COMMENTS ON SHEET 11

Exercise 4

(a) We show that if f is not surjective, then $\deg(f) = 0$.

If f is not surjective, then there is $p \in S^n$ such that $p \notin f(S^n)$. So f factors as

$$S^n \xrightarrow{f} S^n \setminus \{p\} \hookrightarrow S^n$$
.

But $S^n \setminus \{p\} \cong D^n \simeq \text{pt}$, and so $H_n(S^n \setminus \{p\}) \cong H_n(\text{pt}) = 0 \ (n \ge 1)$. It follows that $H_n(f)$ factors through 0, hence $H_n(f) = 0$. By definition of degree, $\deg(f) = 0$.

(b) Suppose that f is not surjective. By (a), $f|_{\partial D^n}$ is surjective and so there must be $p \in D^n \setminus \partial D^n$ with $p \notin f(D^n)$. Thus we have a commutative diagram

in which the right vertical map is a homotopy equivalence. Since $D^n \simeq \text{pt}$, by applying H_{n-1} we obtain a commutative diagram

Since we assumed $\deg(f|_{\partial D^n}) \neq 0$, this is a contradiction.

Date: February 1, 2024.