
COMMENTS ON SHEET 7

Exercise 1

The induced functor L : C1×̂C0C2 → D1×̂D0D2 is defined by

L(X1, X2, α : F1(X1) ∼= F2(X2)) = (L1(X1), L2(X2), L0(α) : L0(F1(X1)) ∼= L0(F2(X2)))

on objects (note that L0 ◦ F1 = G1 ◦ L1 and L0 ◦ F2 = G2 ◦ L2 so the latter is
indeed an object of D1×̂D0D2) and by

L(f1, f2) = (L1(f1), L2(f2))

on morphisms.
To see that L is faithful if L1 and L2 are faithful note the commutative diagram

Hom((X1, X2, α), (X ′1, X
′
2, α

′))
� _

��

L
// Hom((L1(X1), L2(X2), L0(α)), (L1(X ′1), L2(X ′2), L0(α′)))

� _

��

Hom(X1, X
′
1)× Hom(X2, X

′
2)

L1×L2
// Hom(L1(X1), L1(X ′1))× Hom(L2(X2), L2(X ′2))

where the two vertical arrows are inclusions of subsets. Thus, if L1 and L2 are
injective, then so is L.

Now assume that L1 and L2 are full and L0 is faithful. Let

(g1, g2) ∈ Hom((L1(X1), L2(X2), L0(α)), (L1(X ′1), L2(X ′2), L0(α′))) .

Since L1 and L2 are full, there is (f1, f2) ∈ Hom(X1, X
′
1) × Hom(X2, X

′
2) such

that L1(f1) = g1 and L2(f2) = g2. To show that (f1, f2) lies in the subset
Hom((X1, X2, α), (X ′1, X

′
2, α

′)) we must show that the diagram

F1(X1)
F1(f1)

//

α∼=
��

F1(X ′1)

α′∼=
��

F2(X2)
F2(f2)

// F2(X ′2)

commutes. Since L0 is faithful, we can check commutativity after applying L0 to
the diagram. But after applying L0 the diagram does commute, because (g1, g2)
is a morphism from (L1(X1), L2(X2), L0(α)) to (L1(X ′1), L2(X ′2), L0(α′)). Thus, L
is full.

Now assume that L1 and L2 are essentially surjective and L0 is fully faithful.
Let (Y1, Y2, α : G1(Y1) ∼= G2(Y2)) be an object of D1×̂D0D2. Since L1 and L2
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are essentially surjective, we find Xi ∈ Ci and isomorphisms βi : Yi ∼= LiXi for
i = 1, 2. Now we have the solid portion of the following diagram

G1(Y1)
G1(β1)

∼=
//

α∼=
��

G1(L1(X1))

L0(ᾱ)

��

G2(Y2)
G2(β2)

∼=
// G2(L2(X2))

and we must find an isomorphism ᾱ : F1(X1) ∼= F2(X2) such that

L0(ᾱ) : L0(F1(X1)) = G1(L1(X1))
∼=−→ L0(F2(X2)) = G2(L2(X2))

makes the diagram commute. Indeed, then (β1, β2) would be an isomorphism from
(Y1, Y2, α) to (L1(X1), L2(X2), L0(ᾱ)) and the latter object is in the image of L.

Since L0 is full, there exists ᾱ : F1(X1)→ F2(X2) such that

L0(ᾱ) = G2(β2) ◦ α ◦G1(β1)−1 ,

and this choice obviously makes the diagram commute. Since L0 is fully faithful,
ᾱ is an isomorphism, too.

It follows that L is essentially surjective.

Exercise 2

An object of Fun(BZ,G) is a pair (x, γ), where x is an object of G and γ is
an automorphism of x. A morphism f : (x1, γ1) → (x2, γ2) is an isomorphism
f : x1

∼= x2 such that the diagram

x1
f
//

γ

��

x2

γ2
��

x1
f
// x2

commutes. Define a functor I : Fun(BZ,G)→ G×̂G×GG by

I(x, γ) = (x, x, (γ, id))

on objects and by I(f) = (f, f) on morphisms. To see that I is an equivalence
we define an inverse equivalence P : G×̂G×GG → Fun(BZ,G) by

P (x, y, (α, β)) = (x, β−1α)

on objects and by I(f, g) = f on morphisms. Let us check that this is indeed
well-defined: Suppose (f, g) : (x1, y1, (α1, β1)) → (x2, y2, (α2, β2)) is a morphism
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in G×̂G×GG. This means that the following diagram commutes

(x1, x1)
(f,f)

//

(α1,β1)
��

(x2, x2)

(α2,β2)
��

(y1, y1)
(g,g)

// (y2, y2)

To see that P (f, g) = f : (x1, β
−1
1 α1) → (x2, β

−1
2 α2) is indeed a morphism in

Fun(BZ,G) we must check that the diagram

x1
f
//

β−1
1 α1

��

x2

β−1
2 α2

��

x1
f
// x2

commutes. And indeed,

β−1
2 α2f = β−1

2 gα1 = fβ−1
1 α1

by commutativity of the previous diagram.
It is clear that PI = idFun(BZ,G). The other composite IP sends a morphism

(f, g) : (x1, y1, (α1, β1))→ (x2, y2, (α2, β2)) to the morphism

(f, f) : (x1, x1, (β
−1
1 α1, id))→ (x2, x2, (β

−1
2 α2, id)) .

We must find a natural isomorphism idG×̂G×GG
∼= IP . The following diagrams

constitute such a natural isomorphism:

(x1, y1, (α1, β1))
(id,β−1

1 )
//

(f,g)

��

(x1, x1, (β
−1
1 α1, id))

(f,f)
��

(x2, y2, (α2, β2))
(id,β−1

2 )
// (x2, x2, (β

−1
2 α2, id))

(i.e., (id, β−1
1 ) is the component of the natural isomorphism at (x1, y1, (α1, β1))).

Exercise 3

Let G : G1 → G and H : G0 → G be functors and η : GF ∼= H a natural
isomorphism. Define a functor H̃ : G1 → G and a natural isomorphism η̃ : G ∼= H̃
as follows:

• For objects F (x) ∈ G1 we set H̃(F (x)) := H(x) and η̃F (x) := ηx.

• For objects y ∈ G1 that are not in the image of F we set H̃(y) := G(y)
and η̃y := id.
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• For any morphism f : y → z in G1 we define H̃(f) : H̃(y)→ H̃(z) so that
the following diagram commutes:

G(y)

G(f)

��

η̃y
// H̃(y)

H̃(f)
��

G(z)
η̃z
// H̃(z)

This H̃ does the job: It is a functor, and by construction η̃ : G ∼= H̃ is a natural
isomorphism.

If the morphism f : y → z is in the image of F , i.e., f = F (f ′) : F (y′)→ F (z′),
then the above diagram reads

G(F (y′))

G(F (f ′))
��

ηy′
// H(y′)

H̃(F (f ′))
��

G(F (z′))
ηz′
// H(z′)

and because η : GF ∼= H is a natural isomorphism, this implies that H̃(F (f ′)) =
H(f ′). So F ∗(H̃) = H.

Finally, F ∗(η̃) = η (the natural transformation F ∗(η̃) is by definition the one
with F ∗(η̃)x := η̃F (x)).

Exercise 4

Let A ⊆ X be half of a great circle connecting the north pole and the south
pole. Let U ⊆ X be a small open neighbourhood of the subspace A∪C ⊆ X and
let V ⊆ X be a small open neighbourhood of S2 ⊆ X (so V is S2 together with two
small segments of C sticking out of the north and the south pole, respectively).

Clearly, U ∪ V = X, U ' S1, V ' S2 and U ∩ V ' ∗. In particular, U, V and
U∩V are path-connected, so we can apply the Seifert-van-Kampen theorem. Take
(0, 0, 1) ∈ U ∩ V as the basepoint. Then, using the fact that π1(S2, (0, 0, 1)) ∼= 1
and π1(S1, 1) ∼= Z, up to natural isomorphism, the pushout diagram of the Seifert-
van-Kampen theorem looks like

1 //

��

Z

��

1 // π1(X, (0, 0, 1))

It follows that π1(X, (0, 0, 1)) ∼= Z.
(Of course, one could also observe that there is a homotopy equivalence X '

S2∨S1, and so it follows from Example 2.68 in the lecture notes that π1(X) ∼= Z.)


