COMMENTS ON SHEET 2

Exercise 1

(a) The quotient map $p: X \rightarrow X / A$ is not open in general. Let $U \subseteq X$ be an open set. If U is disjoint from A, then $p(U)$ does not contain the special point to which all of A has been identified, and so $p^{-1}(p(U))=U$. By definition of the quotient topology this means that $p(U)$ is open. If U and A are not disjoint, then $p(U)$ does contain $[a], a \in A$, and so $p^{-1}(p(U))=U \cup A$. The set $U \cup A$ is not open in general, even if U is (find an example). So $p(U)$ need not be open. It will be open, if A is open; so, if A is open, then p is open.
(b) First recall that a having a continuous injective map $i: A \rightarrow X$ does not mean that we can view A as a subspace of X via i - the subspace topology on $i(A) \subseteq X$ and the topology on A need not agree, i.e., the map $i: A \rightarrow X$ need not be a homeomorphism onto its image. If $i: A \rightarrow X$ is a homeomorphism onto its image, then we call i an embedding. If $A \subseteq X$ is a subspace, then the inclusion $i: A \rightarrow X$ is indeed an embedding, by definition of the subspace topology.

Now let $B \subseteq A \subseteq X$ be subspaces, let $i: A \rightarrow X$ be the inclusion, and let $p_{A}: A \rightarrow A / B$ and $p_{X}: X \rightarrow X / B$ be the canonical quotient maps.

There is an obvious continuous injective map $\bar{i}: A / B \rightarrow X / B$ induced by i upon passage to quotients. We claim that \bar{i} is a homeomorphism onto its image; this will show that A / B can be viewed as a subspace of X / B via \bar{i}.

Clearly, \bar{i} is a continuous bijection onto its image, so it suffices to show that $\bar{i}: A / B \rightarrow \bar{i}(A / B)$ is open. To this end, let $U \subseteq A / B$ be open. Then $p_{A}^{-1}(U) \subseteq A$ is open, hence there is an open subset $V \subseteq X$ such that $p_{A}^{-1}(U)=A \cap V$. Now V is saturated with respect to p_{X}, i.e., $p_{X}^{-1}\left(p_{X}(V)\right)=V$. By definition of the quotient topology on X / B this shows that $p_{X}(V) \subseteq X / B$ is open. Now check that $\bar{i}(U)=\bar{i}(A / B) \cap p_{X}(V)$, and so $\bar{i}(U) \subseteq \bar{i}(A / B)$ is open (in the subspace topology on $\bar{i}(A / B) \subseteq X / B)$. This shows that $\bar{i}: A / B \rightarrow X / B$ is an embedding, and so we can view A / B as a subspace of X / B via \bar{i}.

To prove the homeomorphism $(X / B) /(A / B) \cong X / A$ we define mutually inverse maps $f:(X / B) /(A / B) \rightarrow X / A$ and $g: X / A \rightarrow(X / B) /(A / B)$ by using the universal property of quotients. The canonical map $X \rightarrow X / A$ is constant on $B \subseteq$ X, so it descends to a continuous map $X / B \rightarrow X / A$. This map is constant on the subspaces A / B, so it descends further to a continuous map $f:(X / B) /(A / B) \rightarrow$ X / A. On the other hand, the composite $X \rightarrow X / B \rightarrow(X / B) /(X / A)$ is constant on A, hence descends to a continuous map $g: X / A \rightarrow(X / B) /(A / B)$. It is clear

Date: November 10, 2023.
that f and g are inverses of one another, since both are induced by the identity on X.

Further comments and alternative proofs: There is a useful "pasting lemma" for pushouts that you can prove as an exercise (it only uses the universal property of a pushout): In any category, suppose you are given a commutative diagram

Call the left hand square I, the right hand square II and call the outer square III, that is, III is the commutative diagram

Then, if I and II are pushout squares, then so is III. Moreover, if I and III are pushout squares, then so is II.

Another fact, proved very similarly to (b) above, is the following: Given a pushout square in Top

where i is an embedding and f is any map, then also $Y \rightarrow Y \amalg_{A} X$ is an embedding (see Tom Dieck "General Topology", Prop. 1.8.1 for a proof).

Now consider in the situation of the exercise the commutative diagram

In this case I and III are indeed pushouts (see lecture), so it follows that II is also a pushout. Since $i: A \rightarrow X$ is an embedding, so is $\bar{i}: A / B \rightarrow X / B$. Moreover,
we can extend the diagram as follows:

Call the bottom square IV and call the outer diagram

V. Since II is a pushout and V is a pushout, IV is also a pushout. But the pushout of $* \leftarrow A / B \xrightarrow{\bar{i}} X / B$ is $(X / B) /(A / B)$, and since pushouts are uniquely determined up to homeomorphism, we must have $(X / B) /(A / B) \cong X / A$.

Exercise 2

(a) If $\alpha: G \times X \rightarrow X$ is the action map, I'll write $g x:=\alpha(g, x)$. Let $p: X \rightarrow$ X / G be the quotient map. Let $U \subseteq X$ be open. Then

$$
p^{-1}(p(U))=\bigcup_{g \in G} g U
$$

where $g U=\{g x \mid x \in U\} \subseteq X$. Since G acts continuously, each g acts through a homeomorphism (in other words, $\alpha(g,-): X \rightarrow X$ is a homeomorphism, with inverse $\left.\alpha\left(g^{-1},-\right)\right)$. Since homeomorphisms are open, each $g U$ is open, and hence $p^{-1}(p(U))$ is open, being a union of open sets. By definition of the quotient topology on X / G, this means that $p(U)$ is open. Hence, p is an open map.
(b) Let $H \leq G$ be a normal subgroup. I'll write equivalence classes in X / H as $H x=\{h x \mid h \in H\}$ and cosets in G / H as $H g$. Define an action of G / H on X / H by

$$
H g \cdot H x=H g x .
$$

To see that this is well-defined note that

$$
H h g \cdot H h^{\prime} x=H h g h^{\prime} x=H g h^{\prime} x=H g h^{\prime} g^{-1} g x=H g x,
$$

where the last equality holds since $g h^{\prime} g^{-1} \in H, H$ being a normal subgroup of G.

To see that the so defined action of G / H on X / H is continuous, we just need to check that each $H g$ acts continuously on X / H, i.e., that $X / H \xrightarrow{H g--} X / H$ is continuous. But for this just note that the composite map $X \xrightarrow{\text { g-- }} X \rightarrow X / H$ is continuous and H-invariant, and so it descends to a continuous map $X / H \rightarrow$ X / H; but this map is precisely "action by $H g$ ", i.e., $X / H \xrightarrow{H g \cdot-} X / H$.

Finally, to prove the homeomorphism $(X / H) /(G / H) \cong X / G$ we construct (similarly to (b) in Exercise 1) maps $f:(X / H) /(G / H) \rightarrow X / G$ and $f^{\prime}: X / G \rightarrow$ $(X / H) /(G / H)$ using the universal property of quotients.

A continuous map out of X / G is defined by defining a continuous G-invariant map out of X (we call a map $F: X \rightarrow Y G$-invariant if $F(g x)=F(x)$ for all $x \in X$ and $g \in G)$. The composite map $X \rightarrow X / H \rightarrow(X / H) /(G / H)$ is indeed G invariant, and so it descends to a map $f^{\prime}: X / G \rightarrow(X / H) /(G / H)$. A map in the other direction is constructed similarly. We start with $X \rightarrow X / G$ and observe that it is H-invariant. So it descends to a continuous map $X / H \rightarrow X / G$. This map is G / H-invariant, and so it descends further to a map $f:(X / H) /(G / H) \rightarrow X / G$. It is easy to see that f and f^{\prime} are inverses of one another, because both are essentially induced by the identity map of X.

Exercise 3

(a) To see that $\mathbb{Z} \rtimes \mathbb{Z}$ is generated by $(1,0)$ and $(0,1)$ note that $(1,0)^{a}=(a, 0)$, $(0,1)^{b}=(0, b)$ and $(a, 0)(0, b)=(a, b)$.

Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map defined by $S(x, y)=(x, y+1)$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the map defined by $T(x, y)(x+1,-y)$. Define an action of $\mathbb{Z} \rtimes \mathbb{Z}$ on \mathbb{R}^{2} by

$$
(a, b) \cdot(x, y):=S^{a} T^{b}(x, y)
$$

for $(a, b) \in \mathbb{Z} \rtimes \mathbb{Z}$ and $(x, y) \in \mathbb{R}^{2}$. We must check that

$$
(a, b) \cdot\left(\left(a^{\prime}, b^{\prime}\right) \cdot(x, y)\right)=\left((a, b)\left(a^{\prime}, b^{\prime}\right)\right) \cdot(x, y)
$$

for all $(a, b),\left(a^{\prime}, b^{\prime}\right) \in \mathbb{Z} \rtimes \mathbb{Z}$ and $(x, y) \in \mathbb{R}^{2}$. Equivalently, we must check that $S^{a} T^{b} S^{a^{\prime}} T^{b^{\prime}}=S^{a+(-1)^{b} a^{\prime}} T^{b+b^{\prime}}$. But this follows, because $T S=S^{-1} T$ as one can easily check form the definition of S and T. So we obtain an action of $\mathbb{Z} \rtimes \mathbb{Z}$ on \mathbb{R}^{2} as desired. It is continuous, because reflection and translation are continuous.
(b) The embedding $\mathbb{Z}^{2} \hookrightarrow \mathbb{Z} \rtimes \mathbb{Z}$ defined by $(1,0) \mapsto(1,0)$ and $(0,1) \mapsto(0,2)$ exhibits \mathbb{Z}^{2} as an index two subgroup of $\mathbb{Z} \rtimes \mathbb{Z}$.
(c) Note that every subgroup of index two is normal. In particular, \mathbb{Z}^{2} is a normal subgroup of $\mathbb{Z} \rtimes \mathbb{Z}$ and $(\mathbb{Z} \rtimes \mathbb{Z}) / \mathbb{Z}^{2} \cong C_{2}$. It follows from Exercise 2 that C_{2} acts continuously on $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and the canonical map $\mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z} \rtimes \mathbb{Z}=K$ induces a homeomorphism $T^{2} / C_{2} \cong K$.
(d) Recall that a fundamental domain is a subspace such that the orbit of any point intersects that subspace in precisely one point. It is clear that $[0,1)^{2}$ is a fundamental domain for both \mathbb{Z}^{2} and $\mathbb{Z} \rtimes \mathbb{Z}$ acting on \mathbb{R}^{2}.

It follows that the inclusion $[0,1]^{2} \hookrightarrow \mathbb{R}^{2}$ induces a surjective map

$$
f:[0,1]^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}
$$

On $[0,1]^{2}$ let \sim be the equivalence relation generated by $(s, 0) \sim(s, 1)$ and $(0, t) \sim$ $(1, t)$ for all $s, t \in[0,1]$. The map f is invariant under \sim, hence it descends to a continuous map

$$
\bar{f}:[0,1]^{2} / \sim \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}
$$

By definition of \sim the map \bar{f} is bijective. To see that \bar{f} is a homeomorphism it remains to show that \bar{f} is open. By the self-indexing trick, it suffices to show that every point $[s, t] \in[0,1]^{2} / \sim$ has an arbitrarily small open neighbourhood $U_{[s, t]} \subseteq[0,1]^{2} / \sim$ for which $f\left(U_{[s, t]}\right) \subseteq \mathbb{R}^{2} / \mathbb{Z}^{2}$ is open. If (s, t) is in the interior of $[0,1]^{2}$ one can take $U_{[s, t]}$ to be the image of a small ϵ-disc. If (s, t) lies on one of the edges of $[0,1]^{2}$ one can take $U_{[s, t]}$ to be the image of two symmetric ϵ-half-discs around (s, t) and its corresponding mirror point on the opposite edge, respectively. Similarly for the vertices of $[0,1]^{2}$.

The discussion for the Klein bottle is analogous. The equivalence relation to be put on $[0,1]^{2}$ is generated by $(s, 0) \sim(s, 1)$ and $(0, t) \sim(1,1-t)$ for $s, t \in[0,1]$.

Exercise 4

(a) Let $\sim_{S^{1}}$ be the equivalence relation on $[0,1]$ generated by $0 \sim_{S^{1}} 1$. First, one shows that the map $[0,1] \rightarrow S^{1}$ defined by $t \mapsto e^{2 \pi i t}$ induces a homeomorphism $[0,1] / \sim_{S^{1}} \cong S^{1}$ (as in Exercise 3 you see that $\left.[0,1] / \sim_{S^{1}} \cong \mathbb{R} / \mathbb{Z}\right)$. Thus, from now on we may take $[0,1] / \sim_{S^{1}}$ as our model for S^{1}.

The projection $X \times[0,1] \rightarrow[0,1]$ is continuous, and its composition with the projection $[0,1] \rightarrow[0,1] / \sim_{S^{1}}$ is invariant under \sim. Therefore, it descends to a continuous map $T_{f} \rightarrow S^{1}$.
(b) Let $f: S^{1} \rightarrow S^{1}$ be the map $f(z)=z^{-1}$. Under the homeomorphism $S^{1} \cong[0,1] / \sim_{S^{1}}$ it corresponds to the map $f:[0,1] / \sim_{S^{1}} \rightarrow[0,1] / \sim_{S^{1}}$ given by $f([s])=[1-s]$. Let \sim_{K} be the equivalence relation on $[0,1]^{2}$ generated by $(s, 0) \sim_{K}(1-s, 1)$ and $(0, t) \sim(1, t)$, so that $[0,1]^{2} / \sim_{K}$ is the Klein bottle. To construct a map $K \rightarrow T_{f}$ consider the composite map

$$
[0,1] \times[0,1] \rightarrow\left([0,1] / \sim_{S^{1}}\right) \times[0,1] \rightarrow\left(\left([0,1] / \sim_{S^{1}}\right) \times[0,1]\right) / \sim=T_{f}
$$

It is invariant under the equivalence relation \sim_{K} on $[0,1]^{2}$, and so it descends to a continuous map $K \rightarrow T_{f}$. It is also easily seen to be bijective. It remains to show that it is open. This is a bit tedious, but straightforward. However, there is one subtlety! We do not know a-priori that $\left([0,1] / \sim_{S^{1}}\right) \times[0,1]$ carries the quotient topology with respect to the surjective map $[0,1] \times[0,1] \rightarrow\left([0,1] / \sim_{S^{1}}\right) \times[0,1]$ (it is true though and a consequence of the fact that $[0,1]$ is locally compact). Thus, to check that a subset in $\left([0,1] / \sim_{S^{1}}\right) \times[0,1]$ is open, you cannot without further justification check if its preimage in $[0,1]^{2}$ is open.
(c) Tracing carefully through the various constructions above, we find that the map $K=T_{f} \rightarrow S^{1}$ can be described as the map $[0,1]^{2} / \sim_{K} \rightarrow[0,1] / \sim_{S^{1}}$ sending $[s, t] \mapsto[t]$, and the map $T^{2} \rightarrow K$ from Exercise 3 (c) can be described as the map $[0,1]^{2} / \sim_{T} \rightarrow[0,1]^{2} / \sim_{K}$ sending

$$
[s, t] \mapsto \begin{cases}{[s, 2 t]} & \text { if } 0 \leq t \leq \frac{1}{2} \\ {[1-s, 2 t-1]} & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

The composition of the two maps is the map $T^{2} \rightarrow S^{1}$ sending

$$
[s, t] \mapsto \begin{cases}{[2 t]} & \text { if } 0 \leq t \leq \frac{1}{2} \\ {[2 t-1]} & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

As we go once around the first circle factor of T^{2}, the image of this map wraps twice around S^{1}.

Exercise 5

Recall that a coequaliser of morphisms $f_{1}, f_{2}: X \rightarrow Y$ (in any category) is a colimit of the diagram

$$
X \xrightarrow[f_{2}]{\stackrel{f_{1}}{\longrightarrow}} Y .
$$

Concretely this means that a coequaliser of $f_{1}, f_{2}: X \rightarrow Y$ is a morphism

$$
p: Y \rightarrow \operatorname{Coeq}\left(f_{1}, f_{2}\right)
$$

such that $p f_{1}=p f_{2}$ (in other words, p coequalises f_{1} and f_{2}) and it is universal with this property in the following sense: Given any morphism $h: Y \rightarrow Z$ such that $h f_{1}=h f_{2}$, there is a unique $\bar{h}: \operatorname{Coeq}\left(f_{1}, f_{2}\right) \rightarrow Z$ such that $\bar{h} p=h$. The following diagram summarises this:

Now consider $f_{1}, f_{2}: G \times X \rightarrow X$ as in the exercise. We claim that the quotient $\operatorname{map} p: X \rightarrow X / G$ is a coequaliser of f_{1} and f_{2} in Top. Clearly, $p f_{1}=p f_{2}$. So we only need to check the universal property: Let Y be a space and $h: X \rightarrow Y$ a map such that $h f_{1}=h f_{2}$, i.e., $h(x)=h(g x)$ for all $g \in G$ and $x \in X$. By definition of X / G, there is a unique continuous map $\bar{h}: X / G \rightarrow Y$ such that $\bar{h} p=h$. So indeed $p: X \rightarrow X / G$ is a coequaliser of f_{1} and f_{2}.
(We have essentially used this universal property several times in Exercise 2 above).

Exercise 6

Let $\bar{r} \in C_{p}$ (viewed as an integer $r \in \mathbb{Z}$ modulo p) and let $\left(z_{1}, \ldots, z_{n}\right) \in$ $S\left(\mathbb{C}\left(q_{1}\right) \oplus \cdots \oplus \mathbb{C}\left(q_{n}\right)\right)$ and suppose that

$$
\left(e^{2 \pi i r q_{1} / p} z_{1}, \ldots, e^{2 \pi i r q_{n} / p} z_{n}\right)=\left(z_{1}, \ldots, z_{n}\right) .
$$

We must show that $\bar{r}=0$, or in other words that r is divisible by p. Without loss of generality assume that $z_{1} \neq 0$. Then $e^{2 \pi i r q_{1} / p}=1$, hence p divides $r q_{1}$. Since q_{1} is prime to p, p divides r.

