COMMENTS ON SHEET 7

Exercise 1

The induced functor L: C; >A<COCQ — Dy >A<DOD2 is defined by
L(Xl,XQ,OéI F1<X1) = FQ(XQ)) = (Ll(X1>,L2(X2), Lo(Oé)Z Lo(Fl(Xl)) = Lo(FQ(XQ)))
on objects (note that 110 oF) =G10L;y and Ly o Fy = Gy o Ly so the latter is
indeed an object of Dy xp,Dy) and by
L(f17f2) - (Ll(f1)7L2(f2))

on morphisms.
To see that L is faithful if Ly and Ly are faithful note the commutative diagram

Hom((X1, X», ), (X{, X3, ")) —— Hom((L1(X1), La(X2), Lo(@)), (L1(X1), La(X3), Lo(a)))

L1 ><L2

Hom(X;, X!) x Hom(Xs, X2) Hom(Ly (X)), Ly (X})) x Hom(La(Xs), Lo(X3))

where the two vertical arrows are inclusions of subsets. Thus, if L; and L, are
injective, then so is L.
Now assume that L; and Ly are full and Ly is faithful. Let

(91,92) € Hom((L1(X1), Lo(X2), Lo(@)), (L1(X]), La(X5), Lo(a'))) -

Since L; and Lg are full, there is (fi, fo) € Hom(X;, X]) x Hom(X5, X)) such
that Li(fi1) = g1 and Lo(fa) = go. To show that (fi, f2) lies in the subset
Hom((X1, Xs, @), (X1, X}, o')) we must show that the diagram

Fi(f1)
Fi(X) - Fi(X7)
Fa(f2)

Fy(X5) —= Fy(X))

commutes. Since Ly is faithful, we can check commutativity after applying L¢ to
the diagram. But after applying Lo the diagram does commute, because (g1, g2)
is a morphism from (L;(X7), L2(X2), Lo(a)) to (L1(X7), La(X}), Lo(')). Thus, L
is full.

Now assume that L; and Lo are essentially surjective and L is fully faithful.
Let (Y1,Ys, a0 Gi(Y1) = Go(Y3)) be an object of Dy xp,Dy. Since L; and Lo
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are essentially surjective, we find X; € C; and isomorphisms 3;: Y; =& L;X; for
1 =1,2. Now we have the solid portion of the following diagram

G1(B1)
G1(Y1) —— Gi(L1(Xy))
|
>~ |« | Lo(@)
G2(B2) v

Ga(Y2) —= Ga(L2(X2))
and we must find an isomorphism a: F;(X;) = F5(X5) such that

Lo(@): Lo(Fy(X1)) = Gi(Li(X1)) = Lo(Fa(Xa)) = Ga(La(X))

makes the diagram commute. Indeed, then (81, 52) would be an isomorphism from
(Y1,Ys, ) to (L1(Xy), L2(X2), Lo(@)) and the latter object is in the image of L.
Since Ly is full, there exists a: Fj(X;) — F»(X3) such that

Lo(O_l) = Gg(ﬁz) [oNeNe] Gl(ﬁl)il 5

and this choice obviously makes the diagram commute. Since Ly is fully faithful,
@ is an isomorphism, too.
It follows that L is essentially surjective.

Exercise 2

An object of Fun(BZ,G) is a pair (z,7), where = is an object of G and 7 is
an automorphism of x. A morphism f: (z1,7) — (22,72) is an isomorphism
f: o1 = x5 such that the diagram

f
T —— Ty
lw lw
f
Tl — T2
commutes. Define a functor /: Fun(BZ,G) — G xgxgG by
I(z,v) = (z,z,(v,id))

on objects and by I(f) = (f, f) on morphisms. To see that I is an equivalence
we define an inverse equivalence P: G %gxgg — Fun(BZ, G) by

P(x’ y7 (a7 5)) = ('CE’ /B_la)

on objects and by I(f,g) = f on morphisms. Let us check that this is indeed
well-defined: Suppose (f,g): (21,91, (o1, 81)) — (22,2, (2, B2)) is a morphism



COMMENTS ON SHEET 7 3

ingGg §<gxgg . This means that the following diagram commutes

L
($1,$1) g ($27$2)

(a1,B81) (a2,82)

(9,9)
(91, yl) B (y2> ZJQ)

To see that P(f,g9) = f: (z1,B; 1) — (2,85 'as) is indeed a morphism in
Fun(BZ,G) we must check that the diagram

f
Ty — T2

lﬁllal lﬁglaz
f

Ty — 22
commutes. And indeed,

Bylaof =By gan = fB oy

by commutativity of the previous diagram.
It is clear that PI = idpuy(Bz,g). The other composite /P sends a morphism
(f,9): (x1,91, (a1, B1)) = (22,42, (a2, B2)) to the morphism

(fa f) ($17*T17 (51_10‘17 Zd)) — (132,1’2, (ﬂgla% Zd)) :

We must find a natural isomorphism idg; g = [P. The following diagrams
constitute such a natural isomorphism:

(id,B7 ") _ )
(%; Y1, (0417 51)) — ($1, Ty, (51 1041,“0)

l(fﬂg) l(f»f)
(id,85 ") D
(72, Yo, (a2, B2)) — (T2, Ta, (B " 2, id))

(i.e., (id, By ') is the component of the natural isomorphism at (z1,y1, (a1, £1))).
Exercise 3

Let G: Gi — G and H: Gy — G be functors and n: GF = H a natural
isomorphism. Define a functor H: g1 — G and a natural isomorphism 7: G = H
as follows:

e For objects F(z) € G; we set H(F(z)) := H(x) and fp() = 1.
e For objects y € G that are not in the image of F we set H(y) := G(y)
and 7, = id.
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e For any morphism f: y — z in Gy we define H(f): H(y) — H(z) so that
the following diagram commutes:

Gly) — H(y)
lG(f) lﬁm
G(2) - A(2)

This H does the job: It is a functor, and by construction 7: G = H is a natural
isomorphism.

If the morphism f: y — z is in the image of F', i.e., f = F(f'): F(y') — F(%'),
then the above diagram reads

Tyt

G(F(y)) — H(y)
lG(F(f’)) lH(F(f’))

G(F(2')) — H(2')

and because n: GF = H is a natural isomorphism, this implies that H(F(f)) =
H(f"). So F*(H) = H.
Finally, F*(n) = n (the natural transformation F*(7) is by definition the one

with F*(7), = Mp@))-
Exercise 4

Let A C X be half of a great circle connecting the north pole and the south
pole. Let U C X be a small open neighbourhood of the subspace AUC C X and
let V' C X be a small open neighbourhood of S* C X (so V is S? together with two
small segments of C sticking out of the north and the south pole, respectively).

Clearly, UUV = X, U ~ S*, V ~ 5% and U NV ~ %. In particular, U,V and
UNV are path-connected, so we can apply the Seifert-van-Kampen theorem. Take
(0,0,1) € U NV as the basepoint. Then, using the fact that m; (52, (0,0,1)) = 1
and (S, 1) 2 Z, up to natural isomorphism, the pushout diagram of the Seifert-
van-Kampen theorem looks like

l——7Z
|
1—m(X,(0,0,1))

It follows that m (X, (0,0,1)) = Z.
(Of course, one could also observe that there is a homotopy equivalence X ~
S%v St and so it follows from Example 2.68 in the lecture notes that m;(X) = Z.)



