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Exercise 1

(a) The quotient map p : X → X/A is not open in general. Let U ⊆ X be an
open set. If U is disjoint from A, then p(U) does not contain the special point
to which all of A has been identified, and so p−1(p(U)) = U . By definition of the
quotient topology this means that p(U) is open. If U and A are not disjoint, then
p(U) does contain [a], a ∈ A, and so p−1(p(U)) = U ∪ A. The set U ∪ A is not
open in general, even if U is (find an example). So p(U) need not be open. It will
be open, if A is open; so, if A is open, then p is open.

(b) First recall that a having a continuous injective map i : A → X does not
mean that we can view A as a subspace of X via i - the subspace topology on
i(A) ⊆ X and the topology on A need not agree, i.e., the map i : A → X need
not be a homeomorphism onto its image. If i : A→ X is a homeomorphism onto
its image, then we call i an embedding. If A ⊆ X is a subspace, then the inclusion
i : A→ X is indeed an embedding, by definition of the subspace topology.

Now let B ⊆ A ⊆ X be subspaces, let i : A → X be the inclusion, and let
pA : A→ A/B and pX : X → X/B be the canonical quotient maps.

There is an obvious continuous injective map ī : A/B → X/B induced by i
upon passage to quotients. We claim that ī is a homeomorphism onto its image;
this will show that A/B can be viewed as a subspace of X/B via ī.

Clearly, ī is a continuous bijection onto its image, so it suffices to show that
ī : A/B → ī(A/B) is open. To this end, let U ⊆ A/B be open. Then p−1

A (U) ⊆ A
is open, hence there is an open subset V ⊆ X such that p−1

A (U) = A ∩ V . Now
V is saturated with respect to pX , i.e., p−1

X (pX(V )) = V . By definition of the
quotient topology on X/B this shows that pX(V ) ⊆ X/B is open. Now check
that ī(U) = ī(A/B) ∩ pX(V ), and so ī(U) ⊆ ī(A/B) is open (in the subspace
topology on ī(A/B) ⊆ X/B). This shows that ī : A/B → X/B is an embedding,
and so we can view A/B as a subspace of X/B via ī.

To prove the homeomorphism (X/B)/(A/B) ∼= X/A we define mutually inverse
maps f : (X/B)/(A/B) → X/A and g : X/A → (X/B)/(A/B) by using the
universal property of quotients. The canonical map X → X/A is constant on B ⊆
X, so it descends to a continuous map X/B → X/A. This map is constant on the
subspaces A/B, so it descends further to a continuous map f : (X/B)/(A/B)→
X/A. On the other hand, the composite X → X/B → (X/B)/(X/A) is constant
on A, hence descends to a continuous map g : X/A → (X/B)/(A/B). It is clear
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that f and g are inverses of one another, since both are induced by the identity
on X.

Further comments and alternative proofs: There is a useful “pasting lemma”
for pushouts that you can prove as an exercise (it only uses the universal property
of a pushout): In any category, suppose you are given a commutative diagram

A //

��

X //

��

Z

��

B // Y // W

Call the left hand square I, the right hand square II and call the outer square III,
that is, III is the commutative diagram

A //

��

Z

��

B // W

Then, if I and II are pushout squares, then so is III. Moreover, if I and III are
pushout squares, then so is II.

Another fact, proved very similarly to (b) above, is the following: Given a
pushout square in Top

A

f

��

i
// X

��

Y // Y qA X

where i is an embedding and f is any map, then also Y → Y qAX is an embedding
(see Tom Dieck “General Topology”, Prop. 1.8.1 for a proof).

Now consider in the situation of the exercise the commutative diagram

B

��

// A
i

//

��

X

��

∗ // A/B
ī
// X/B .

In this case I and III are indeed pushouts (see lecture), so it follows that II is also
a pushout. Since i : A → X is an embedding, so is ī : A/B → X/B. Moreover,
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we can extend the diagram as follows:

B

��

// A
i

//

��

X

��

∗ // A/B

��

ī
// X/B

��

∗ // X/A

Call the bottom square IV and call the outer diagram

A
i
//

��

X

��

∗ // X/A

V. Since II is a pushout and V is a pushout, IV is also a pushout. But the

pushout of ∗ ← A/B
ī−→ X/B is (X/B)/(A/B), and since pushouts are uniquely

determined up to homeomorphism, we must have (X/B)/(A/B) ∼= X/A.

Exercise 2

(a) If α : G×X → X is the action map, I’ll write gx := α(g, x). Let p : X →
X/G be the quotient map. Let U ⊆ X be open. Then

p−1(p(U)) =
⋃
g∈G

gU ,

where gU = {gx | x ∈ U} ⊆ X. Since G acts continuously, each g acts through
a homeomorphism (in other words, α(g,−) : X → X is a homeomorphism, with
inverse α(g−1,−)). Since homeomorphisms are open, each gU is open, and hence
p−1(p(U)) is open, being a union of open sets. By definition of the quotient
topology on X/G, this means that p(U) is open. Hence, p is an open map.

(b) Let H ≤ G be a normal subgroup. I’ll write equivalence classes in X/H as
Hx = {hx | h ∈ H} and cosets in G/H as Hg. Define an action of G/H on X/H
by

Hg ·Hx = Hgx .

To see that this is well-defined note that

Hhg ·Hh′x = Hhgh′x = Hgh′x = Hgh′g−1gx = Hgx ,

where the last equality holds since gh′g−1 ∈ H, H being a normal subgroup of G.
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To see that the so defined action of G/H on X/H is continuous, we just need

to check that each Hg acts continuously on X/H, i.e., that X/H
Hg·−−−−→ X/H is

continuous. But for this just note that the composite map X
g·−−−→ X → X/H

is continuous and H-invariant, and so it descends to a continuous map X/H →
X/H; but this map is precisely “action by Hg”, i.e., X/H

Hg·−−−−→ X/H.
Finally, to prove the homeomorphism (X/H)/(G/H) ∼= X/G we construct

(similarly to (b) in Exercise 1) maps f : (X/H)/(G/H)→ X/G and f ′ : X/G→
(X/H)/(G/H) using the universal property of quotients.

A continuous map out of X/G is defined by defining a continuous G-invariant
map out of X (we call a map F : X → Y G-invariant if F (gx) = F (x) for all
x ∈ X and g ∈ G). The composite map X → X/H → (X/H)/(G/H) is indeed G-
invariant, and so it descends to a map f ′ : X/G→ (X/H)/(G/H). A map in the
other direction is constructed similarly. We start with X → X/G and observe that
it is H-invariant. So it descends to a continuous map X/H → X/G. This map is
G/H-invariant, and so it descends further to a map f : (X/H)/(G/H) → X/G.
It is easy to see that f and f ′ are inverses of one another, because both are
essentially induced by the identity map of X.

Exercise 3

(a) To see that ZoZ is generated by (1, 0) and (0, 1) note that (1, 0)a = (a, 0),
(0, 1)b = (0, b) and (a, 0)(0, b) = (a, b).

Let S : R2 → R2 be the map defined by S(x, y) = (x, y + 1) and T : R2 → R2

the map defined by T (x, y)(x+ 1,−y). Define an action of Z o Z on R2 by

(a, b) · (x, y) := SaT b(x, y)

for (a, b) ∈ Z o Z and (x, y) ∈ R2. We must check that

(a, b) · ((a′, b′) · (x, y)) = ((a, b)(a′, b′)) · (x, y)

for all (a, b), (a′, b′) ∈ Z o Z and (x, y) ∈ R2. Equivalently, we must check that

SaT bSa
′
T b

′
= Sa+(−1)ba′T b+b

′
. But this follows, because TS = S−1T as one can

easily check form the definition of S and T . So we obtain an action of Z o Z on
R2 as desired. It is continuous, because reflection and translation are continuous.

(b) The embedding Z2 ↪→ Z o Z defined by (1, 0) 7→ (1, 0) and (0, 1) 7→ (0, 2)
exhibits Z2 as an index two subgroup of Z o Z.

(c) Note that every subgroup of index two is normal. In particular, Z2 is a
normal subgroup of ZoZ and (ZoZ)/Z2 ∼= C2. It follows from Exercise 2 that C2

acts continuously on T 2 = R2/Z2 and the canonical map R2/Z2 → R2/ZoZ = K
induces a homeomorphism T 2/C2

∼= K.
(d) Recall that a fundamental domain is a subspace such that the orbit of any

point intersects that subspace in precisely one point. It is clear that [0, 1)2 is a
fundamental domain for both Z2 and Z o Z acting on R2.
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It follows that the inclusion [0, 1]2 ↪→ R2 induces a surjective map

f : [0, 1]2 → R2/Z2 .

On [0, 1]2 let ∼ be the equivalence relation generated by (s, 0) ∼ (s, 1) and (0, t) ∼
(1, t) for all s, t ∈ [0, 1]. The map f is invariant under ∼, hence it descends to a
continuous map

f̄ : [0, 1]2/ ∼→ R2/Z2 .

By definition of ∼ the map f̄ is bijective. To see that f̄ is a homeomorphism
it remains to show that f̄ is open. By the self-indexing trick, it suffices to show
that every point [s, t] ∈ [0, 1]2/ ∼ has an arbitrarily small open neighbourhood
U[s,t] ⊆ [0, 1]2/ ∼ for which f(U[s,t]) ⊆ R2/Z2 is open. If (s, t) is in the interior
of [0, 1]2 one can take U[s,t] to be the image of a small ε-disc. If (s, t) lies on
one of the edges of [0, 1]2 one can take U[s,t] to be the image of two symmetric
ε-half-discs around (s, t) and its corresponding mirror point on the opposite edge,
respectively. Similarly for the vertices of [0, 1]2.

The discussion for the Klein bottle is analogous. The equivalence relation to be
put on [0, 1]2 is generated by (s, 0) ∼ (s, 1) and (0, t) ∼ (1, 1− t) for s, t ∈ [0, 1].

Exercise 4

(a) Let ∼S1 be the equivalence relation on [0, 1] generated by 0 ∼S1 1. First, one
shows that the map [0, 1] → S1 defined by t 7→ e2πit induces a homeomorphism
[0, 1]/∼S1

∼= S1 (as in Exercise 3 you see that [0, 1]/∼S1
∼= R/Z). Thus, from now

on we may take [0, 1]/∼S1 as our model for S1.
The projection X × [0, 1] → [0, 1] is continuous, and its composition with the

projection [0, 1] → [0, 1]/∼S1 is invariant under ∼. Therefore, it descends to a
continuous map Tf → S1.

(b) Let f : S1 → S1 be the map f(z) = z−1. Under the homeomorphism
S1 ∼= [0, 1]/ ∼S1 it corresponds to the map f : [0, 1]/ ∼S1→ [0, 1]/ ∼S1 given
by f([s]) = [1 − s]. Let ∼K be the equivalence relation on [0, 1]2 generated by
(s, 0) ∼K (1 − s, 1) and (0, t) ∼ (1, t), so that [0, 1]2/∼K is the Klein bottle. To
construct a map K → Tf consider the composite map

[0, 1]× [0, 1]→ ([0, 1]/∼S1)× [0, 1]→ (([0, 1]/∼S1)× [0, 1])/∼= Tf .

It is invariant under the equivalence relation ∼K on [0, 1]2, and so it descends to a
continuous map K → Tf . It is also easily seen to be bijective. It remains to show
that it is open. This is a bit tedious, but straightforward. However, there is one
subtlety! We do not know a-priori that ([0, 1]/∼S1) × [0, 1] carries the quotient
topology with respect to the surjective map [0, 1]× [0, 1]→ ([0, 1]/∼S1)× [0, 1] (it
is true though and a consequence of the fact that [0, 1] is locally compact). Thus,
to check that a subset in ([0, 1]/∼S1)× [0, 1] is open, you cannot without further
justification check if its preimage in [0, 1]2 is open.
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(c) Tracing carefully through the various constructions above, we find that the
map K = Tf → S1 can be described as the map [0, 1]2/∼K→ [0, 1]/∼S1 sending
[s, t] 7→ [t], and the map T 2 → K from Exercise 3 (c) can be described as the map
[0, 1]2/∼T→ [0, 1]2/∼K sending

[s, t] 7→

{
[s, 2t] if 0 ≤ t ≤ 1

2

[1− s, 2t− 1] if 1
2
≤ t ≤ 1

The composition of the two maps is the map T 2 → S1 sending

[s, t] 7→

{
[2t] if 0 ≤ t ≤ 1

2

[2t− 1] if 1
2
≤ t ≤ 1

As we go once around the first circle factor of T 2, the image of this map wraps
twice around S1.

Exercise 5

Recall that a coequaliser of morphisms f1, f2 : X → Y (in any category) is a
colimit of the diagram

X
f1
,,

f2

33 Y .

Concretely this means that a coequaliser of f1, f2 : X → Y is a morphism

p : Y → Coeq(f1, f2)

such that pf1 = pf2 (in other words, p coequalises f1 and f2) and it is universal
with this property in the following sense: Given any morphism h : Y → Z such
that hf1 = hf2, there is a unique h̄ : Coeq(f1, f2) → Z such that h̄p = h. The
following diagram summarises this:

X

hf1=hf2 ��

f1
++

f2

33 Y

h

��

p
// Coeq(f1, f2)

∃!h̄yy
Z

Now consider f1, f2 : G×X → X as in the exercise. We claim that the quotient
map p : X → X/G is a coequaliser of f1 and f2 in Top. Clearly, pf1 = pf2. So we
only need to check the universal property: Let Y be a space and h : X → Y a map
such that hf1 = hf2, i.e., h(x) = h(gx) for all g ∈ G and x ∈ X. By definition
of X/G, there is a unique continuous map h̄ : X/G → Y such that h̄p = h. So
indeed p : X → X/G is a coequaliser of f1 and f2.

(We have essentially used this universal property several times in Exercise 2
above).
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Exercise 6

Let r̄ ∈ Cp (viewed as an integer r ∈ Z modulo p) and let (z1, . . . , zn) ∈
S(C(q1)⊕ · · · ⊕ C(qn)) and suppose that

(e2πirq1/pz1, . . . , e
2πirqn/pzn) = (z1, . . . , zn) .

We must show that r̄ = 0, or in other words that r is divisible by p. Without loss
of generality assume that z1 6= 0. Then e2πirq1/p = 1, hence p divides rq1. Since
q1 is prime to p, p divides r.


