpha_{1}, \beta_{1}\right)\right) \rightarrow\left(x_{2}, y_{2},\left(\alpha_{2}, \beta_{2}\right)\right)$ is a morphism
in $\mathcal{G} \hat{\times}_{\mathcal{G} \times \mathcal{G}} \mathcal{G}$. This means that the following diagram commutes

$$
\begin{aligned}
& \left(x_{1}, x_{1}\right) \xrightarrow{(f, f)}\left(x_{2}, x_{2}\right) \\
& \underset{\left.\left(y_{1}, y_{1}\right) \xrightarrow{(g, g)} \underset{\left(y_{2}, y_{2}\right)}{\downarrow}{ }_{2}, \alpha_{2}, \beta_{2}\right)}{ }
\end{aligned}
$$

To see that $P(f, g)=f:\left(x_{1}, \beta_{1}^{-1} \alpha_{1}\right) \rightarrow\left(x_{2}, \beta_{2}^{-1} \alpha_{2}\right)$ is indeed a morphism in $\operatorname{Fun}(B \mathbb{Z}, \mathcal{G})$ we must check that the diagram

$$
\begin{aligned}
& x_{1} \xrightarrow{f} x_{2} \\
& \stackrel{\boldsymbol{\beta}_{1}^{-1} \alpha_{1}}{x_{1} \xrightarrow{f} \underset{x_{2}}{\beta_{2}^{-1} \alpha_{2}}}
\end{aligned}
$$

commutes. And indeed,

$$
\beta_{2}^{-1} \alpha_{2} f=\beta_{2}^{-1} g \alpha_{1}=f \beta_{1}^{-1} \alpha_{1}
$$

by commutativity of the previous diagram.
It is clear that $P I=i d_{\operatorname{Fun}(B \mathbb{Z}, \mathcal{G})}$. The other composite $I P$ sends a morphism $(f, g):\left(x_{1}, y_{1},\left(\alpha_{1}, \beta_{1}\right)\right) \rightarrow\left(x_{2}, y_{2},\left(\alpha_{2}, \beta_{2}\right)\right)$ to the morphism

$$
(f, f):\left(x_{1}, x_{1},\left(\beta_{1}^{-1} \alpha_{1}, i d\right)\right) \rightarrow\left(x_{2}, x_{2},\left(\beta_{2}^{-1} \alpha_{2}, i d\right)\right)
$$

We must find a natural isomorphism $i d_{\mathcal{G}_{\hat{\mathcal{G}} \times \mathcal{G}} \mathcal{G}} \cong I P$. The following diagrams constitute such a natural isomorphism:

(i.e., $\left(i d, \beta_{1}^{-1}\right)$ is the component of the natural isomorphism at $\left(x_{1}, y_{1},\left(\alpha_{1}, \beta_{1}\right)\right)$).

Exercise 3

Let $G: \mathcal{G}_{1} \rightarrow \mathcal{G}$ and $H: \mathcal{G}_{0} \rightarrow \mathcal{G}$ be functors and $\eta: G F \cong H$ a natural isomorphism. Define a functor $\tilde{H}: \mathcal{G}_{1} \rightarrow \mathcal{G}$ and a natural isomorphism $\tilde{\eta}: G \cong \tilde{H}$ as follows:

- For objects $F(x) \in \mathcal{G}_{1}$ we set $\tilde{H}(F(x)):=H(x)$ and $\tilde{\eta}_{F(x)}:=\eta_{x}$.
- For objects $y \in \mathcal{G}_{1}$ that are not in the image of F we set $\tilde{H}(y):=G(y)$ and $\tilde{\eta}_{y}:=i d$.
- For any morphism $f: y \rightarrow z$ in \mathcal{G}_{1} we define $\tilde{H}(f): \tilde{H}(y) \rightarrow \tilde{H}(z)$ so that the following diagram commutes:

This \tilde{H} does the job: It is a functor, and by construction $\tilde{\eta}: G \cong \tilde{H}$ is a natural isomorphism.

If the morphism $f: y \rightarrow z$ is in the image of F, i.e., $f=F\left(f^{\prime}\right): F\left(y^{\prime}\right) \rightarrow F\left(z^{\prime}\right)$, then the above diagram reads

and because $\eta: G F \cong H$ is a natural isomorphism, this implies that $\tilde{H}\left(F\left(f^{\prime}\right)\right)=$ $H\left(f^{\prime}\right)$. So $F^{*}(\tilde{H})=H$.

Finally, $F^{*}(\tilde{\eta})=\eta$ (the natural transformation $F^{*}(\tilde{\eta})$ is by definition the one with $\left.F^{*}(\tilde{\eta})_{x}:=\tilde{\eta}_{F(x)}\right)$.

Exercise 4

Let $A \subseteq X$ be half of a great circle connecting the north pole and the south pole. Let $U \subseteq X$ be a small open neighbourhood of the subspace $A \cup C \subseteq X$ and let $V \subseteq X$ be a small open neighbourhood of $S^{2} \subseteq X$ (so V is S^{2} together with two small segments of C sticking out of the north and the south pole, respectively).

Clearly, $U \cup V=X, U \simeq S^{1}, V \simeq S^{2}$ and $U \cap V \simeq *$. In particular, U, V and $U \cap V$ are path-connected, so we can apply the Seifert-van-Kampen theorem. Take $(0,0,1) \in U \cap V$ as the basepoint. Then, using the fact that $\pi_{1}\left(S^{2},(0,0,1)\right) \cong 1$ and $\pi_{1}\left(S^{1}, 1\right) \cong \mathbb{Z}$, up to natural isomorphism, the pushout diagram of the Seifert-van-Kampen theorem looks like

It follows that $\pi_{1}(X,(0,0,1)) \cong \mathbb{Z}$.
(Of course, one could also observe that there is a homotopy equivalence $X \simeq$ $S^{2} \vee S^{1}$, and so it follows from Example 2.68 in the lecture notes that $\pi_{1}(X) \cong \mathbb{Z}$.)

