COMMENTS ON SHEET 6

Exercise 1

Define a map $f \colon \mathbb{N} \to X$ by

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ \frac{1}{n} & \text{if } n > 0 \end{cases}.$$

Because \mathbb{N} is discrete, f is continuous.

We claim that f is a weak equivalence: Since X is a subspace of \mathbb{Q} and \mathbb{Q} is totally disconnected, so is X (cf. Exercise 2c, Sheet 3). So the path-connected components of X are the singletons. Because the same is true for \mathbb{N} , the induced map of sets

$$\pi_0(f) \colon \pi_0(\mathbb{N}) \to \pi_0(X)$$

is a bijection.

Next suppose that $k \ge 1$ and let $n \in \mathbb{N}$. An element of $\pi_k(\mathbb{N}, n)$ is represented by a based continuous map $\alpha \colon (S^k, 1) \to (\mathbb{N}, n)$. Since S^k is path-connected, so is its image $\alpha(S^k) \subseteq \mathbb{N}$. Since the path-connected component of n is $\{n\}, \alpha$ must be the constant map with value n. Therefore, $\pi_k(\mathbb{N}, n) = 0$. In the same way we see that $\pi_k(X, x) = 0$ for any $x \in X$. It follows that f induces an isomorphism of groups

$$\pi_k(f): \pi_k(\mathbb{N}, n) \to \pi_k(X, f(n))$$

for all $k \geq 1$ and any choice of basepoint $n \in \mathbb{N}$. Thus, f is a weak equivalence.

Finally, we show that X and N are not homotopy equivalent. Assume, for contradiction, that $g: \mathbb{N} \to X$ is a homotopy equivalence with homotopy inverse $h: X \to \mathbb{N}$. Then, $hg \simeq id_{\mathbb{N}}$, but since N is discrete, we must actually have $hg = id_{\mathbb{N}}$. Since X is compact, $h(X) \subseteq \mathbb{N}$ is bounded, and therefore $hg \neq id_{\mathbb{N}}$, a contradiction.

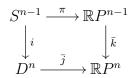
Exercise 2

Let $j: D^n \hookrightarrow S^n$ be an embedding that identifies D^n with the closed upper hemisphere of S^n . Let \overline{j} be the composite of j with the projection $S^n \to \mathbb{R}P^n$.

Date: December 11, 2023.

COMMENTS ON SHEET 6

Let $k: S^{n-1} \hookrightarrow S^n$ be the inclusion of the equator and let $\bar{k}: \mathbb{R}P^{n-1} \to \mathbb{R}P^n$ be the map induced by k on quotients. Then we have a commutative diagram



Recall that the pushout of $D^n \stackrel{i}{\leftarrow} S^{n-1} \xrightarrow{\pi} \mathbb{R}P^{n-1}$ is constructed as the quotient of $D^n \coprod \mathbb{R}P^{n-1}$ by the equivalence relation generated by $i(x) \simeq \pi(x)$ for all $x \in S^{n-1}$. We obtain a continuous map

$$\varphi \colon (D^n \amalg \mathbb{R}P^{n-1}) / \sim \to \mathbb{R}P^r$$

which restricts to \bar{j} and to \bar{k} along the obvious maps $D^n \to (D^n \amalg \mathbb{R}P^{n-1})/\sim$ and $\mathbb{R}P^{n-1} \to (D^n \amalg \mathbb{R}P^{n-1})/\sim$, respectively. It is easily checked that φ is a bijection. Since $(D^n \amalg \mathbb{R}P^{n-1})/\sim$ is compact and $\mathbb{R}P^n$ is Hausdorff, it is a homeomorphism. This proves the pushout in (a). It also shows how $\mathbb{R}P^{n-1}$ can be viewed as a (equatorial) subspace of $\mathbb{R}P^n$.

One defines a filtration on $\mathbb{R}P^n$ by $\mathrm{sk}_k(\mathbb{R}P^n) := \mathbb{R}P^k$. The pushouts show that $\mathrm{sk}_k(\mathbb{R}P^n)$ is obtained form $\mathrm{sk}_{k-1}(\mathbb{R}P^n)$ by attaching a single cell of dimension k. Thus, the filtration is a CW-structure on $\mathbb{R}P^n$ with exactly one cell in every dimension $0 \leq k \leq n$.

(b) The pushouts for $\mathbb{C}P^n$ and $\mathbb{H}P^n$ look like

$$S^{2n-1} \xrightarrow{\pi} \mathbb{C}P^{n-1} \quad \text{and} \quad S^{4n-1} \xrightarrow{\pi} \mathbb{H}P^{n-1}$$
$$\downarrow^{i} \qquad \downarrow^{i} \qquad \downarrow^{i} \qquad \downarrow^{\bar{k}}$$
$$D^{2n} \xrightarrow{\bar{j}} \mathbb{C}P^{n} \qquad D^{4n} \xrightarrow{\bar{j}} \mathbb{H}P^{n}$$

They are proved in the same way as for $\mathbb{R}P^n$. Setting $\mathrm{sk}_k(\mathbb{C}P^n) := \mathbb{C}P^k$ we obtain a CW-structure on $\mathbb{C}P^n$ with exactly one 2k-dimensional cell for every $0 \le k \le n$.

And setting $\mathrm{sk}_k(\mathbb{H}P^n) := \mathbb{H}P^k$, we obtain a CW-structure on $\mathbb{H}P^n$ with exactly one 4k-cell for every $0 \leq k \leq n$.

Exercise 3

Exercise 4