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Abstract. These are lecture notes for my lecture “Topology I” which I taught in the winter
term 2023/24 at LMU Munich.
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The purpose of this lecture is to give an introduction to the field of algebraic topology, that
is, the study of topological spaces by means of algebraic tools such as homotopy groups and
homology groups. Of course, in order to do so, we must first define and study basic properties
of topological spaces – this will be our first section on point-set topology. Next, we will define
homotopy groups, and in particular the fundamental group and derive some basic properties
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including the theorem of Seifert and van Kampen. We will then discuss covering spaces and
describe the intricate relationship between coverings of a given space X, a purely topolog-
ical notion, and sets equipped with an action of the fundamental group of X. Finally, we
will introduce the notion of a homology theory on topological spaces and construct the first
non-trivial example: Singular homology. We will derive some standard applications, prove
all relevant properties of singular homology (also known as the Eilenberg–Steenrod axioms),
discuss the homology of CW complexes (i.e. that singular and cellular homology agree) and
finish with some applications of the Euler characteristic.

This course will be followed by a course “Topology II” in the summer term 2024. There, we
will discuss singular cohomology, its multiplicative structure and prove Künneth and universal
coefficient theorems. We will move on and discuss the (co)homology of smooth/topological
manifolds and prove Poincaré duality. If time permits, we will also discuss vector bundles
and Thom isomorphisms. After this, we will go back to homotopy theory: We will discuss
the notion of fibrations and associated long exact sequences in homotopy groups, simplicial
sets, the relation between topological spaces and simplicial sets and in particular the theorem
that a weak equivalence induces an isomorphism on singular homology, and representabilty
of singular cohomology.

1. Point-set topology

We begin with the definition of a topological space. For a set X, we denote by P(X) its
power set, i.e.

P(X) = {A | A ⊆ X}.

1.1. Basic definitions.

1.1. Definition Let X be a set. A topology on X consists of a set O ⊆ P(X), whose elements
are called open sets, satisfying the following axioms:

(1) X,∅ ∈ O,
(2) If U1, . . . , Un ∈ O, then U1 ∩ · · · ∩ Un ∈ O,
(3) If I is a set and Ui ∈ O for all i ∈ I, then

⋃
i∈I

Ui ∈ O.

A pair (X,O) consisting of a set X and a topology O on X is called a topological space.

We begin with trivial examples.

1.2. Example Let X be a set. Then

(1) {∅, X} is a topology on X. It is called the indiscrete topology.
(2) P(X) is a topology on X. It is called the discrete topology.

We refer to the following basic (but useful) observation as the self-indexing trick:

1.3. Observation Let (X,O) be a topological space. Then U ⊆ X is open if and only if for
all x ∈ U , there exists Ux ∈ O such that x ∈ Ux ⊆ U .

Proof. If U is open and x ∈ U , we mau simply choose Ux = U . Conversely, note that
U =

⋃
x∈U

Ux, so U is open. □

1.4. Notation We will use the following terminology. Let (X,O) be a topological space.
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(1) A subset A ⊆ X is called closed if its complement X \A is open. We write C for the
collection of closed subsets of (X,O).

(2) For a point x in X, a subset N ⊆ X containing x is called a neighborhood of x, if
there exists an open set U such that x ∈ U ⊆ N .

(3) A subcollection B of a topology O is called a basis for O if every element in O is a
union of elements in B.

(4) A subcollection S of a topology O is called a subbasis for O, if every element in O is
a union of finite intersections of elements in S.

1.5. Remark Let (X,O) be a topological space. Then O is determined by the set of closed
subsets of X: Indeed, the elements of O are precisely the complements in X of closed sets in
X. One can therefore also describe a topology by specifying a subset C ⊆ P(X) of closed sets
of X satisfying the axioms

(1) ∅, X ∈ C,
(2) If A1, . . . , An ∈ C, then A1 ∪ · · · ∪An ∈ C,
(3) If I is a set, and Ai ∈ C for all i ∈ I, then

⋂
i∈I Ai ∈ C.

1.6. Example Let X be a set. Set C = {A ⊆ X | A finite or equal to X } defines the closed
sets of a topology on X, called the cofinite topology.

Next, we explain how to obtain many more examples of topologies.

1.7. Lemma Let X and I be sets and for every i ∈ I, let Oi be a topology on X. Then the
intersection O =

⋂
i∈I

Oi is again a topology on X.

Proof. If I is empty, then O = P(X) is indeed a topology. So let us assume that I is not
empty. By assumption, ∅, X ∈ Oi for all i ∈ I. Hence, ∅, X ∈ O. Likewise, if for j = 1, . . . , n
we have Uj ∈ O, then Uj ∈ Oi for all i ∈ I. Consequently, U1 ∩ · · · ∩ Un ∈ Oi for all i ∈ I,
and hence U1 ∩ · · · ∩ Un ∈ O as needed. The same argument applies for arbitrary unions of
elements of O. □

1.8. Definition Let X be a set and T ⊆ P(X) a set of subsets of X. There exists a unique
smallest topology OT containing T . It is called the topology generated by T . The set T is a
subbasis for the topology OT .

Proof. We define

OT =
⋂
{O ⊆ P(X) | O is a topology on X and T ⊆ O}.

We note that this set over we take an intersection is non-empty since it contains P(X). OT

is a topology by Lemma 1.7. If O is any topology on X containing T , then by definition
OT ⊆ O, as O appears as one of the sets over which we form intersections. Hence OT is the
smallest topology which contains T . Now consider the set ST consisting of arbitrary unions
of finite intersections of elements of T . In formulas

ST = {
⋃
i∈I

Ai | I is a set and ∀i ∈ I ∃T1, . . . , Tn ∈ T such that Ai =

n⋂
j=1

Tj}

Then ST is contained in OT because OT is a topology. So it suffices to show that ST is a
topology as well. □
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1.9. Example A metric space (M,d) gives rise to a topological space (M,Od). A subbasis
for the topology Od on M is given by the open balls of radius ϵ ≤ 1 around arbitrary points:

S = {Bϵ(m) = {x ∈M | d(x,m) < ϵ} | m ∈M, ϵ < 1}.
In fact, S is a basis, not only a subbasis and whenever x ∈ U with U ∈ Od, there exists ϵ > 0
such that Bϵ(x) ⊆ U (Exercise). Od is called the metric topology on M .

In particular, for any n ≥ 0, euclidean space Rn with its norm induced metric d(x, y) =
∥x−y∥ is a metric space. Moreover, any subset of a metric space is again a metric space (simply
restrict the metric), and consequently any subset of Rn is a metric, and hence topological
space. There are many different kinds of such subspaces, we consider the following two
extreme cases:

(1) Sn = {x ∈ Rn+1 | ∥x∥ = 1}, the n-dimensional sphere.
(2) The Cantor set C ⊆ [0, 1] or Q ⊆ R.

We will later argue in which sense these examples are of different nature, based on the
notion of connectedness (the sphere is connected, whereas the Cantor set and Q are totally
disconnected).

1.10. Remark A topological space (X,O) is called metrizable, if there is a metric d on X such
that O is the metric topology of d. Not all topological spaces are metrizable as we discuss in
an Exercise. Metrizable spaces will not play an important role in this course.

We come to the notion of continuous maps.

1.11. Definition Let (X,OX) and (Y,OY ) be topological spaces. A map f : X → Y is
called continuous with respect to OX and OY if f−1(OY ) ⊆ OX , that is, if for all U ∈ OY ,
the preimage f−1(U) lies in OX . We denote the set of continuous maps from X to Y by
C((X,OX), (Y,OY )).

1.12. Remark Equivalently, f is continuous if f−1(A) is closed in X whenever A is closed in
Y .

In what follows we will often write “LetX be a topological space”. When doing so, we mean
that X denotes a set equipped with a topology O which we leave implicit in the notation.
In this case, we shall also simply say that f : X → Y is continuous and denote the set of
continuous maps by C(X,Y ). We record the following obvious fact:

1.13. Lemma Let f : X → Y and g : Y → Z be continuous maps between topological spaces.
Then g ◦ f : X → Z is continuous.

Since also the identity of any topological space is continuous, we obtain a category Top
whose objects are topological spaces and whose morphisms are continuous maps.

1.14. Lemma Let (X,OX) and (Y,OY ) be topological spaces and let S be a subbasis for OY .
Then f is continuous if and only if for any U ∈ S, we have f−1(U) ∈ OX .

Proof. If f is continuous, then f−1(U) ∈ OX for all U ∈ OY , so the only if follows from the
inclusion S ⊆ OY . To see the converse, let U ∈ OY . Since S is a subbasis, there is a set I and
for each i ∈ I there is a finite set Ji and a map A : Ji → S such that

U =
⋃
i∈I

⋂
j∈Ji

Aj .
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Since taking inverse images commutes with unions and intersections, we obtain

f−1(U) =
⋃
i∈I

⋂
j∈Ji

f−1(Aj).

By assumption, for all i ∈ I and all j ∈ Ji, we have that f−1(Aj) ∈ OX . Since OX is a
topology, we conclude that f−1(U) ∈ OX and hence f is continuous. □

Most likely you remember the ϵ-δ-criterion for continuity from Analysis. The following
shows that the a priori different notions of continuous maps agree.

1.15. Lemma Let (M,d) and (M ′, d′) be metric spaces. A map f : M → M ′ is continuous
with respect to the metric topologies if and only if f is ϵ-δ-continuous.

Proof. We recall that f is called ϵ-δ-continuous, if for all x ∈ M and all ϵ > 0, there exists
δ > 0 such that d(x, y) < δ implies that d′(f(x), f(y)) < ϵ, in other words that Bδ(x) ⊆
f−1(Bϵ(f(x))).

By Lemma 1.14, f is continuous if and only if f−1(Bϵ(z)) is open for all ϵ > 0 and
z ∈ M ′. This is only a condition when f−1(Bϵ(z)) is non-empty. By the self-indexing trick
of Observation 1.3 and the exercise alluded to in Example 1.9, f is therefore continuous if
and only if for all x ∈ f−1(Bϵ(z)), there exists δ > 0 such that Bδ(x) ⊆ f−1(Bϵ(z)), in other
words, precisely when f is ϵ-δ-continuous. □

We come to first examples of constructing new topological spaces from old ones:

1.16. Definition (1) Let (X,O) be a topological space and i : Y → X an injection. The
restricted topology O|Y on Y is given by the collection of sets i−1(U) for U ∈ O.

(2) Let (X,O) be a topological space and p : X → Z a surjection. The quotient topology
on Z is given by those sets V ⊆ Z such that p−1(U) is open.

When i as above is the inclusion of a subset Y ⊆ X, we refer to the resulting topological
space as as a subspace of (X,O).

1.17. Lemma Let (X,O) be a topological space, i : Y → X an injection and p : X → Z a
surjection. Then the restricted topology on Y and the quotient topology on Z are in fact
topologies. Moreover, when (X ′,O′) is another topological space, then f : X ′ → Y is con-
tinuous if and only if the composite if : X ′ → X is continuous. Likewise, g : Z → X ′ is
continuous if and only if the composite gp : X → X ′ is continuous.

Proof. That the putative topologies are indeed topologies follows from the fact that preimages
commute with intersections and unions. If f and g are continuous, then so are if and gp.
Let us conversely assume that if and gp are continuous. To see that f is continuous, let
V = i−1(U) be an open of Y . Then f−1(V ) = f−1(i−1(U)) = (if)−1(U) which is open since
U is and if is continuous. Likewise, let U ′ ⊆ X ′ be open. Then g−1(U ′) is open if and
only if p−1(g−1(U ′)) is open which is the case because it is given by (gp)−1(U ′) and gp is
continuous. □

1.18. Corollary Let f : X → Y be a continuous map between topological spaces. Equip the
image f(X) ⊆ Y of f with the subspace topology. Then f restricts to a continuous surjective
map f : X → f(X).

1.19. Remark Let p : X → Z be a surjection. The relation x ∼ x′ if p(x) = p(x′) is an
equivalence relation on X, and the resulting map X/ ∼→ Z is a bijection. In particular, any
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surjection is given as the quotient of X by an equivalence relation. The above then shows that
if X is a topological space equipped with an equivalence relation ∼ and given a continuous
map f : X → Y which is compatible with the equivalence relation in the sense that x ∼ x′

implies that f(x) = f(x′), the resulting map of sets X/ ∼→ Y is continuous with respect to
the quotient topology on X/ ∼. There are two typical examples for such equivalence relations
to keep in mind:

(1) For A ⊆ X a subset, the relation x ∼ x′ if and only if x and x′ are contained in A
generates an equivalence relation. The quotient by this relation will be denoted X/A.

(2) For X a topological space, whose underlying set X is equipped with an action of a
group G, the relation x ∼ x′ if there exists g ∈ G such that gx = x′ is an equivalence
relation. The quotient will be denoted by X/G. In an exercise, we show that the
quotient map X → X/G is open if the action of G on X is by continuous maps, i.e.
that for all g ∈ G, the map x 7→ gx is continuous.

1.20. Example Let K ∈ {R,C,H}. Consider the set

L(Kn+1) = {V ⊆ Kn+1 | V is a one-dimensional subspace of Kn+1}

of lines in Kn+1. Then L(Kn+1) is the quotient of Kn+1 \ {0} by the equivalence relation
x ∼ x′ if there exists λ ∈ K such that x′ = λx. Since K ∼= Rk for k = 1, 2, 4, we find that
Kn \ {0} is canonically a topological space. With the quotient topology, L(Kn+1) therefore is
also a topological space, called n-dimensional projective space over K, and is written KPn.

1.21. Example Let n ≥ 1. Then the map x 7→ −x on Rn+1 restricts to a self-map of Sn.
This determines an action of C2 on Sn. The quotient Sn/C2 is homeomorphic to RPn, see
??. A convenient way to prove this will be outlined later.

1.22. Example Actions on R2 by linear transformations: Z2 acts with quotient given by T 2.
Z ⋊ Z acts with quotient a Klein bottle. Z2 ⊆ Z ⋊ Z is an index 2 subgroup. In particular,
we have an induced map R2/Z2 → R2/Z ⋊ Z.

1.23. Example Representations: Let ρ : G → U(n) be a unitary complex representation
of a finite group. Then G restricts to an action on S(Cn). For instance one can look at
G = Z/p a finite cyclic group of order p. Given q coprime to p, one can consider the
automorphism Z/pZ → Z/pZ given by multiplication with q. One writes C(q) for the 1-

dimensional representation given by the composite Z/pZ ·q−→ Z/pZ ⊆ U(1). For q1, . . . , qn
we obtain an action of Z/pZ on S(C(q1) ⊕ . . .C(qn)). Exercise: This action is free (i.e. if
gx = x then g = e) if all qi are coprime to p. The quotient space L(p; q1, . . . , qn) is called an
2n− 1-dimensional lens space. Lens spaces are examples of smooth manifolds (which we will
not define in this course) which have a beautiful classification and history.

The question which finite groups can act freely on the sphere is a very intriguing one, and
has been solved by a combination of a number of magical results. The whole problem is
called the spherical space form problem. We will see the first tiny part in the course of these
lectures: The only non-trivial finite group that can act freely on S2n is the group C2 (this
uses an invariant called the Euler characteristic).
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1.24. Definition Let X be a topological space. A set {Ui}i∈I of open sets of X is called an
open cover of X, if X =

⋃
i∈I

Ui.

The following lemma says that continuity of a map f : X → Y is a local property on X:

1.25. Lemma Let f : X → Y be a map between topological spaces and {Ui}i∈I an open cover
of X. Then f is continuous if and only if the restrictions f|Ui : Ui → Y are continuous for all
i ∈ I, where we endow Ui with the subspace topology.

Proof. If f is continuous, then so are all restrictions since the inclusion of an open set U ⊆ X
is continuous when U is endowed with the subspace topology. The converse follows from the
observation that a set A ⊆ X is open if (and only if) A∩Ui is open for all i ∈ I, which follows
from the fact that

⋃
i∈I

A∩Ui = A∩X = A together with the fact that unions of open sets are

open. □

Lemma 1.25 also implies that for a topological space X, the association U 7→ C(U, Y ) forms
a sheaf of sets on X. If you have not heard about sheaves, just ignore that this is so.

1.26. Definition Let X and Y be topological spaces. A map f : X → Y is called a homeo-
morphism, if it is continuous and there exists a continuous map g : Y → X such that gf = idX
and fg = idY .

By definition, a homeomorphism is precisely an isomorphism in the category Top.

1.27. Remark Equivalently, a homeomorphism is a continuous bijection f : X → Y , whose
set-theoretic inverse f−1 : Y → X is continuous. The latter is in turn equivalent to the
condition that f(U) is open whenever U is open. Such maps are called open. In other words,
a homeomorphism is an open and continuous bijection.

1.28. Example A continuous bijection need not be a homeomorphism, contrary to what we
are used to from linear algebra, where for instance a linear map of vector spaces which is
bijective is an isomorphism. Indeed, consider a set X and a strict inclusion of topologies
O ⊆ O′ on X, e.g. the indiscrete and discrete topology for a set with more than one point.
Then the identity (X,O′)→ (X,O) is continuous and bijective but not open.

1.29. Example Let a < b be real numbers. Then the open interval (a, b) ⊆ R is homeomorphic
to R. Indeed, the map

f(x) = tan
(π(x− a)

b− a
− π

2

)
is a homeomorphism. Indeed, this map is the composite of an affine linear homeomorphism
(a, b)→ (−π

2 ,
π
2 ) and the homeomorphism tan: (−π

2 ,
π
2 )→ R. Here, the inverse of tan is the

function arctan, and the continuitiy of tan and arctan is usually shown in a first course in
Analysis. We refrain from reproducing it here.

1.30. Example Similarly, let n ≥ 2, x ∈ Rn and ϵ > 0. Then Bϵ(x) is homeomorphic to Rn.
To see this, by an affine linear homeomorphism we may assume that x = 0. Then we perform
the function of the previous example radially.
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1.2. Basic constructions. The purpose of this subsection is to show that the category Top
is bicomplete, i.e. it admits all small colimits and limits. We will first show this abstract
statement and then discuss several very important examples of such limits and colimits. See
Appendix A for the basics in category theory we will use here. First, we record the following:

1.31. Lemma The forgetful functor Top→ Set, sending (X,O) to X, admits both a left and
a right adjoint. In particular, it commutes with all limits and colimits.

Proof. The associations X 7→ (X, {∅, X}) and X 7→ (X,P(X)) are readily seen to be left and
right adjoints, respectively. □

Now let I be a small category and X : I → Top, i 7→ Xi a functor. Lemma 1.31 implies
that the underlying set of a colimit or a limit of this functor is the colimit and limit of the
underlying sets. In particular, to construct a colimit and limit of X, we really need to endow
the colimit and limit of the underlying set with an appropriate topology. We begin with the
most basic case, that of products and coproducts of topological spaces.

1.32. Lemma Let I be a set and let Xi ∈ Top for all i ∈ I.
(1) The set of subsets of

∐
i∈I Xi given by

{ιj(U) ⊆
∐
i∈I

Xi | U ∈ O(Xj) for some i ∈ I}

for a subbasis of a topology which we call the coproduct topology. The family of
inclusions ιj : Xj ⊆

∐
i∈I Xi is continuous and exhibits

∐
i∈I Xi, equipped with the

coproduct topology, as a coproduct of the Xi’s.
(2) The set of subsets of

∏
i∈I Xi given by

{p−1
j (U) ⊆

∏
i∈I

Xi | U ∈ O(Xj) for some j ∈ I}

forms a subbasis for a topology which we call the product topology. The family of
projections pj :

∏
i∈I Xi → Xj is continuous and exhibits

∏
i∈I Xi, equipped with the

product topology, as a product of the Xi’s.

Proof. (1). First we note that the open sets for the coproduct topology is given by the sets
V ⊆

∐
i∈I Xi such that V ∩ Xi ∈ O(Xi) for all i ∈ I. Indeed, this is a topology, and

every such V is the union ∪i∈IV ∩ Xi and V ∩ Xi lies in the claimed subbasis. Moreover,
the inclusions ιj : Xj →

∐
i∈I Xi are continuous for all j ∈ I by construction. We need to

show that a map f :
∐

i∈I Xi → Y , corresponding to maps fj : Xj → Y is continuous if and
only if all fi are continuous. First suppose that f is continuous. Then fj = ιjf is also
continuous. Conversely, assume that all fj : Xj → Y are continuous. For U ∈ O(Y ), we have

that f−1(V ) ∩Xj = f−1
j (U) ∈ O(Xj). Hence, f

−1(U) is open as needed.

(2). First, we note that the projections pj :
∏

i∈I Xi → Xj are continuous by definition
(open sets of Xj are mapped to elements of the subbasis). Again, we need to show that a
map f : Y →

∏
i∈I Xi, corresponding to a family of maps fj : Y → Xj continuous if and only

if all fj are continuous. If f is continuous, then so is fj = pjf . Conversely suppose all fj are

continuous. By Lemma 1.14 it suffices to show that f−1(V ) is open for V = p−1
j (U) for all

j ∈ I and all U ∈ O(Xj). But then f
−1(V ) = (pjf)

−1(U) which is indeed open. □

1.33. Remark Unlike the case of the coproduct topology, where the defining subbasis is a
basis and the coproduct topology can be described very explicitly, the defining subbasis for



TOPOLOGY I 9

the product topology is not a basis. However, a concrete basis is given by “finite-block-open”
subsets: That is, in finitely many coordinates, we choose an open subset, and in all others we
take the whole space. As a result, both the inclusions ιj : Xj → ⨿i∈IXi and the projections
pj :

∏
i∈I Xi → Xj are open maps.

Exercise. Let I be a set. Show that there is a canonical homeomorphism X×Iδ ∼=
∐

i∈I X.

As a consequence of what we have done so far, we arrive at the following result. We will
discuss examples right after the proof.

1.34. Proposition The category Top is bicomplete.

Proof. Let I be a small category and X : I → Top. Then X admits a colimit and a limit. □

Proof. Recall that the limit of the functor I → Top→ Set is given by

lim
i∈I

Xi = {(xi) ∈
∏
i∈I

Xi | ∀f ∈ HomI(i, j) we have Xf (xi) = xj}.

We give this set the subspace topology Definition 1.16(1) of the product topology obtained in
Lemma 1.32. The universal property of a limit then follows immediately from Lemma 1.17.
Likewise, we have that the colimit of the functor I → Top→ Set is given by

colim
i∈I

Xi =
(∐

i∈I
Xi

)
/(∀f ∈ HomI(i, j) we set Xf (xi) ∼ xj)

In particular, the colimit admits a canonical surjection from the coproduct. We then equip
the colimit with the quotient topology Definition 1.16(2) of the coproduct topology obtained
in Lemma 1.32. The universal property of a colimit is again immediate from Lemma 1.17. □

1.35. Example An important “indexing” category I is given by • ← • → •. It is made
so such that a functor X : I → Top is simply given by two maps with common domain:

Y
f←− X f ′

−→ Y ′. A colimit of such a diagram is called a pushout, we will sometimes denote it
by C(f, f ′). Concretely, we have

C(f, f ′) = (Y
∐

Y ′)/(f(x) ∼ f ′(x)∀x ∈ X)

This is most geometric in case f and f ′ is the inclusion of a subspace in Y and Y ′. In this
case, we image that C(f, f ′) is given by taking the disjoint union of Y and Y ′ and then glue
them together along the common subset X. In general, a pushout is perhaps less geometric,
but its universal property tells us precisely what it means to give a continuous map out of it:
Any commutative diagram

X Y

Y ′ Z

f

f ′

gives rise to a unique map from C(f, f ′)→ Z making all induced diagrams commute.

As an exercise, calculate the limit of the diagram Y
f←− X f ′

−→ Y ′, either by definition or by
abstract means.
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1.36. Example Let X be a topological space and A ⊆ X a subset. Then the evident diagram

A X

∗ X/A

is a pushout diagram. Here, X/A is the quotient space from Remark 1.19. Exercise: what is
X/∅?

1.37. Example Let X be a topological space. Then the cone C(X) on X is given by the
pushout

X × {1} X × [0, 1]

∗ C(X)

Likewise, the suspension Σ(X) of X is given by the pushout

X × {0} C(X)

C(X) Σ(X).

Exercise: It is also given by the pushout ∗ ⨿X C(X).

The following example will become somewhat relavant later. Exercise:

1.38. Example Let X be a topological space and for i = 1, 2, let Ui ⊆ Xi ⊆ X with Ui open
such that U1 ∪ U2 = X. Then the diagram

X1 ∩X2 X1

X2 X

is a pushout.

1.39. Example For pointed spaces (X,x) and (Y, y) define their wedge product (X,x)∨(Y, y)
as the pushout X ⨿∗ Y . Note that the category of pointed spaces is the slice category Top∗/.
Hence, the wedge sum is the coproduct of pointed topological spaces.

1.40. Example For pointed spaces (X,x) and (Y, y), define their smash product (X,x)∧(Y, y)
to be the quotient X × Y/X ∨ Y . Here, the map along which we take the quotient is the
universal map obtained via the commutative diagram

∗ X × {y}

{x} × Y X × Y

(x,y)

(x,y)
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The smash product endows the category Top∗ of pointed topological spaces with a symmetric
monoidal structure.

1.41. Observation There is a functor Top→ Top∗ given by X+ = X 7→ X ⨿ {∗}. It is a left
adjoint to the forgetful functor. Exercise: It satisfies that there is a canonical homeomorphism
(X × Y )+ ∼= X+ ∧ Y+. In more categorical terms, the functor Top → Top∗ is symmetric
monoidal with respect to the cartesian product on Top and the smash product on Top∗.

1.42. Example The indexing category Iop = • → • ← • is equally important. A functor

from it to Top is then given by two maps with common codomain: X
f−→ Y

f ′
←− X ′. A limit

of this diagram is called a pullback, sometimes denoted by L(f, f ′). Conceretely, we have

L(f, f ′) = {(x, x′) ∈ X ×X ′ | f(x) = f ′(x′)}

The universal property then gives that any commutative diagram

Z X

X ′ Y

f

f ′

gives rise to a unique map Z → L(f, f ′) making all induced diagrams commute. As an

exercise, calculate the colimit of the diagram X
f−→ Y

f ′
←− X ′.

Exercise. Let A ⊆ B ⊆ X. Then the canonical map B/A→ X/A is injective and the topol-
ogy on B/A is the subspace topology. Moreover, (X/A)/(B/A) is canonically homeomorphic
to X/B.

1.3. Connected spaces.

1.43. Definition A non-empty topological space X is called

(1) connected, if the only non-empty open and closed subset of X is X itself.
(2) locally connected, if for all x ∈ X and all open sets U containing x, there is a connected

and open subspace x ∈ V ⊆ U .
(3) weakly locally connected, if for all x ∈ X, there exists a connected and open subspace

x ∈ V .
(4) path-connected, if for any x, y ∈ X, there exists a continuous map f : [0, 1]→ X such

that f(0) = x and f(1) = y.
(5) locally path-connected, if for all x ∈ X and all open sets U containing x, there is a

path-connected open subspace x ∈ V ⊆ U .
(6) weakly locally path-connected, if for all x ∈ X, there exists a path-connected and open

subspace x ∈ V .

1.44. Remark (1) A (path)-connected space X is in particular weakly locally (path)-
connected: simply choose X as (path)-connected open subspace V . A space is lo-
cally (path)-connected spaces if and only if any open subset is weakly locally (path)-
connected.

(2) A locally (path)-connected space need not be (path)-connected: Consider the coprod-
uct of two (path)-connected spaces.
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To shorten notation we will refer to spaces which are both locally (path)-connected and
(path)-connected as locally and globally (path)-connected spaces.

1.45. Example For all n ≥ 0 euclidean space Rn is locally and globally path-connected.
As a result, any space which is locally euclidean, i.e. which admits an open cover Ui with
Ui homeomorphic to Rn for some n, is locally path-connected. A topological manifold is a
topological space which is locally euclidean in this sense plus some further assumptions which
we have not defined yet. But it follows that any topological manifold including any smooth
manifold (whatever precisely this is) is a locally path-connected space. Another important
class of locally path-connected spaces are CW-complexes, which we will introduce later (these
are not locally euclidean in the above sense in general).

1.46. Definition A connected component of X at a point x ∈ X is a maximal connected
subspace containing x, there is a unique such which we denote by C(x), see Lemma 1.55
below. A connected component of X is simply a maximal connected subspace. We write
π(X) for the set of connected components of X.

Clearly, X is the set theoretic union of all connected components of X.

1.47. Remark A topological space is connected if it has exactly one connected component.
Indeed, the map x 7→ C(x) is a surjection from X → π(X). We conclude that π(∅) = ∅, so
∅ has 0 connected components and is therefore not connected. This is to be seen in analogy
to the fact that 1 is not a prime number: Prime numbers are the natural numbers which are
divisible by precisely 2 numbers.

1.48. Definition The relation on a topological space X given by x ∼ x′ if and only if there
exists a continuous map f : [0, 1]→ X (henceforth called a path) with f(0) = x and f(1) = x′

is an equivalence relation on X. We denote by π0(X) the set of equivalence classes, and call
the equivalence classes the path-connected components of X.

Exercise. Show that X 7→ π0(X) is a functor Top → Set. Show that it commutes with
products.

1.49. Observation Let f : X → Y be a homeomorphism. Then X is (locally) (path) con-
nected if and only if Y is.

As a consequence of the above, we can deduce that many spaces are not homeomorphic:

1.50. Proposition The spaces [0, 1], [0, 1[, and (0, 1) and Rn for n ≥ 2 are pairwise non-
homeomorphic.

Proof. We begin to show that [0, 1] is not homeomorphic to any of the other spaces, here
denoted X. Indeed, assume a given homeomorphism f : [0, 1] → X. Then (0, 1) is home-
omorphic to X \ {x0, x1} for x0 ̸= x1 elements of X. Since (0, 1) is path-connected, so is
X \ {x0, x1}. However, removing two distinct points from [0, 1[ or (0, 1) results in a non
path-connected space. This shows that [0, 1] is not homeomorphic to [0, 1[ or (0, 1). Likewise
[0, 1] \ {12} is not path-connected. However, for n ≥ 2, Rn \ {x} is path connected for any

x ∈ R2: Pick any two points y, z ∈ Rn \ {x}. If the straight line is contained in Rn \ {x} we
are done. If not, pick any point w outside the straight line. Then the straigth line between
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w and y as well as between w and z do not contain x. Again, we are done. Likewise [0, 1] is
not homeomorphic to (0, 1) since [0, 1[\{0} is path-connected, unlike (0, 1)\{x}, and it is not
homeomorphic to Rn because [0, 1[\{12} is not path-connected. The same argument shows
that (0, 1) is not homeomorphic to Rn. □

We begin with the following important basic example of a connected space:

1.51. Lemma The interval [0, 1] is connected.

Proof. Let A ⊆ [0, 1] be non-empty open and closed and assume without loss of generality
that 0 ∈ A (else replace A by [0, 1] \ A). Let α = sup{x ∈ A}. Since A is closed, we know
from Analysis that α ∈ A. Assume that α < 1. Then since A is open and ϵ-balls form a
basis of open sets of [0, 1], we deduce that there exists an ϵ > 0 such that Bϵ(α) ⊆ A. This
implies that α+ ϵ

2 ∈ A, contradicting the defining property of α. Hence α = 1 and A = [0, 1]
as needed. □

We can use this result to produce many examples of connected spaces:

1.52. Corollary A path-connected space is connected. In particular

(1) A weakly locally path-connected space is weakly locally connected, and
(2) A locally path-connected space is locally connected.

Proof. We show that a non-connected space X is not path-connected. This is clear if X = ∅.
Else, write X = A ∪ X \ A with A closed and open and different from ∅ and X. Given a
continuous map f : [0, 1]→ X with f(0) ∈ A, we find that f−1(A) is a non-empty closed and
open subset of [0, 1] and hence equal to [0, 1]. We deduce from Lemma 1.51 that f(1) ∈ A,
showing that there is no continuous path from elements in A to elements in X \ A. The “in
particular” follows readily. □

1.53. Remark The argument above shows that two points x, x′ which lie in the same path
component must also lie in the same component. Therefore, there is a canonical surjection
π0(X)→ π(X) from the path-connected components of X to the connected components.

1.54. Lemma Let f : X → Y be a continuous map and A ⊆ X a connected subspace. Then
f(A) ⊆ Y is also connected (in the subspace topology).

Proof. Let B ⊆ f(A) be a non-empty, open and closed subspace of f(A). Recall that f : A→
f(A) is continuous (as follows from the definition of the subspace topology). Therefore f−1(B)
is open and closed in A, and it is non-empty since B is non-empty. Hence, f−1(B) = A since
A is connected. But then B = f(f−1(B)) = f(A) and therefore, f(A) is connected. □

Next, we investigate connected components of a topological space.

1.55. Lemma The union of all connected subspaces containing x is connected. It is therefore
the (unique) connected component containing x, we write C(x) for it.

Proof. Let A be a non-empty open and closed subset of the union T of all connected subspaces
C containing x. As A is non-empty, there is such C with C ∩ A ̸= ∅ and this intersection
is a closed and open subset of C. Since C is connected, we find C ∩ A = C and therefore
that C ⊆ A. In particular, we have that x ∈ A. We conclude that the intersection C ′ ∩ A
of every connected subspace C ′ containing x is non-empty (as it contains x) and therefore,
by the same reasoning as before, C ′ ⊆ A. We conclude that T ⊆ A. Moreover, by definition
A ⊆ T and therefore A = T . We conclude that T is connected. □
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1.56. Lemma Let X be a topological space and x, y ∈ X. If y ∈ C(x), then C(y) = C(x). In
particular, the relation x ≃ y if and only if y ∈ C(x) is an equivalence relation, and the set
of equivalence classes is π(X).

Proof. Since y ∈ C(x) and C(x) is connected, we find that C(x) ⊆ C(y) by Lemma 1.55
and hence x ∈ C(y). The same argument with roles of x and y reversed shows that also
C(y) ⊆ C(x). The “in particular” follows readily. □

1.57. Definition Let Y ⊆ X be a subspace. The closure of Y , denoted Y , is given by

Y =
⋂
{A ⊆ X | A closed and Y ⊆ A}.

Likewise we define the open interior of Y , denoted Y̊ , by

Y̊ =
⋃
{U ⊆ X | U open and U ⊆ Y }.

The open interior will only play a role later in the course.

1.58. Lemma Let C ⊆ X be a connected subspace. Then C is also connected.

Proof. First we note the following: Let U ⊆ X be an open subspace and C ⊆ X any subspace.
If U ∩ C = ∅, then U ∩ C = ∅ as well. Indeed, the assumption implies that C ⊆ X \ U
and X \ U is closed. The definition of C then implies that C ⊆ X \ U as well. Therefore
U ∩ C = ∅ as claimed.

Now let C be connected and A ⊆ C non-empty, open and closed. Then A∩C is open and
closed in C and non-empty by what we just argued. We deduce that A ∩ C = C since C is
connected, and therefore that C ⊆ A. By definition of C we then find that C ⊆ A, since A is
closed. Therefore A = C and hence C is connected. □

1.59. Lemma Let X be a space.

(1) Connected components of X are closed.
(2) If X is weakly locally connected, then connected components of X are open.

In particular, the inclusions of the connected components of a weakly locally connected space
exhibit X as the coproduct over its connected components.

Proof. (1). Let C be a connected component of X. Then C ⊆ C and C is again connected
by Lemma 1.58. Since C is a maximal connected subspace, C = C and is therefore closed.
(2). Let C be a connected component. For any x ∈ C, we deduce that C = C(x). Since
X is weakly locally connected, there is an open and connected set V containing x. By
Lemma 1.55, V ⊆ C(x) = C. By the self-indexing trick, C is open. The “in particular”
follows from Exercise 5 Sheet 1. □

1.60.Remark IfX is such that π(X) is a finite set, then it follows directly that all components
of X are also open (because the complement is a finite union of closed sets). We deduce that
X is weakly locally connected, because one can choose the connected component of any point
as the required V . In particular, part (2) of Lemma 1.59 is in fact an “if and only if”.

1.61.Corollary Let X be a weakly locally path connected space. Then the map π0(X)→ π(X)
is a bijection, i.e. the path-connected components are precisely the connected components.

Proof. X is weakly locally connected by Corollary 1.52. Hence by Lemma 1.59, X is the
coproduct of its components. Moreover, as an exercise, we showed that the canonical map
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i∈I π0(Xi) → π0(

∐
i∈I Xi) is a bijection. Hence, it suffices to show that a weakly locally

path-connected space which is connected is in fact path-connected. To do so, let x ∈ X.
Consider the set A = {y ∈ X | ∃f : [0, 1] → X such that f(0) = x, f(1) = y}. Then A
contains x. Moreover, since X is weakly locally path-connected this space is open and closed.
Indeed, for y ∈ X, there exists an open and path-connected neighborhood Vy of y. Hence, if
y ∈ A, we find Vy ⊆ A showing that A is open by the self-indexing trick. Likewise, if y /∈ A,
we find Vy∩A = ∅, showing that A is also closed. Since X is connected, A = X and therefore
X is path-connected. □

We briefly mention the drastic opposite of connected spaces (those where C(x) = X for all
x ∈ X), the totally disconnected spaces:

1.62. Definition A topological space X is called totally disconnected if for all x ∈ X, we
have C(x) = {x}, or equivalently, if every connected subspace of X is of the form {x} for
some x ∈ X.

1.63. Example The Cantor set and Q are totally disconnected. Any discrete space is totally
disconnected. The p-adic integers Zp with their canonical inverse limit topology are totally
disconnected. Indeed, it follows from Exercise ? Sheet 3 that totally disconnected spaces are
closed under limits in topological spaces, that is, given a functor I → Top taking values in
totally disconnected spaces, the limit is again totally disconnected. One can also prove this
directly by showing that: Products of totally disconnected spaces are totally disconnected
and subspaces of totally disconnected spaces are totally disconnected. In particular, profinite
spaces (inverse limits of discrete finite spaces) are totally disconnected. Profinite topologies
arise in number theory in various ways: On the one hand side, Galois groups of non-finite
Galois extensions are canonically profinite groups (and in this case, the Galois correspondence
needs to take the profinite topology into account) and on the other hand, via the notion of
completions of commutative rings at places or prime ideals. A special case of this is how one
arrives at Zp and similar topological rings like Qp.

1.4. Compact spaces.

1.64. Definition A topological space X is called compact, if for every open cover X =
⋃

i∈I Ui

there exists a finite subcover, that is, a finite subset J ⊆ I such that X =
⋃

j∈J Uj . It is
called

(1) locally compact if for every x ∈ X and open set x ∈ U ⊆ X, there is an open subset
V and a compact subset K such that x ∈ V ⊆ K ⊆ U .

(2) weakly locally compact if for every x ∈ X, there exists an open subset V and a compact
subset K such that x ∈ V ⊆ K.

1.65. Remark As in the case of connected spaces, a compact space X is weakly locally
compact. However, it need not be locally compact. We will discuss an example on an exercise
sheet.

1.66. Lemma (1) Let f : X → Y be a continuous map and K ⊆ X a compact subspace.
Then f(K) ⊆ Y is compact.

(2) Closed subspaces of compact spaces are compact.
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Proof. Let {Ui}i∈I be an open cover of f(K). Since f : K → f(K) is continuous, {f−1(Ui)}i∈I
forms an open cover of K. Since K is compact, there exists a finite subset J ⊆ I so that
K =

⋃
j∈J f

−1(Uj). Then we find f(K) ⊆ f(
⋃

j∈J f
−1(Uj)) =

⋃
j∈J Uj proving (1). To see

(2), let A ⊆ X be a closed subspace of a compact space X. Let {Ui}i∈I be an open cover
of A. Then {Ui}i∈I ∪ {X \ A} is an open cover of X. There is then a finite subcover given
by a finite subset J ∈ I and we find that {Uj}j∈J is a finite subcover, showing that A is
compact. □

The following is an equivalent formulation of compactness which we will use later.

1.67. Lemma Let X be a compact space, {Zi}i∈I a collection of closed subspaces such that
each intersection of finitely many Zi’s is non-empty. Then the intersection of all Zi’s is
non-empty.

Proof. Exercise. □

An important theorem about compact spaces is Tychonoff’s theorem.

1.68. Theorem An arbitrary product of compact spaces Xi is compact. If all Xi are non-
empty, the converse holds as well.

To prove this, we will make use of the notion of (ultra)filters.

1.69. Definition A filter F on a set X is a collection of subsets of X, i.e. F ⊆ P(X), satisfying
the following axioms:

(1) X ∈ F and ∅ /∈ F,
(2) if U ∈ F and U ⊆ V , then V ∈ F.
(3) if U1, . . . , Un ∈ F, then U =

⋂
Ui ∈ F.

We write F ⊆ F′ if U ∈ F implies that U ∈ F′. An ultrafilter is a maximal filter with respect
to ⊆.

1.70. Lemma Let A be a collection of subsets of a set X such that each finite subcollection
has non-empty intersection. Then

⟨A⟩ = {B ⊆ X | ∃A1, . . . , An ∈ A, A1 ∩ · · · ∩An ⊆ B}
is a filter (the smallest filter containing A). We call ⟨A⟩ the filter generated by A.

Proof. The axioms of a filter are immediate. It is also clear that ⟨A⟩ is the smallest filter
containing A. □

1.71. Remark If A is a collection of subsets such that there is a finite subcollection with
empty intersection, then A is not contained in any filter (else that filter would contain the
empty-set). The assumption in Lemma 1.70 can therefore not be dropped.

1.72. Lemma Let X be a set.

(1) A filter F on X is an ultrafilter if and only if for all A ⊆ X, either A ∈ F or X\A ∈ F.
(2) For an ultrafilter F we have the following. If A ∪B ∈ F, then A ∈ F or B ∈ F.

Proof. (1) Let F be an ultrafilter and let A ⊆ X so that X \ A /∈ F. We aim to show that
A ∈ F. Now, for B ∈ F we find that B is not a subset of X \ A (else X \ A ∈ F). Hence,
B∩A ̸= ∅ for all B ∈ F. Consequently, the collection of subset F∪{A} has the property that
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each finite subcollection has non-empty intersection. By Lemma 1.70, it generates a filter F′

with F ⊆ F′. Since F is an ultrafilter, we find F = F′ and therefore that A ∈ F (since A ∈ F′).
Conversely, let us assume that F is a filter such that for all A ⊆ X, either A or X \ A is

contained in F. Let F ⊆ G for some filter G and A ∈ G. We deduce that X \ A /∈ G and
therefore also that X \ A /∈ F. Hence A ∈ F and therefore F = G. Consequently, F is an
ultrafilter.

(2) Let A ∪B ∈ F and A ⊆ X. If A ∈ F we are done. If A /∈ F, then X \A ∈ F since F is
an ultrafilter. We also have

B \A = X \A ∩ (A ∪B).

Therefore, B \A ∈ F. Since B \A ⊆ B, we find that B ∈ F. □

1.73. Lemma Every filter F is contained in an ultrafilter F̄.

Proof. This follows from Zorn’s Lemma, as soon as we show that the filtered colimit F =
colimi∈I Fi of filters Fi, indexed over a totally ordered set I, with injective transition maps,
i.e. where for i ≤ i′ the map Fi → F′

i is an inclusion of filters, is again a filter. This, however,
is again immediate from the definitions. □

1.74. Definition Let f : X → Y a map of sets and G a collection of subsets of X. We denote
by f∗(G) the collection of subsets B ⊆ Y such that f−1(B) ∈ G.

1.75. Lemma Let f : X → Y be a map of sets and F an (ultra)filter on X. Then f∗(F) is an
(ultra)filter on Y .

Proof. From f−1(Y ) = X and f−1(∅) = ∅ we get axiom (1). Now let B ∈ f∗(F) and B ⊆ B′.
Then f−1(B) ⊆ f−1(B′) so that f−1(B′) ∈ F and therefore B′ ∈ f∗(F), giving axiom (2).
Likewise, for B1, . . . , Bn ∈ f∗(F). Since f−1(

⋂
iBi) =

⋂
i f

−1(Bi), we find that
⋂

iBi ∈ f∗(F),
giving axiom (3). Assume now that F is in addition an ultrafilter. By Lemma 1.72 it suffices
to show that for B ⊆ Y , we have B ∈ f∗(F) or Y \B ∈ f∗(F). By definition this means that
f−1(B) ∈ F or f−1(Y \ B) ∈ F which is true since f−1(Y \ B) = X \ f−1(B) and F is an
ultrafilter. □

1.76. Definition Let X be a topological space and x ∈ X a point. The neighborhood filter
U(x) consists of the neighborhoods of x, that is all subsets N ⊆ X with x ∈ N and such that
there exists an open U ⊆ N with x ∈ U - this is also the filter generated by the collection A

of open subsets containing x. We say that a filter F converges to a point x if U(x) ⊆ F. We
then also say that x is a limit point of F and that F is convergent.

Compact spaces can be characterized using filters as follows.

1.77. Theorem A topological space is compact if and only if every ultrafilter has at least one
limit point.

Proof. Let U = {Ui}i∈I be an open cover of X and assume that every ultrafilter on X has at
least one limit point. Consider the set A = {Ai}i∈I with Ai = X \ Ui. If there is no finite
subcover of U, then the collection A has the property that every finite intersection of elements
in A is non-empty by the argument used in the proof of Lemma 1.67. Consequently, A is
contained in an ultrafilter F, by Lemma 1.70 and Lemma 1.73. F then has a limit point x for
which we can find i ∈ I such that x ∈ Ui. Since F converges to x, we have Ui ∈ F. However,
by construction also Ai ∈ F which is a contradiction, so a finite subcover of U must exist,
hence X is compact.
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Conversely, let F be an ultrafilter on X which has no limit point. For x ∈ X consider an
open Ux which is not contained in F. Then U = {Ux}x∈X is an open cover of X. Suppose
there is a finite subcover indexed by x1, . . . , xn, then we obtain Ux1 ∪ · · · ∪ Uxn = X ∈ F.
By Lemma 1.72 part (2) we deduce that there is an i ∈ {1, . . . , n} such that Uxi ∈ F,
again a contradiction. Therefore, there is no finite subcover of U and consequently, X is not
compact. □

Exercise. Let X be a topological space and A ⊆ X a subset. Show that a point x lies in A
if and only if there is a Filter F on A which converges to x in the sense that U(x) ∩A ⊆ F.

We now come to the proof of Tychonoff’s theorem.

Proof of Theorem 1.68. Let {Xi}i∈I be a collection of compact spaces. We wish to show
that

∏
I Xi is compact. So let F be an ultrafilter in

∏
I Xi and let pj :

∏
I Xi → Xj be the

projection. By Lemma 1.75, (pj)∗(F) is an ultrafilter on Xj , so there is a limit point xj ∈ Xj

for (pj)∗(F) by Theorem 1.77. We claim that the sequence x = (xj)j∈J is a limit point of F (to
form this sequence, we make use of the axiom of choice). For this, it suffices to show that any
element U of a subbasis of the topology on

∏
I Xi with x ∈ U is contained in F. A subbasis

is given by p−1
j (Uj) for j ∈ I and Uj ⊆ Xj open. So we need to show that p−1

j (Uj) ∈ F

which is the case if and only if Uj ∈ (pj)∗(F) by definition of (pj)∗(F). This is the case by
the assumption that xj is a limit point of (pj)∗(F). □

1.78. Addendum Let X and Y be locally compact. Then also X × Y is locally compact.
Indeed, pick (x, y) ∈ X × Y and U ⊆ X × Y which contains (x, y). Then by the definition
of the product topology there are open sets Ux ⊆ X containing x and Uy ⊆ Y containing y
such that Ux × Uy ⊆ U . Since X and Y are locally compact, we can find x ∈ Vx ⊆ Kx ⊆ Ux

and y ⊆ Vy ⊆ Ky ⊆ Uy such that Vx, Vy are open and Kx,Ky are compact. Then we have
(x, y) ∈ Vx × Vy ⊆ Kx ×Ky ⊆ Ux × Uy ⊆ U and Vx × Vy is open and Kx ×Ky is compact by
Tychonoff. Consequently, X × Y is locally compact.

1.5. Hausdorff spaces.

1.79. Definition A topological space is called

(1) Hausdorff (T2), if for all x ̸= x′ ∈ X there are disjoint open sets U,U ′ with x ∈ U
and x′ ∈ U ′.

(2) regular (T3), if for all closed subsets A ⊆ X and x ∈ X \ A, there are disjoint open
sets U, V with A ⊆ U and x ∈ V .

(3) normal (T4), if for all A,A′ ⊆ X disjoint closed, there are disjoint open sets U,U ′

with A ⊆ U and A′ ⊆ U ′.

1.80. Remark Sometimes, it is required that normal and regular spaces are Hausdorff.

1.81. Example Any metrizable space is Hausdorff. Every subspace of a Hausdorff space is
Hausdorff. In particular, every subspace of euclidean space Rn is Hausdorff. Quotients of
Hausdorff spaces are not Hausdorff, for instance [0, 1]/[0, 1) is not Hausdorff. see e.g. Exercise
4 Sheet 1.
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1.82. Example Any bounded and closed subset of Rn is a compact Hausdorff space. Com-
pactness indeed follows from the Heine-Borel property of Rn. In particular, the interval [0, 1]
and the cube [0, 1]n are compact Hausdorff spaces, as is the Cantor set C ⊆ [0, 1].

Exercise. A space X is Hausdorff if and only if the diagonal ∆(X) ⊆ X × X is closed.
More generally, given a map p : X → Y , show that the diagonal ∆(X) ⊆ X ×Y X is closed if
and only if for all y ∈ Y and all x, x′ ∈ p−1(y) with x ̸= x′ there are disjoint open subsets Ux

and U ′
x of X containing x and x′, respectively.

Hausdorff spaces, just as compact spaces, can be characterized using filters.

1.83. Theorem A topological space X is Hausdorff if and only if every Filter F on X has at
most one limit point.

Proof. Suppose X is Hausdorff. Then for x ̸= y, there are disjoint open sets Ux and Uy

containing x and y, respectively. Hence, if x is a limit point of F we have Ux ∈ F. Therefore,
Uy /∈ F (else ∅ ∈ F) and hence y is not a limit point of F. Conversely, suppose X is
not Hausdorff and pick x and y such that any two opens around x and y have non-trivial
intersection. Then the collection {U ⊆ X | U open and x ∈ U or y ∈ U} generates a filter by
Lemma 1.70. This filter has both x and y as limit points. □

1.84. Corollary A topological space is compact Hausdorff if and only if every Ultrafilter con-
verges to precisely one limit point.

Proof. The only if is immediate from Theorem 1.77 and Theorem 1.83. For the “if” part,
it remains to show that any filter converges to at most one limit point. However, any limit
point of a filter is also a limit point of any ultrafilter it is contained in. So there is at most
one limit point for any filter. □

1.85. Lemma Let X be a Hausdorff space.

(1) For K ⊆ X compact and y ∈ X \K, there are disjoint open sets U ⊇ K and V ∋ y.
(2) Compact subsets of X are closed.

In particular, points are closed in X.

Proof. Let K ⊆ X be compact. Since X is Hausdorff, for y ∈ X \K and x ∈ K we can find
disjoint open sets Ux ∋ x and Vy,x ∋ y. Then {Ux}x∈K is an open cover of K. Since K is
compact we can find a finite subcover, indexed by x1, . . . , xn. Set V = Vy,x1 ∩ · · · ∩ Vy,xn and
U = Ux1 ∪· · ·∪Uxn . Then U ∩V = ∅, K ⊆ U and y ∈ V , showing (1). For (2), let K ⊆ X be
compact. For y /∈ K we find Vy ∋ y and U ⊆ K with U, V open and U ∩V = ∅, in particular
Vy ∩K = ∅. But then we have X \K =

⋃
y∈X\K Vy so that K is closed. Clearly, points are

compact and hence closed by (2). □

1.86. Corollary A finite space is Hausdorff if and only if it is discrete.

1.87. Lemma Compact Hausdorff spaces are normal.

Proof. Let A,A′ ⊆ X be disjoint closed subsets and let x ∈ A. Since A′ is closed and X is
compact, A′ is also compact by Lemma 1.66. By part (1) of Lemma 1.85 there are disjoint
opens Vx ⊇ A′ and Ux ∋ x. We then get that A ⊇

⋃
x∈A Ux, and since A is also compact,

there is again a finite subcover indexed by x1, . . . , xn ∈ A, so we have A ⊆ Ux1∪· · ·∪Uxn = U .
Defining similarly as before V = Vx1 ∩ · · · ∩ Vxn we find that A′ ⊆ V and U ∩ V = ∅. □
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Later we will make use of the following result.

1.88. Corollary Compact Hausdorff spaces are locally compact.

Proof. Let X be a compact Hausdorff space and U ⊆ X an open subset containing a point x.
Since X is normal, the two closed subsets {x} and X \ U can be separated by disjoint open
sets V1 containing x and V2 containing X \ U . Then x ∈ V1 ⊆ X \ V2 ⊆ U . Since X \ V2 is
closed and X is compact, X \ V2 is itself compact, so X is indeed locally compact. □

1.89. Lemma Let f : X → Y be a continuous map with X compact and Y Hausdorff.

(1) The map f is closed.
(2) If f is surjective, it is a quotient map.
(3) If f is bijective, it is a homeomorphism.

In other words, (3) implies that the forgetful functor CH→ Set is conservative.

Proof. (1) LetA ⊆ X be closed. By Lemma 1.66 part (2), A is compact. Hence by Lemma 1.66
part (1), f(A) is also compact, and hence by Lemma 1.85, f(A) is closed. (2) We recall that
f is a quotient map if a subset U ∈ Y is open if and only if f−1(U) ⊆ X is open. One
implication follows from the continuity of f . For the other, assume U ⊆ Y is such that
f−1(U) ⊆ X is open. Then X \f−1(U) is closed, and hence by (1) f(X)\U = f(X \f−1(U))
is also closed. Since f is surjective, X \ U is closed, therefore U ⊆ Y is open as needed. (3)
For a bijection f : X → Y , the map f is closed (or open) if and only if the (set-theoretically
defined) map f−1 : Y → X is continuous. □

1.90. Lemma Let X be a compact Hausdorff space and x ∈ X. The connected component
C(x) of x is the intersection of all open and closed subsets of X containing x.

Proof. Exercise. □

1.6. Mapping spaces. Let X,Y be topological spaces. We wish to endow the set C(X,Y )
of continuous maps from X to Y with a topology. There are many topologies one could
consider, the one most suitable for us is the following one.

1.91. Definition Let X,Y be topological spaces. For K ⊆ X and U ⊆ Y , define OK,U =
{f ∈ C(X,Y ) | f(K) ⊆ U}. Then the set

{OK,U | K ⊆ X compact and U ⊆ Y open}

forms the subbasis of the compact-open topology on C(X,Y ). We denote the resulting topo-
logical space by Map(X,Y ).

1.92. Lemma Let S be a subbasis for the topology on Y and X be a Hausdorff space. Then
the set

{OK,U | K ⊆ X compact and U ⊆ S}
is a subbasis for the compact-open topology on Map(X,Y ).

Proof. Let U ⊆ Y open and K ⊆ X compact and let f ∈ OK,U . Write U =
⋃

i∈I Ui where

Ui =
⋂mi

j=1Aij with Aij ∈ S. Then K ⊆
⋃

i∈I f
−1(Ui). For x ∈ K, pick i(x) ∈ I such that

x ∈ f−1(Ui) and pick x ∈ Vx ⊆ Kx ⊆ K∩f−1(Ui(x)) with Vx open and Kx compact. This can
be done since K is compact Hausdorff and hence locally compact by Corollary 1.88. Since K
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is compact, there are x1, . . . , xn ∈ K such that K ⊆
⋃n

k=1 Vxk . We note that f ∈ OKxk
,Ui(xk)

for all k = 1, . . . , n. Recall now that Ui(xk) =
⋂mk

j=1Aij with Aij ∈ S. Then we have

f ∈
n⋂

k=1

mk⋂
j=1

OKxk
,Aij

=

n⋂
k=1

OKxk
,Ui(xk)

⊆ OK,U

showing that OK,U is open in the topology generated by the OK,V ’s with V ∈ S. □

1.93. Lemma Let f : X ′ → X and g : Y → Y ′ be continuous map. Then the maps Map(X,Y )
f∗
−→

Map(X ′, Y ) and Map(X,Y )
g∗−→ Map(X,Y ′) are continuous.

Proof. We have (f∗)−1(OK,U ) = Of(K),U and (g∗)
−1(OK,U ) = OK,g−1(U). The lemma then

follows from the fact that f(K) is compact if K is and that g−1(U) is open if U is. □

1.94. Corollary The association (X,Y ) 7→ Map(X,Y ) refines to a functor Topop × Top →
Top.

1.95. Example Let X be a topological space. Then Map(∗, X) is homeomorphic to X via
the evaluation map. More, generally, for any set I, we have Map(Iδ, X) is homeomorphic to∏

I X again via the evaluation maps. Here, Iδ denotes I equipped with the discrete topology.
Indeed, in both cases the maps are clearly bijections, and it is elementary to check that both
sides have the same subbasis for the respective topologies.

1.96. Notation Let X be a topological space. We write L(X) for Map(S1, X) for the free
loop space in X. Given a point x ∈ X, we denote by Ωx(X) = Map∗(S

1, X), the based loop
space, i.e. the subspace of Map(S1, X) consisting of those maps γ : S1 → X sending 1 ∈ S1

to x, see Definition 1.105. More generally, for x, y ∈ X, we denote by Ωx,y(X) the pullback

Ωx,y(X) Map([0, 1], X)

{(x, y)} X ×X

Exercise: Show that Ωx,x(X) is homeomorphic to Ωx(X). Hint: Show that [0, 1]/0 ∼ 1 is
homeomorphic to S1.

1.97. Remark Based loop spaces play an important role in homotopy theory, as they are
topological versions of groups (under concatenation of based loops). We will come to some
aspects of this later when discussing homotopy groups of spaces. Free loop spaces (in partic-
ular of manifolds) play a fundamental role in differential topology and mathematical physics.
The algebraic structure obtained from free loop spaces (via e.g. homology – an invariant we
will introduce at in the second half of this course) even has its own name: It is called string
topology.

1.98. Remark Let f : (X,x)→ (Y, y) be a pointed map. Then f induces a canonical pointed
map Ωx(X) → Ωy(Y ). This map gives the association (X,x) → Ωx(X) the structure of a
functor Top∗ → Top∗.
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We come to another important structure the set of continuous maps has: For spaces X, Y
and Z, there is a well-defined composition map:

C(Y, Z)× C(X,Y ) −→ C(X,Z), (g, f) 7→ g ◦ f.
One may wonder whether this map is continuous with respect to the compact open topologies
on the set of continuous maps, and the product topology on the domain of the above map. It
is a somewhat annoying fact that this is not the case, however it is so under mild assumptions,
often satisfied in practice.

1.99. Proposition Let X, Y and Z be topological spaces and let Y be locally compact. Then
the map

Map(Y,Z)×Map(X,Y )
◦−→ Map(X,Z), (g, f) 7→ g ◦ f

is continuous.

Proof. Pick K ⊆ X compact and U ⊆ Z open, and (g, f) such that gf ∈ OK,U , i.e. such that
f(K) ⊆ g−1(U). Since Y is locally compact, for each y ∈ f(K), we can find Ky ⊆ g−1(U)
compact and Uy ⊆ g−1(U) open such that y ∈ Uy ⊆ Ky. Then

⋃
y∈f(K) Uy ⊇ f(K), so by

compactness of f(K) we find y1, . . . , yn ∈ f(K) such that Ui := Uyi satisfy f(K) ⊆ V =
U1 ∪ · · · ∪ Un. Let L = K1 ∪ · · · ∪Kn which is a compact subset of Y and V ⊆ L. Then we
find that OL,U ×OK,V ⊆ ◦−1(OK,U ) as needed. □

1.100. Remark A special case of the above is when X = ∗. Under the homeomorphisms
Map(∗, X) ∼= X and Map(∗, Z) ∼= Z of Example 1.95, the composition map becomes the
evaluation map ev : Map(Y,Z) × Y → Z. It follows that this map is continuous when Y is
locally compact.

Finally, we discuss the relationship between the functors X × − and Map(X,−). Recall
that in the category of sets, we have that A × − is left adjoint to HomSet(A,−). We would
like to have the same be true in topological spaces. However, again this is true only under
additional assumptions. A convenient one is the following.

1.101. Proposition Let X, Y and Z be topological spaces. Then the map

c : Map(X × Y, Z)→ Map(X,Map(Y, Z)), f 7→ f̂ : (x→ f(x,−))
is well-defined. In addition it is

(1) continuous if X is Hausdorff,
(2) bijective if Y is locally compact, and
(3) a homeomorphis if X and Y are locally compact.

Proof. To see well-definedness, we need to show that if f : X × Y → Z is continuous, then
so is f̂ . Let U ⊆ Z be open and K ⊆ Y be compact. Let x ∈ f̂−1(OK,U ) and consider
f−1(U) ⊆ X × Y . By assumption {x} × K ⊆ f−1(U). Since products of open sets form
a basis of the topology on X × Y , for each k ∈ K we find opens Vk ⊆ X containing x
and Wk ⊆ Y containing k such that Uk × Vk ⊆ f−1(U). Since K is compact, there are
k1, . . . , kn such that K ⊆ W1 ∪ · · · ∪Wn. Let V = V1 ∩ · · · ∩ Vn, which is open in X. Then
V×K ⊆ f−1(U), and therefore V ⊆ f̂−1(OK,U ). The self-inedxing trick shows that f̂−1(OK,U )

is open and so f̂ is continuous. (1) Since X is Hausdorff, we find that Map(X,Map(Y,X)) has
a subbasis consisting of OK,OL,U where K ⊆ X compact, L ⊆ Y compact and U ⊆ Z open.

Then c−1(OK,OL,U ) = OK×L,U which is open in Map(X × Y, Z) since K × L is compact by
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Tychonoff’s theorem. (2) To see that the map c is bijective if Y is locally compact, we need

to show that f is continuous if f̂ is. To see the this, note that f is given by the composite

X × Y f̂×idY−−−−→ Map(Y,Z)× Y ev−→ Z.

This composite is continuous since each individual map appearing in it is continuous. In-
deed, the evaluation map is continuous by the assumption that Y is locally compact, see
Remark 1.100. (3) To see that the map c is a homeomorphism if X and Y are locally com-
pact, we first show that c is continuous. By the previously established results (applied twice),
this is equivalent to the adjoint map

Map(X × Y,Z)×X × Y → Z

being continuous. This map is the evaluation map and hence continuous since X and Y , and
therefore by Tychonoff, also X × Y is locally compact, see Addendum 1.78. It remains to
show that the inverse of c

Map(X,Map(Y, Z))→ Map(X × Y,Z)

is also continuous. Again, we use the previously established results and the fact that X × Y
is continuous, to see that it suffices to show that the adjoint map

Map(X,Map(Y,Z))×X × Y → Z

is continuous. This map factors as the composite

Map(X,Map(Y, Z))×X × Y → Map(Y,Z)× Y → Z

where the first map is the evaluation map for X times the identity on Y and the second map
is the evaluation map for Y . Both of these maps are continuous since X and Y are locally
compact. □

1.102. Remark In fact, Map(X × Y,Z) → Map(X,Map(Y,Z)) is a homeomorphism if X is
Hausdorff and Y is locally compact Hausdorff. We leave this as an exercise for the interested
reader.

1.103. Corollary Let Y be a locally compact space. Then Y ×− is left adjoint to Map(Y,−).

Proof. By Proposition 1.101, the canonical map

Map(X × Y,Z)→ Map(X,Map(Y,Z))

is a bijection when Y is locally compact. The underlying set of the mapping spaces are just
the continuous maps, so the corollary follows. □

1.104.Corollary Let Y be a locally compact space. Then the functor Y ×− preserves colimits.
In particular, it preserves quotient maps.

We have observed earlier that pointed spaces also come with the smash product of spaces.
There is then also the pointed version of the mapping space:

1.105. Definition For pointed spaces (X,x) and (Y, y) we denote by Map∗((X,x), (Y, y)) the
subspace of Map(X,Y ) on pointed continuous maps.
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As a consequence of Lemma 1.93, we also find that Map∗(−,−) : Top
op
∗ ×Top∗ → Top∗ is a

functor (all maps are simply restricted from the unpointed case). Moreover, we find that the
composition of unpointed mapping spaces restricts to the composition of pointed mapping
spaces

Map∗(Y, Z)×Map∗(X,Y )→ Map∗(X,Z)

and is therefore continuous when the underlying unpointed space of Y is locally compact. As
a result of these arguments, we find the following.

1.106. Corollary Let X, Y and Z be pointed topological spaces. Then the map

Map∗(X ∧ Y,Z)→ Map∗(X,Map∗(Y, Z)), f 7→ f̂ : (x→ f(x ∧ −))
is well-defined and continuous if X is Hausdorff. It is bijective if Y is locally compact and a
homeomorphism if X and Y are locally compact. In particular, the functor Y ∧ − is a left
adjoint whenever the underlying space of Y is locally compact.

Finally, we will use the following basic result.

1.107. Lemma Let X, Xi, Y , and Yi be families of topological spaces indexed over a set I.
Then the canonical maps

Map(
∐
i∈I

Xi, Y )→
∏
i∈I

Map(Xi, Y )

as well as
Map(X,

∏
i∈I

Yi)→
∏
i∈i

Map(X,Yi)

are continuous bijections. The first one is a homeomorphism and the second one is a homeo-
morphism if X is locally compact.

Proof. The maps are continuous, simply because Map(X,−) and Map(−Y ) are functors. The
maps are bijections by the universal properties of coproducts and products, respectively. It
remains to see that the inverses are continuous. So let K ⊆

∐
i∈iXi be compact. Then

Ki = K ∩Xi is non-empty in at most finitely many cases (since K is compact). For U ⊆ Y
open, consider OK,U . The image oder this map above is then given by the product of the
sets OKi,U of which only finitely many are not all of Map(Xi, Y ) and all are open. This is an
open subset for the product topology, so the first claim is shown. To see the second case, we
wish to show that the canonical bijective map∏

i∈I
Map(X,Yi)→ Map(X,

∏
i∈I

Yi)

is continuous. Since X is locally compact this is the case if and only if its adjoint map∏
i∈I

Map(X,Yi)×X →
∏
i∈I

Yi

is continuous. By the universal property of the product, this map is continuous if and only
if it is so after postcomposition with the projections. Such a composite is readily seen to be
given by the composite∏

i∈I
Map(X,Yi)×X → Map(X,Yj)×X → Yj

which is continuous as a composition of continuous maps, we use again that X is locally
compact for the latter map to be continuous. □
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1.108. Remark Again, the similar result is true in the pointed case: Here we find that the
maps

Map∗(
∨
i∈I

Xi, Y )→
∏
i∈I

Map∗(Xi, Y )

as well as

Map∗(X,
∏
i∈I

Yi)→
∏
i∈i

Map∗(X,Yi)

are continuous bijections. The first one is a homeomorphism if I is finite and the second one
is a homeomorphism if X is locally compact.

1.109. Example Recall that the forgetful functor Top∗ → Top has a left adjoint given by
sending X to X+ = X ⨿ {∗}. We conclude that there is a canonical homeomorphism
Map∗(X+, Y ) ∼= Map(X,Y ). Therefore, statements about unpointed mapping spaces can
often be reduced to statements about pointed mapping spaces.

2. A primer on homotopy theory

2.1. Basic definitions. We begin with the basic definitions of homotopy theory.

2.1. Definition Let A ⊆ X and Y be topological spaces. Fix a map φ : A → Y and denote
by CA(X,Y ) ⊆ C(X,Y ) the subset of continuous maps X → Y whose restriction to A is
given by φ. We say that two such maps f and g are homotopic rel A, if there exists a map
H : [0, 1]×X → Y such that

(1) H(t, a) = φ(a) for all t ∈ [0, 1],
(2) H(0,−) = f , and
(3) H(1,−) = g.

A map H as above is called a homotopy rel A. An important special case is when A = ∅,
and when A = {x} consists of a basepoint. In this case we say based or pointed homotopy
rather than homotopy rel {x}.

2.2. Lemma The relation “homotopy rel A” is an equivalence relation on CA(X,Y ).

Proof. Exercise. □

We write [X,Y ]A for the set of rel A homotopy classes of maps X → Y . In case A = ∅, ∗,
we write [X,Y ] and [X,Y ]∗.

2.3. Remark In the situation of Definition 2.1, suppose that X is locally compact and denote
by MapA(X,Y ) the subspace of Map(X,Y ) on the elements of CA(X,Y ). Then a homotopy
rel A is the same datum as a continuous map [0, 1] → MapA(X,Y ). In particular, the
equivalence classes of the homotopy rel A relation [X,Y ]A is bijective to π0(MapA(X,Y )). If
X is not locally compact, this need not be the case.

Indeed, since X is assumed to be locally compact, a homotopy H : [0, 1] × X → Y is

equivalently given by a continuous map Ĥ : [0, 1]→ Map(X,Y ). The three conditions in the
definition of a homotopy rel A translate the following properties:

(1) Ĥ(t) ∈ MapA(X,Y ),

(2) Ĥ(0) = f , and

(3) Ĥ(1) = g
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as claimed.

2.4. Definition Let f : X → Y be a continuous map. f is called a homotopy equivalence if
there exists g : Y → X continuous and homotopies H1 from fg to idY and H2 from gf to idX .
Such a map g is called a homotopy inverse of f . Two spaces X and Y are called homotopy
equivalent if there exists a homotopy equivalence f : X → Y . A space X is called contractible
if it is homotopy equivalent to ∗.

2.5. Remark Likewise, one defines the notion of a pointed homotopy equivalence. This is a
continuous pointed map f : (X,x)→ (Y, y) such that there exists a pointed map g : (Y, y)→
(X,x) and pointed homotopies gf ∼ idX and fg ∼ idY . Two pointed homotopy equivalent
spaces are also homotopy equivalent as unpointed spaces. Then converse is not true in general,
see Example 2.13 below, but it does hold under additional assumptions on the basepoints
(namely that {x} → X and {y} → Y are cofibrations, a notion we will introduce soon).

2.6. Remark Unlike for homeomorphisms, a homotopy inverse (if it exists) need not be
unique. However: (1) Let f : X → Y be a homotopy equivalence and g, g′ be homotopy
inverses. Then g and g′ are homotopic as we will show next. (2) A space X is contractible if
and only if it is non-empty, and idX is homotopic to the constant map at any given basepoint
of X.

2.7. Lemma Let f, f ′ : X → Y and g, g′ : Y → Z and A ⊆ X with f|A = f ′|A and B ⊆ Y with

g|B = g′|B. If f and f ′ are homotopic rel A, then so are gf and gf ′. Likewise, if g and g′ are

homotopic rel B, then gf and g′f are homotopic rel f−1(B). In particular,

(1) If f and f ′ are homotopic and g and g′ are homotopic, then gf and g′f ′ are homotopic.
(2) If f and f ′ are pointed homotopic and g and g′ are pointed homotopic, then gf and

g′f ′ are pointed homotopic.

if both are true, gf and g′f ′ are homotopic.

Proof. Pick H a homotopy rel A from f to f ′. Then the map gH : [0, 1] × X → Z is a
homotopy rel A as required. Likewise pick H ′ a homotopy rel B from g to g′. Then the
composite

[0, 1]×X id×f−−−→ [0, 1]× Y H′
−→ Z

is a homotopy rel f−1(B) from gf to g′f . (1) is then the special case where A = B = ∅. (2)
follows from the special case where A = {x} and B = {y}. □

2.8.Remark The above implies that one can define categories hTop and hTop∗, the homotopy
category of (pointed) topological spaces whose objects are (pointed) topological spaces and
whose morphisms are given by (pointed) homotopy classes of (pointed) maps. Lemma 2.7
implies that defining composition on representatives of homotopy classes is well-defined. There
are canonical functors Top(∗) → hTop(∗) which are the identity on objects and the canonical
projection on morphism sets. Exercise: A functor hTop(∗) → C is equivalently described by

a functor Top(∗) → C having the property that (pointed) homotopic maps are sent to equal

maps. Such functors are henceforth called (pointed) homotopy invariant functors. Indeed,
more is true: the functor Fun(hTop(∗),C) → Fun(Top(∗),C) is fully faithful with essential

image the (pointed) homotopy invariant functors.
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Note that a (pointed) homotopy invariant functor sends (pointed) homotopy equivalences
to isomorphisms.

2.9. Example The functor π0 : Top → Set is homotopy invariant. Indeed, we first observe
that the two inclusion {0} → [0, 1] and {1} → [0, 1] induce the same map on π0 since π0([0, 1])
consists of a single point. Now suppose f, g : X → Y are homotopic and pick a homotopy
H from f to g. Then H induces a map π0(X × [0, 1]) → π0(Y ). Since π0 commutes with
products, this is equivalently a map π0(H) : π0(X) × π0([0, 1]) → π0(Y ). Restriction along
π0(X) ∼= π0(X)× π0({i}) gives π0(f) for i = 0 and π0(g) for i = 1, so the claim follows from
the previously established fact.

2.10. Lemma Let f, f ′ : X → X ′ be (pointed) homotopic maps and let Y be a further (pointed)
topological space. Then the induced maps

Map(∗)(X
′, Y )

f∗,f ′∗
−−−−→ Map(∗)(X,Y ) and Map(∗)(Y,X)

f∗,f ′
∗−−−→ Map(∗)(Y,X

′)

are (pointed) homotopic. Likewise, the maps

Y ×X Y×f,Y×f ′
−−−−−−−→ Y ×X ′ and Y ∧X Y ∧f,Y ∧f ′

−−−−−−→ Y ∧X ′

are (pointed) homotopic.

Proof. Pick a homotopy H : X × [0, 1]→ X ′ from f to f ′ and consider the map

Map(X ′, Y )×[0, 1] H∗
−−→ Map(X×[0, 1], Y )×[0, 1]→ Map([0, 1],Map(X,Y ))×[0, 1]→ Map(X,Y )

of which the second map is continuous by Proposition 1.101 and the latter is continuous by
Remark 1.100. It is readily checked to be a homotopy between f∗ and f ′∗. Likewise, consider
the map

Map(Y,X)× [0, 1]→ Map(Y,X × [0, 1])
H∗−−→ Map(Y,X ′)

of which the first map sends (f, t) to the map y 7→ (f(y), t). This map is continuous (see
Exercise below). The above composite is again readily checked to be a homotopy from f∗
to f ′∗. If H is a pointed homotopy, simply observe that the above two composites restrict to
(consequently continuous) pointed homotopies

Map∗(X
′, Y )× [0, 1]→ Map∗(X,Y ) and Map∗(Y,X)× [0, 1]→ Map∗(Y,X

′).

The case of products and smash products follows from considering idX ×H : Y ×X× [0, 1]→
Y ×X ′ and using that this map descends to a continuous map on smash products in case H
is a pointed homotopy. □

Exercise. Let X, Y and Z be topological spaces. Then the map

Map(X,Y )× Z → Map(X,Y × Z), (f, z) 7→ (x 7→ (f(x), z))

is continuous.

2.11. Definition Let A ⊆ X be topological spaces. We say A is a deformation retraction of
X if there exists a map φ ∈ CA(X,A) and a homotopy rel A from φ to idA.

2.12. Example (1) {0} is a deformation retraction of Rn. Indeed, the map [0, 1]×Rn →
Rn given by (t, x) 7→ tx provides a homotopy rel {0} from the map constant at 0 to
the identity of Rn.
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(2) Sn−1 ⊆ Rn \{0} is a deformation retraction. Indeed, the map x 7→ x
∥x∥ is a continuous

map Rn \ {0} → Sn−1 and the map [0, 1] × Rn \ {0} → Rn \ {0} given by (t, x) 7→
x

t+(1−t)∥x∥ provides a homotopy rel Sn−1 as needed.

2.13. Example A deformation retraction A ⊆ X is a homotopy equivalence. There are
examples of subspace inclusions A ⊆ X which are homotopy equivalences, but not deformation
retractions. For instance, let us examine the special case A = {x} ⊆ X. Then {x} → X
being a homotopy equivalence means that X is contractible and that {x} is a deformation
retraction simply means that X is pointed contractible (i.e. that there is a pointed homotopy
from the identity of X to the constant map at x). Without proof, we mention here that the
space

S = {(x, y) ⊆ R2 | y = xm for some m ∈ Q}
is contractible (the map H(t, (x, y)) = (tx, ty) is a homotopy between the identity and the
constant map at (0, 0)), but S does not deformation retract to the point (1, 0).

We come to the following fundamental geometric structure. I thank Tyrone Cutler (and
his online available notes) for having written down the explicit formulas we use here.

2.14. Lemma The pointed space (S1, 1) is canonically endowed with the structure of a comonoid
up to homotopy in Top∗

1. That is, there are the following maps:

(1) the counit map t : S1 → ∗, and
(2) the comultiplication map p : S1 → S1 ∨ S1.

These satisfy counitality and coassciativity up to homotopy, that is, the following diagrams
commute up to homotopy:

S1 S1 ∨ S1 S1 S1 ∨ S1

S1 S1 ∨ S1 S1 ∨ S1 ∨ S1

p

id
id∨tt∨id

p

p id∨p

p∨id

Moreover, the so defined comonoid (S1, 1) is in fact a cogroup. That it is, the following
equivalent conditions are satisfied:

(1) The map p ∨ ιr : S1 ∨ S1 → S1 ∨ S1 is a pointed homotopy equivalence,
(2) There exists a pointed map coinv : S1 → S1, called the coinversion map, such that the

composites

S1 S1 ∨ S1 S1 ∨ S1 S1p coinv∨id

id∨coinv
∇

are pointed homotopic to the constant map. Here, ∇ is the fold map, i.e. the map
which is the identity on each of the two wedge summands.

Proof. First, we recall that the map t 7→ exp(t) = e2πit induces a homeomorphism [0, 1]/0 ∼
1 → S1. We will from now on identity S1 with [0, 1]/0 ∼ 1 via this map without further
notation. We define the pinch map p : S1 → S1 ∨ S1 to be induced by

[0, 1] ∋ t 7→

{
ιr(2t) for 0 ≤ t ≤ 1

2

ιl(2t− 1) for 1
2 ≤ t ≤ 1

1Equivalently, the image of (S1, 1) under the functor Top∗ → hTop∗ is canonically endowed with a comonoid
structure.
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Here, ιr and ιl are the canonical right and left inclusions of S1 into S1 ∨ S1. Geometrically,
p is the quotient map S1 → S1/{±1} obtained by collapsing S0 ⊆ S1 to a point.

Let us now consider the above diagrams. First, we consider the composite (id ∨ t)p : S1 →
S1. It is induced by the map

[0, 1] ∋ t 7→

{
2t for 0 ≤ t ≤ 1

2

∗ for 1
2 ≤ t ≤ 1

where ∗ = [0] is the basepoint of S1. The map H : [0, 1]× [0, 1]→ S1 given by

H(s, t) =

{
2t
1+s for 0 ≤ t ≤ 1+s

2

∗ for 1+s
2 ≤ t ≤ 1

induces the desired pointed homotopy from (id∨t)p to idS1 . That (t∨id)p is pointed homotopic
to idS1 is a similar argument.

Now we work out the second diagram. We denote by ιm the middle inclusion of S1 into
S1 ∨ S1 ∨ S1. With this in mind, we have

(id ∨ p)p(t) =


ιl(2t) for 0 ≤ t ≤ 1

2

ιm(4t− 2) for 1
2 ≤ t ≤

3
4

ιr(4t− 3) for 3
4 ≤ t ≤ 1

, (p ∨ id)p(t) =


ιl(4t) for 0 ≤ t ≤ 1

4

ιm(4t− 1) for 1
4 ≤ t ≤

1
2

ιr(2t− 1) for 1
2 ≤ t ≤ 1

We claim that both these maps are pointed homotopic to

t 7→ φ(t) =


ιl(3t) for 0 ≤ t ≤ 1

3

ιm(3t− 1) for 1
3 ≤ t ≤

2
3

ιr(3t− 2) for 2
3 ≤ t ≤ 1

For this, we consider the map

[0, 1]× [0, 1] ∋ (t, s) 7→


ιl((4− s)t) for 0 ≤ t ≤ 1

4−s

ιm( (4−s)(2+s)t−(2+s)
(4−s)(1+s)−(2+s) ). for 1

4−s ≤ t ≤
1+s
2+s

ιr((2 + s)t− (1 + s)) for 1+s
2+s ≤ t ≤ 1

which induces a pointed homotopy from (p ∨ id)p to φ.
That the conditions (a) and (b) are equivalent appears on Exercise Sheet 5. We show that

condition (b) is satisfied. To do so, we define coinv to be induced by the map [0, 1] → [0, 1]
which sends t to (1− t). Geometrically, this is the the loop on S1 which runs around S1 once
clockwise. Then the composites ∇(coinv ∨ id)p and ∇(id ∨ coinv)p are induced by the maps

[0, 1] ∋ t 7→

{
1− 2t for 0 ≤ t ≤ 1

2

2t− 1 for 1
2 ≤ t ≤ 1

, and t 7→

{
2t for 0 ≤ t ≤ 1

2

2− 2t for 1
2 ≤ t ≤ 1

We need to show that both are homotopic to the constant map at the basepoint. To do so,
we consider the map

[0, 1]× [0, 1] ∋ (t, s) 7→


2t for 0 ≤ t ≤ 1−s

2

1− s for 1−s
2 ≤ t ≤

1+s
2

2− 2t for 1+s
2 ≤ t ≤ 1

which provides a pointed homotopy from ∇(id ∨ coinv)p to the constant path. A similar
homotopy exists for ∇(coinv ∨ id)p. □
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2.15. Remark It turns out (we might come back to this later) that the cogroup structure on
(S1, 1) ∈ hTop∗ is unique. Moreover, it does not come from a strict cogroup structure on S1,
i.e. (S1, 1) ∈ Top∗ does not admit the structure of a cogroup. This means that a) there was
really no choice other than the pinch map for the comultiplication, and b) we really have to
introduce some non-trivial homotopies which witness the counitality and coassociativity of
the comultipliaction up to homotopy.

2.16. Corollary Let (X,x) be a pointed space. Then S1 ∧X is a cogroup up to homotopy in
Top∗.

Proof. For all pointed spaces X,Y and Z, there is a canonical homeomorphism (X∨Y )∧Z ∼=
(X ∨ Z) ∧ (Y ∨ Z) (this is not completely trivial to show, but we will not give the details
here). Consequently, the cogroup structure on S1 defines maps

S1 ∧X −→ (S1 ∨ S1) ∧X ∼= (S1 ∧X) ∨ (S1 ∧X), S1 ∧X → ∗ ∧X ∼= ∗

which satisfy counitality and coassociativity up to homotopy since the functor −∧X preserves
pointed homotopies, see Lemma 2.10. Hence S1 ∧X is a comonoid up to homotopy. To see
that this is a cogroup, it suffices to see that coinv ∧ X : S1 ∧ X → S1 ∧ X is a coinversion
map for the comonoid structure just defined. Again, this follows from the fact that − ∧ X
preserves pointed homotopies. □

Similarly, we have the following:

2.17. Corollary Let (X,x) be a pointed space. Then Ωx(X) is a group up to homotopy in
Top∗.

Proof. We recall that Ωx(X) = Map∗(S
1, X). The cogroup structure on S1 induces the

following maps

Map∗(S
1, X)×Map∗(S

1, X) ∼= Map∗(S
1 ∨ S1, X) −→ Map∗(S

1, X)

as well as ∗ = Map∗(∗, X)→ Map∗(S
1, X). These maps satisfy unitality and associativity up

to homotopy since the functor Map∗(−, X) preserves pointed homotopies, see Lemma 2.10.
We have used Remark 1.108 for the above homeomorphism. Hence Ωx(X) is a monoid up
to homotopy. Moreover, the map coinv∗ : Map∗(S

1, X)→ Map∗(S
1, X) provides an inversion

map for Ωx(X), so this is indeed a group up to homotopy. □

2.18. Definition Let X be a topological space. For any basepoint x ∈ X, we define the
fundamental group of X at x, π1(X,x) as π0(Ωx(X)).

2.19. Lemma The association (X,x) 7→ π1(X,x) refines to a pointed homotopy invariant
functor Top∗ → Grp.

Proof. If G is a group up to homotopy in Top, then π0(G) is an ordinary group: This follows
from the fact that π0 commutes with finite products and sends ∗ to ∗. Hence π1(X,x) is
a group as a consequence of Corollary 2.17. Then we recall that a based map f : X → Y
induces a map Map∗(S

1, X)→ Map∗(S
1, Y ), i.e. a map Ωx(X)→ Ωx(Y ). This map is one of
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groups up to homotopy since the diagram

Map∗(S
1, X)×Map∗(S

1, X) Map∗(S
1 ∨ S1, X) Map∗(S

1, X)

Map∗(S
1, Y )×Map∗(S

1, Y ) Map∗(S
1 ∨ S1, Y ) Map∗(S

1, Y )

f∗×f∗

∼=

f∗ f∗

∼=

commutes (and similarly for the map defining the unit of the monoids Map∗(S
1, X) and

Map∗(S
1, Y )). Hence the induced map π1(X,x)→ π1(Y, y) is a group homomorphism. Func-

toriality of these maps follows from the fact that π0(Map∗(S
1,−)) is a functor with values in

Set and the fact that π1 is pointed homotopy invariant follows from Lemma 2.10. □

We will need the following observation about the behaviour when changing the basepoint
x via a path in X.

2.20. Lemma Let γ : [0, 1]→ X be a path from x to x′. Then γ induces a pointed homotopy
equivalence Ωx(X)→ Ωx′(X), natural in X.

Proof. We define a map Φγ : Map∗((S
1, 1), (X,x))→ Map∗((S

1, 1), (X,x′)) by sending a loop
α at x to the loop γ ⋆α⋆γ−1 at x′, that is, the concatenation of α with γ and its reverse γ−1.
The same argument that shows that concatentation with a fixed loop defines a continuous
map Ωx(X)→ Ωx(X) shows that the so defined map Φγ is continuous. For γ′ a path from x′

to x, the composite Φγ′ ◦Φγ is then homotopic to Φγ′⋆γ - simply by reparametrising the path
appropriately. Moreover, for any loop β at x, the map Φβ is homotopic to the conjugation by
β map of the group (up to homotopy) Ωx(X). In particular, this map is a pointed homotopy
equivalence: To see this, it suffices to show that the map is an isomorphism in hTop∗. But
now in general, given a group G in a category C, and an element g ∈ G, then conjugation by
g defines an automorphism of G (with inverse given by conjugation by g−1). It follows that
Φγ is a homotopy equivalence with homotopy inverse given by Φγ−1 .

Finally, to see the naturality of the construction, it suffices to note that for a continuous
map f : X → Y , the diagram

Map∗((S
1, 1), (X,x)) Map∗((S

1, 1), (X,x′))

Map∗((S
1, 1), (Y, f(x))) Map∗((S

1, 1), (Y, f(x′)))

Φγ

f∗ f∗

Φf(γ)

commutes strictly

f(γ ⋆ α ⋆ γ−1) = f(γ) ⋆ f(α) ⋆ f(γ−1) = f(γ) ⋆ α ⋆ f(γ)−1.

□

The notation π1 and π0 suggest that there might be variants πn for any n ≥ 0. In what
follows, let n ≥ 1 and consider the element (1, 0, . . . , 0) ∈ Rn+1. For k ≤ n we have Rk+1 ⊆
Rn+1 via the inclusion in the first k + 1 coordinates. This gives a series of inclusions S0 ⊆
S1 ⊆ · · · ⊆ Sn and we consider 1 as an element of Sn via these inclusions.

2.21. Remark These inclusions can also be thought of as follows: We have S0 ⊆ S1 as
the subspace {±1}. Applying the functor − ∧ S1 we obtain an inclusion S1 ⊆ S1 ∧ S1 and
inductively inclusions S1∧· · ·∧S1 → S1∧· · ·∧S1∧S1. The claim then follows from a canonical
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homeomorphism Sn ∧Sm ∼= Sn+m. We will discuss this homeomorphism on Exercise Sheet 5
in light of the one-point compactification.

2.22. Definition Let (X,x) be a pointed space and n ≥ 0. We define its nth homotopy group
at x to be

πn(X,x) = π0(Map∗((S
n, 1), (X,x)).

Strictly speaking, we have not seen that πn(X,x) is a group for n ≥ 2. However, it follows
from our earlier results:

2.23. Corollary For all n ≥ 1, the association (X,x) 7→ πn(X,x) refines to a pointed homo-
topy invariant functor Top∗ → Grp.

Proof. πn is a homotopy invariant functor as the composite of the functors π0 and Map∗((S
n, 1),−).

To see that it canonically takes values in groups, we note that Sn ∼= Sk ∧ Sn−k and Sk and
Sn−k are compact. This together with Corollary 1.106 implies that there are homeomorphisms

Map∗((S
n, 1), (X,x)) ∼= Map∗((S

k, 1),Map∗((S
n−k, 1), (X,x))).

In particular, we find for n ≥ 1 bijections πn(X,x) ∼= π1(Map∗((S
n−1, 1), (X,x)). □

2.24. Lemma Let (X,x) and (Y, y) be pointed spaces.

(1) π0(X,x) = π0(X)
(2) For all n ≥ 0, the canonical map πn(X × Y, (x, y)) → πn(X,x) × πn(Y, y) is an

isomorphism.
(3) If (X,x) is a monoid up to homotopy in Top∗, then the group structure on π1(X,x)

is abelian.
(4) A path γ from x to x′ in X induces an isomorphism πn(X,x) ∼= πn(X,x

′) for all
n ≥ 1.

In particular, for n ≥ 2, πn(X,x) is abelian.

Proof. (1) The evaluation at the non-base point−1 of S0 gives a homeomorphismMap∗(S
0, X)→

X, so the claim follows. (2) The canonical map Map∗(S
n, X × Y ) → Map∗(S

n, X) ×
Map∗(S

n, Y ) is a homeomorphism since Sn is locally compact, see Remark 1.108. The claim
then follows from the fact that π0 commutes with finite products. (3) Since the forgetful func-
tor Grp→ Set commutes with finite products and is conservative, we see that π1 : Top∗ → Grp
commutes with finite products. It follows that the image of a monoid up to homotopy in Top∗
is sent to a monoid in Grp. The Eckmann–Hilton argument below shows that this makes the
group structure on π1 commutative. The “in particular” follows from the above observed
isomorphism πn(X,x) ∼= π1(Ωx(Map∗(S

n−2, X))). (4) πn(X,x) ∼= πn−1(Ωx(X)), so the claim
follows from the fact that πn−1 is a pointed homotopy invariant functor together with the
pointed homotopy equivalence Ωx(X) ≃ Ωx′(X) from Lemma 2.20. □

2.25. Addendum The Eckmann-Hilton argument is a slight generalisation of what we have
used above. It says the following. Suppose M is a set equipped with unital binary operations
◦ and ⋆ with units e◦ and e⋆ and which satisfy that the diagram

M ×M ×M ×M M ×M

M ×M M

(◦×◦)(id×τ×id)

⋆×⋆ ⋆

◦
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commutes. Then ◦ = ⋆ and both operations are associative and commutative. Indeed, the
commutativity of the diagram says that for all x, y, z, w ∈ M we have (x ⋆ y) ◦ (z ⋆ w) =
(x ◦ z) ⋆ (y ◦ w). Then we get

e⋆ = (e◦ ◦ e⋆) ⋆ (e⋆ ◦ e◦) = (e◦ ⋆ e⋆) ◦ (e⋆ ⋆ e◦) = e◦

so e⋆ = e◦ =: e. In addition,

x ◦ w = (x ⋆ e) ◦ (e ⋆ w) = (x ◦ e) ⋆ (e ◦ w) = x ⋆ w

so ◦ = ⋆. Moreover,

x ◦ w = (x ⋆ e) ◦ (e ⋆ w) = (e ⋆ x) ◦ (w ⋆ e) = (e ⋆ w) ◦ (x ⋆ e) = w ◦ x

so ◦ is commutative. Finally,

(x ◦ y) ◦ w = (x ◦ y) ⋆ (w ◦ e) = (x ⋆ e) ◦ (y ⋆ w) = x ◦ (y ◦ w)

so ◦ is associative.

2.26. Remark The definition of homotopy groups we have given can also be done by replacing
(Sn, 1) with the pair (Dn, ∂Dn) and can also be phrased as follows: πn(X,x) is the set of
based homotopy classes of based maps (Sn, 1) → (X,x) or equivalently of homotopy classes
rel ∂Dn of maps Dn → X sending ∂Dn to x. Indeed, this follows from Remark 2.3 since
Sn and Dn are locally compact. The latter formulation is a frequently used definition of
homotopy groups.

2.27. Definition Let f : X → Y be a continuous map between topological spaces. Then f
is called a weak homotopy equivalence if for each x ∈ X and n ≥ 0 it induces a bijection
πn(X,x)→ πn(Y, f(x)).

2.28. Example A pointed homotopy equivalence is a weak homotopy equivalence. Indeed,
this follows simply from the fact that πn is a pointed homotopy invariant functor.

2.29. Lemma A homotopy equivalence f : X → Y is a weak homotopy equivalence.

Proof. The map π0(f) is a bijection, so it remains to show that for all x ∈ X, the map
πn(f) : πn(X,x)→ πn(Y, f(x)) is a bijection. To do so, we first consider the following general
fact. Let H : X × [0, 1]→ Y be a homotopy from f to f ′. The path {x} × [0, 1]→ X × [0, 1]
induces a commutative diagram

πn(X,x) πn(X × [0, 1], (x, 0)) πn(Y, f(x))

πn(X,x) πn(X × [0, 1], (x, 1)) πn(Y, f
′(x))

i0 H

∼= ∼=
i1 H

whose vertical arrows are the isomorphisms obtained in an earlier exercise, induced from the
path {x}× [0, 1] in X × [0, 1] and its image under H in Y . The left square (with horizontally
left pointing maps) is the same square as the right square with the map H replaced by the
projection. Since the projection induces isomorphisms on πn and i0 and i1 are sections of the
projection, the left square with right pointing maps is also commutative. Finally, observe that
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the horizontal composites are given by πn(f) and πn(f
′). We deduce that if f is a homotopy

equivalence and g a homotopy inverse, then the triangle

πn(X,x) πn(X,x)

πn(X, gf(x))

id∗

(gf)∗
∼=

commutes. With the same argument, we deduce that in the composite

πn(X,x)
f∗−→ πn(Y, (f(x))

g∗−→ πn(X, gf(x))
f∗−→ πn(Y, fgf(x))

any two composable maps are bijections. We deduce that the map in the middle is bijective,
and hence also the first map is bijective. □

2.30. Example There are weak homotopy equivalences which are not homotopy equivalences.
For instance, consider the space of a converging sequence, i.e. the set CS = {0} ∪ { 1n | n ≥
1} equipped with the subspace topology of R. This set is weakly homotopy equivalent to∐

n≥0{n}, but not homotopy equivalent to it, see Exercise Sheet 6.

So far, we know very little about homotopy groups. Let me mention the following very
basic questions:

(1) What is π1(S
n)?

(2) What is πk(S
n) for k < n?

(3) What is πn(S
n)?

(4) What is πk(S
n) for k > n?

2.31. Addendum Note that the answer to (2) wants to be 0: Indeed, given a representative
f : Sk → Sn, we surely hope that f is homotopic to a map which is not surjective (this is
automatic if the map f extends to a smooth map in the sense of analysis 2 from an open
neighborhood of Sk ⊆ Rk+1 to an open neighborhood of Sn ⊆ Rn+1). Given x ∈ Sn which
is not in the image of f , we find a factorization Sk → Sn \ {x} ⊆ Sn. But the stereographic
projection determines an homeomorphism Sn \ {x} ∼= Rn (which appears on Exercise Sheet
5), and Rn is pointed contractible. It follows that f is pointed null-homotopic.

The answer to (1) and (3) will be given in this (and possibly the following) course: It turns
out that πn(S

n) ∼= Z via an explicit invariant called the degree (more precisely, there is a
canonical map Z → πn(S

n) sending 1 to [idSn ] which is an isomorphism with inverse given
by an invariant called the degree). We will show this by induction over n. To prove the case
n = 1, we will make use of a theorem allowing us to calculate the fundamental group of a
space by means of the fundamental groups of an open cover, known as a theorem of Seifert
and van Kampen – this will also prove that π1(S

n) = 0 for n > 1.
Possibly surprisingly (at first glance) is that we will not be able to say much about πk(S

n)
when k > n. In the beginning of the rise of algebraic topology, there were some thoughts that
these groups might also be trivial, a thought that could not be further from the truth. In fact,
calculating these groups is one of the major tasks of homotopy theory and our knowledge of
these groups (though by now very impressive) is on a large scale still tiny, and the tools that
go into calculations are very intricate and sometimes indirect.
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2.2. CW complexes. Before moving to the theorem of Seifert and van Kampen, we briefly
introduce CW complexes.

2.32.Definition LetX be a topological space and A ⊆ X a subspace. A CW structure on the
pair (X,A) consists of a filtration {skn(X)}n≥−1 by subspaces, called the skeletal filtration,
with sk−1(X) = A such that the following holds. First, the canonical map colimn skn(X)→ X
is a homeomorphism. Second, for each n ≥ −1, there is a set In and for each i ∈ In there are
maps αi : S

n → skn(X) such that there is a pushout diagram∐
i∈In

Sn skn(X)

∐
i∈In

Dn+1 skn+1(X)

⨿iαi

⨿iβi

Here, S−1 = ∅. A CW complex (X,A) is short hand for a CW structure on the pair (X,A);
often A is taken to be empty in which case we simply refer to X as a CW complex.

It is important to remember that a CW structure is a space equipped with a filtration,
such that some property holds (colimit topology and existence of pushouts). The pushouts
are not part of the data, only the existence is required. A space can have no or many CW
structures. We will often refer to a CW complex X, and then mean that X is a topological
space equipped with a CW filtration {skn(X)n≥0} which we leave implicit.

2.33. Example (1) The spheres Sn are CW complexes via the filtration

skk(S
n) =

{
{x} if − 1 < k < n

Sn if k ≥ n
.

Here, x is an arbitrary basepoint. Indeed, this follows from the homeomorphism
Dn/Sn−1 ∼= Sn.

(2) The disk Dn is a CW complex with filtration ∅ ⊆ {x} ⊆ Sn−1 ⊆ Dn. Here, as above
Sn−1 = skn−1(D

n).

It turns out that many more spaces are CW complexes, we shall construct more examples
later and on the exercise sheets.

We introduce the following terminology.

2.34. Definition Let X be a CW complex with filtration {skn(X)}n≥−1. Then X is called

(1) N -dimensional if skN ′(X) = skN (X) for all N ′ ≥ N .
(2) finite-dimensional if it is N -dimensional for some N ≥ −1.
(3) of finite type, if for all n ≥ −1, skn+1(X) is obtainable from skn(X) by attaching

finitely many cells, i.e. there exists a pushout as in Definition 2.32 with In+1 finite.
(4) finite, if it is finite dimensional and of finite type, i.e. there exists pushouts as in

Definition 2.32 such that the total number of cells is finite.
(5) locally finite, if there exists pushouts as in Definition 2.32 such that each cell of X

(i.e. a subset of the form βi(D
n+1) ⊆ X) is disjoint from all but finitely many cells of

X.
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The following proposition lists some of the point-set theoretic properties of CW complexes.
We will not prove it in this course.

2.35. Proposition Let X be a CW complex. Then

(1) Every compact subset of X lies in a finite sub complex of X.
(2) X is compact if and only if X is finite.
(3) X is locally compact if and only if X is locally finite.
(4) X is paracompact (we have not introduced this notion yet, but it means that any open

cover admits a locally finite subcover. A cover is called locally finite if for every point,
there is an open neighborhood of it whose intersection with the members of the covering
is empty in all but finitely many cases).

(5) X is normal and Hausdorff. (In fact, for paracompact spaces, Hausdorff and normal
are equivalent conditions).

(6) X is locally path connected (in fact, it is locally contractible, that is, for every point
and every open, there exists a smaller open which is contractible).

(7) if Y is another CW complex which is locally compact, then X × Y admits a CW
structure with

skn(X × Y ) =
⋃

k+l=n

skk(X)× skl(Y ).

We move on to maps between CW complexes.

2.36. Definition Let X and Y be CW complexes. A map f : X → Y is called cellular if
f(skn(X)) ⊆ skn(Y ) for all n ≥ −1.

Again, whether or not a map is cellular very much depends on the CW filtration one has
chosen. In particular, (somewhat obviously) not every map is cellular. The following result,
called cellular approximation, is technically important and will be proven most likely in the
next course.

2.37. Theorem (Cellular Approximation) Let X and Y be CW complexes. Given a map
f : X → Y satisfying f(skk(X)) ⊆ skk(Y ) for some k ≥ −1, there exists a homotopy rel
skk(X) from f to a map f ′ satisfying f ′(skn(X)) ⊆ skn(Y ) for all n ≥ k. In particular, every
map between CW complexes is homotopic to a cellular map.

Let us draw a number of useful consequences of this theorem.

2.38. Corollary For k < n we have πk(S
n) = 0.

Proof. Represent an element by a pointed map (Sk, x) → (Sn, y). We Give Sk and Sn the
CW structures from Example 2.33. By cellular approximation, f is homotopic rel {x} to a
cellular map. But skk(S

k) = Sk and skk(S
n) = {y}, showing that f is pointed homotopic to

the constant map. □

More generally we have the following:

2.39. Corollary Let X be a CW complex. Then for all x ∈ sk0(X), the induced map
πk(skn(X), x)→ πk(X,x) is an isomorphism for k ≤ n− 1 and a surjection for k = n.

Proof. Surjectivity for k ≤ n: Consider a pointed map f : (Sk, 1) → (X,x) representing an
element of πk(X,x). By cellular approximation there is a homotopy rel {x}, i.e. a pointed
homotopy, from f to a cellular map f ′. In particular f ′ : (Sk, 1)→ (skk(X), x), so surjectivity
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follows. To see injectivity when k < n, assume given pointed maps f, g : Sk → skk(X) and a
pointed homotopy H : Sk → X from f to g. Recall from Proposition 2.35 (7) that Sk × [0, 1]
has a CW structure with skk(S

k × [0, 1]) = Sk × {0, 1} ∪ {1} × [0, 1] and that H|{1}×[0,1] is

constant at x. In particular, with respect to the just mentioned CW structure on Sk × [0, 1],
the map H sends skk(S

k × [0, 1]) to skk(X). By cellular approximation, H is homotopic rel
Sk × {0, 1} ∪ {1} × [0, 1] to a map with image contained in skk+1(X). Since k + 1 ≤ n,
injectivity of the map under investigation follows. □

2.40. Corollary For every space X, there exists a weak homotopy equivalence A→ X where
A is a CW complex.

Proof. We argue for each path component of X that there is a connected CW complex with
a weak homotopy equivalence to that path component. Then we obtain a map from the
coproduct of all these CW complexes to X which is a weak homotopy equivalence. The result
follows then from the observation that coproducts of CW complexes are CW complexes.

So let us assume thatX is path connected and choose a basepoint x ∈ X. Choose generators
{αi}i∈I of π1(X,x). They induce a pointed map

f1 :
∨
i∈I

S1 ∨αi−−→ X

whose composite with the canonical inclusion ιj : S
1 →

∨
i∈I S

1 is given by αi. We deduce
that f1 induces a bijection on π0 and a surjection on π1. We now assume inductively that we
have constructed a map fn : skn(A)→ X from an n-dimensional CW complex skn(A) which
induces an isomorphism on πk for k < n and a surjection for k = n. For the induction start,
we take sk1(A) =

∨
i∈I S

1 with its map f1 to X. Pick a set of generators of the kernel of
the map πn(A, a) → πn(X,x) and represent these generators by maps βj : S

n → A. Since
βj ∈ ker(πn(A, a)→ πn(X,x)), there exists a null homotopy H of fnβj . Such a null homotopy
H is in particular a map Sn × [0, 1] whose restriction to Sn × {1} is constant. H therefore
induces a map H̄j : D

n+1 → X whose restriction to the boundary Sn is given by fnβj , since
Sn × [0, 1]/Sn × {1} ∼= Dn+1. Consequently, there exists a commutative diagram∐

j∈J
Sn skn(A)

∐
j∈J

Dn+1 X

⨿βj

fn

⨿H̄j

Define skn+1(A)
′ to be the pushout of the upper-left part of the above diagram. Then

skn+1(A)
′ is an (n + 1)-dimensional CW complex with skk(skn+1(A)

′) = skk(A) for k ≤ n
and we obtain a unique map f ′n+1 → X extending the map fn by the universal property of
the pushout. We claim that f ′n+1 induces an isomorphism on πk for k ≤ n. To see this, we
consider the composite

πk(skn(A), a)
in−→ πk(skn+1(A)

′, a)
f ′
n+1−−−→ πk(X,x)

which is given induced by fn. Hence, for k < n, the composite is an isomorphism by the
inductive hypothesis and the first map is an isomorphism by Corollary 2.39. For k = n,
the composite is surjective by the inductive hypothesis, so the latter map is also surjective.
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Again by Corollary 2.39, the first map is also surjective. Moreover, the kernel of the composite
is contained in the kernel of the first map (by construction). This implies that the second
map is also injective and hence an isomorphism. Now choose a set of generators {γk}k∈K of
πn+1(X,x) and define the space

skn+1(A) = skn+1(A)
′ ∨

∨
k∈K

Sn+1.

Then skn+1(A) is again an (n+1)-dimensional CW complex with skk(skn+1(A)) = skk(A) for
k ≤ n. The map f ′n+1 together with the maps γk induce a unique map fn+1 : skn+1(A)→ X.
This map is surjective on πn+1 (this is clear by construction) and an isomorphism on πk for
k ≤ n. Indeed, the composite

πk(skn+1(A)
′, a)→ πk(skn+1(A), a)

fn−→ πk(X,x)

is an isomorphism by what we have just argueed, showing that the second map is surjective.
The first map is also surjective by Corollary 2.39, and injective because it has a retraction
induced by the unique map

∨
Sn+1 → ∗. Hence, the first map is an isomorphism, as well

as the composite, and hence so is the latter map. This finishes the inductive step. Then
we let A = colimn skn(A) and obtain a unique continuous map f : A → X restricting to the
previously constructed fn on skn(A). Then, for any k ≥ 0, we choose n > k and then have
that of the following maps

πk(skn(A), a)→ πk(A, a)→ πk(X,x)

the composite and the first map are isomorphisms. Hence the latter map is also an isomor-
phism, showing that f is a weak homotopy equivalence. □

2.41. Remark In this course, and in fact also the following courses, we will almost exclusively
investigate invariants of topological spaces which are not only homotopy invariant but in fact
invariant under weak homotopy equivalences, like homotopy groups and also the singular
(co)homology groups which we will introduce in due time. The previous corollary hence
implies that we may replace any topological space by a weakly equivalent CW complex without
changing its invariants, or in other words, through the eyes of this invariant, we may restrict
our attention to CW complexes to begin with.

The typical invariant that distinguishes weakly equivalent spaces which are not homotopy
equivalent (hence spaces necessarily not homotopy equivalent to CW complexes) is sheaf
cohomology (rather than singular cohomology). While itself a very interesting invariant with
many applications, we will not discuss it in this course. Perhaps one can have a seminar
about sheaf cohomology at some point, and its relation to singular cohomology for suitable
spaces.

The following theorem says that the relation of weak homotopy equivalences restricted to
CW complexes is indeed the relation of homotopy equivalences. We will prove it next term
when we introduce a further important notion in homotopy theory, namely that of a fibration.

2.42. Theorem (Whitehead) Let f : X → Y be a weak homotopy equivalence and A a CW
complex. Then f induces a bijection [A,X]→ [A, Y ] on homotopy classes of maps out of A.
In particular, if X and Y are CW complexes, then f is a homotopy equivalence.

The in particular follows readily from Yoneda’s lemma in the full subcategory of hTop on
objects represented by CW complexes.
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We will introduce one aspect which is relevant for the proof of Whitehead’s theorem, which
is that CW pairs have the homotopy extension property. The notion of homotopy extension
properties makes sense in many other contexts as well (as soon as there is some notion of
a homotopy) and we will see such a property in action in the category of groupoids when
discussing the theorem of Seifert van Kampen.

2.43. Definition Let i : A→ X be a map of topological spaces. We say that i is a cofibration
if it has the homotopy extension property, i.e. given a map f : X → Y and H : A× [0, 1]→ Y
such that f|A = H(−, 0), there exists a map H̄ : X × [0, 1]→ Y extending H.

2.44. Remark The data of f and H are given by a map A × [0, 1] ⨿A×{0} X × {0} → Y .
Being a cofibration then says that there exists a dashed arrow rendering the following diagram
commutative:

A× [0, 1]⨿A×{0} X × {0} Y

X × [0, 1]

f⨿H

H̄

Considering Y = A× [0, 1]⨿A×{0}X×{0}, we find that i : A→ X is a cofibration if and only
if the vertical map in the above diagram admits a retraction.

Yet another equivalent way of formulating this is that there exists a dashed arrow rendering
the following diagram commutative (this uses that [0, 1] is locally compact):

A Map([0, 1], Y )

X Y

ev0H̄

f

This second perspective shows the following result: Given a pushout diagram of spaces

A′ A

X ′ X

i′ i

such that i′ is a cofibration, then i is also a cofibration. Also, it follows that if ij : Aj → Xj

is a family of cofibrations, then the map (⨿j∈JAj → ⨿j∈JXj) is also a cofibration.

2.45. Example (1) For all n ≥ 1, the map Sn−1 → Dn is a cofibration.
(2) If i : A→ X and j : X → X ′ are cofibrations, then ji : A→ X ′ is a cofibration.
(3) For all spaces X and Y , the inclusion Y → X ⨿ Y is a cofibration.
(4) For all spaces X, the map X × {0, 1} → X × [0, 1] is a cofibration.
(5) If i : A→ X is a cofibration and Z is a locally compact space, then A× Z → X × Z

is a cofibration.
The proof is an exercise on Sheet 6. I will insert a proof here myself after the sheet has

been discussed in the exercise sessions.

2.46. Theorem (Homotopy extension property) Let (X,A) be a CW pair. Then the inclusion
A ⊆ X is a cofibration.
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Proof. The pairs (Dn, Sn−1) satisfy the homotopy extension property by Example 2.45. It
follows from Remark 2.44 that for all n ≥ −1, the pairs (skn(X), A) have the homotopy
extension property. Then, it follows from the fact that X = colimn skn(X) that also (X,A)
has the homotopy extension property. □

2.47. Corollary Let i : A → X be a cofibration, for instance the inclusion of a CW pair
(X,A). Assume that A is contractible. Then the projection map X → X/A is a homotopy
equivalence.

Proof. Since A is contractible, there exists a ∈ A and a map H : A × [0, 1] → A such that
H(−, 0) = idA and H(−, 1) is the map which is constant at a ∈ A. Then we have a map

A× [0, 1]⨿A×{0} X × {0} → X

induced by H and the identity of X. By the homotopy extension property this map extends to
a homotopy H̄ : X×[0, 1]→ X from the identity to a map H̄(−, 1). This map has the property
that it sends A to a ∈ A, and hence induces a continuous map h : X/A→ X. Moreover, the

composite X → X/A
h−→ X is H̄(−, 1) and hence homotopic to idX via H̄ itself. Moreover,

H̄ induces a map X × [0, 1] → X → X/A which in turn induces a map X/A× [0, 1] → X/A
(since A× [0, 1] ⊆ X × [0, 1]→ X/A is constant at the equivalence class of A). This map is a

homotopy between the identity and the composite X/A
h−→ X → X/A. □

We finish this section with some constructions that allow us to replace an arbitrary map
by a cofibration, up to homotopy equivalence.

2.48. Definition Let f : X → Y be a map. We define Cyl(f) and maps X⨿Y → Cyl(f)→ Y
via the following pushout squares

X X ⨿X X × [0, 1] X

Y Y ⨿X Cyl(f) Y

ιl

f f⨿id

i0⨿i1 pr

f

ιl ιY ⨿ιX p

2.49. Remark Let i : A → X be a map of spaces. Then Cyl(i) = A × [0, 1] ⨿A×{0} X ×
{0}. Hence, we can rewrite the condition that i is a cofibration by the condition that the
tautological map Cyl(i)→ X × [0, 1] has a retraction.

2.50. Lemma Let f : X → Y be a map of spaces. Then the map f factors as the composite

X
ιX−→ Cyl(f)

p−→ Y and the maps ιX and ιY are cofibrations. Moreover, the map p is a
homotopy inverse of the map ιY . In particular, Cyl(f) and Y are canonically homotopy
equivalent.

Proof. The first part follows from the definitions together with Example 2.45. By construc-
tion, the composite Y → Cyl(f)→ Y is the identity. It hence suffices to show that the compos-
ite Cyl(f)→ Y → Cyl(f) is homotopic to the identity. To do this, let H : [0, 1]× [0, 1]→ [0, 1]
be a map with H(−, 0) = id and H(−, 1) constant at 0, e.g. H(t, s) = (1− s)t. Since [0, 1] is



TOPOLOGY I 41

locally compact, the following two squares are pushout diagrams

X × {0} × [0, 1] X × [0, 1]× [0, 1] X × {0} X × [0, 1]

Y × [0, 1] Cyl(f)× [0, 1] Y Cyl(f)

Consider the following maps from each term of the left (upper part) of the square to the right
one: X × {0} × [0, 1]→ X × {0}, the projection, Y × [0, 1]→ Y the projection, and the map
idX × H : X × [0, 1] × [0, 1] → X × [0, 1]. These maps induce, by the universal property of
pushouts, a map H̄ : Cyl(f) × [0, 1] → Cyl(f). Then H̄(−, 0) is the identity of Cyl(f), and
H̄(−, 1) is given by p. Indeed, to see this, it suffices to show that H̄(−, 1) and p agree upon
restriction along ιY and X × [0, 1]→ Cyl(f) which is true by construction. □

2.51. Definition Let f : X → Y be a map. Then we define its mapping cone C(f) together
with maps Cyl(f)→ C(f) and C(f)→ Σ(X) via the pushout diagrams

X Cyl(f) C(X)

∗ C(f) Σ(X)

ιX

c

where the map Cyl(f)→ C(X) is obtained by collapsing the image of Y inside Cyl(f).

2.52. Remark We note that the map ιX factors as the composite X × {1} → X × [0, 1] →
Cyl(f). Consequently, we have the following diagram of pushout squares.

X × {0} Y ∗

X × {1} X × [0, 1] Cyl(f) C(X)

∗ C(X) C(f) Σ(X)

f

c

In particular the middle vertically combined square is a pushout square, showing that C(f)
is obtained by gluing C(X) on Y along the map f .

2.53. Lemma Let i : A → X be a map. Then there is a canonical map C(i) → X/A. This
map is a homotopy equivalence if i is a cofibration.

Proof. The previous remark says that the left of the following two squares is a pushout
diagram.

A C(A) ∗

X C(i) X/A

The combined square is also a pushout, hence so is the right square. Consequently, we obtain
the wanted map C(i) → X/A. If i is a cofibration, then the left square being a pushout
implies that C(A) → C(i) is also a cofibration. The right square being a pushout means
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that there is a homeomorphism X/A ∼= C(i)/C(A) such that the map C(i) → X/A becomes
the tautological map C(i)→ C(i)/C(A). Since C(A) is contractible, the lemma follows from
Corollary 2.47. □

2.54. Corollary Let i : A → X be a cofibration. Then there exists a map X/A → Σ(A),
natural up to homotopy.

Proof. There are natural maps X/A← C(i)→ Σ(A) of which the first is a homotopy equiva-
lence. Choosing a homotopy inverse (which is unique up to homotopy) of this map provides
the desired map. □

2.3. Seifert van Kampen. We now come to the theorem of Seifert van Kampen. We will
first prove a version of it where we replace the fundamental group introduced above by a
slightly more flexible object, the fundamental groupoid of X. It is defined as follows.

2.55. Definition Let X be a topological space. Its fundamental groupoid τ≤1(X) is the
groupoid whose objects are the points of X and where

Homτ≤1(X)(x, y) = π0(Ωx,y(X))

is given by homotopy classes rel endpoint of paths [0, 1] → X from x to y. Composition
is defined by concatenation of paths and appropriate reparametrisation. Units are given by
constant paths. Inverses of paths are given by the same path run in opposite direction.

2.56. Remark For X a topological space and x ∈ X, we have an isomorphism of groups
π1(X,x) ∼= Homτ≤1(X)(x, x). Moreover, in a groupoid G, any morphism f : x → y induces

an isomorphism of groups AutG(x) ∼= AutG(y). For a choice of path γ from x to x′, viewed
as element of Homτ≤1(X)(x, x

′), the associated isomorphism π1(X,x) ∼= Homτ≤1(X)(x, x) ∼=
Homτ≤1(X)(y, y) ∼= π1(X, y) equals the one which is obtained from Lemma 2.20 by applying
π0.

The theorem we aim to prove is the following.

2.57. Theorem (Seifert van Kampen - Groupoid version) Let X be a topological space and

let A,B ⊆ X be subspaces such that Å ∪ B̊ = X. Then the induced diagram

τ≤1(A ∩B) τ≤1(A)

τ≤1(B) τ≤1(X)

is a pushout in Gpd.

Proof. Consider a commutative diagram of groupoids as follows:

τ≤1(A ∩B) τ≤1(A)

τ≤1(B) G

FA

FB

Then we need to show that there exists a unique functor F : τ≤1(X) → G whose restriction
to τ≤1(A) is FA and whose restriction to τ≤1(B) is FB. To define F we need to evaluate
it on objects and morphisms. Evaluating on objects is easy: pick x ∈ X. If x ∈ A, then
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define F (x) = FA(x). If x ∈ B, define F (x) = FB(x). If x ∈ A ∩ B, then FA(x) = FB(x) by
the commutativity of the above diagram, so this association is well-defined. So let us try to
define F on morphisms, i.e. on a path γ : [0, 1] → X from x to x′. Consider the open cover
[0, 1] = γ−1(A) ∩ γ−1(B). By definition of the topology on [0, 1], for each t ∈ [0, 1] there
exists an ϵt > 0 such that the closed ϵt ball (aka interval) around t is contained in γ−1(A) or
γ−1(B). Since [0, 1] is compact, we can find finitely many such intervals which cover [0, 1]. As
a consequence, we can find 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 such that γ([ti, ti+1]) is contained in A
or B. In particular, γ = γn ⋆ · · · ⋆ γ1, where γi is γ restricted to [ti−1, ti] and reparametrized
appropriately. Since F is supposed to be a functor we must define F (γ) = F (γn)◦ · · · ◦F (γ1).
Since γi is a path in either A or B, and F restricted to τ≤1(A) is supposed to be equal to FA,
and restricted to τ≤1(B) is supposed to be FB, F (γ) is determined by these properties. It
remains to show that this definition is well-defined and indeed gives a functor F : τ≤1(X)→ G.
For well-definedness, we need to show that F (γ) = F (γ′) if γ is homotopic rel endpoints to γ′.
Pick a homotopy rel endpoints H : [0, 1]× [0, 1]→ X from γ to γ′. By a similar argument as
above, we can find an N ≥ 0 such that [0, 1]× [0, 1] is the union of N2 many small squares of
side length 1

N (in the obvious fashion) and such that H sends each such small square to A or
to B. Since FA and FB are well-defined, we see that so is F . Finally, we need to see that the
so defined F is a functor. Let x ∈ A. Then F (idx) = idF (x) since idx is the constant path at
x, hence contained in A so that F (idx) = FA(idx) = idFA(x) = idF (x). Similarly one argues
when x ∈ B. Now suppose γ and γ′ are composable paths. Write γ and γ′ as compositions
of paths which lie in A or B. Then γ′ ⋆ γ is the composition of these many small paths all
of which lie in A or in B. Hence, F (γ′ ⋆ γ) is given by applying F to all small pieces and
composing. The same is true for F (γ′) ◦ F (γ), showing that F is indeed a functor.

□

We will show that τ≤1(X) has a further universal property which we intend to exploit in
the following. To formulate it, we need one bit of notation.

2.58. Construction Given functors C1
F1−→ C0

F2←− C2, let us define a category C1×̂C0C2 as
follows. The objects are triples (X1, Y1, α) where Xi ∈ Ci and α : F1(X1) → F2(X2) is an
isomorphism. A morphism from (X1, X2, α) to (Y1, Y2, β) consists of a morphism fi : Xi → Yi
such that the diagram

F1(X1) F2(X2)

F1(Y1) F2(Y2)

α

F1(f1) F2(f2)

β

commutes.
Note that the full subcategory of C1×̂C0C2 on triples (X1, X2, idF1(X1)) canonically identifies

with the pullback in the category of categories Cat of the diagram C1 → C0 ← C2.
The construction C1×̂C0C2 is often called the 2-categorical pullback of the diagram C1 →

C0 ← C2.
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2.59. Lemma Suppose given a commutative diagram of functors

C1 C0 C2

D1 D0 D2

L1

F1

L0

F2

L2

G1 G2

It induces a canonical functor C1×̂C0C2 → D1×̂D0D2. This functor is

(1) fully faithful if Li is fully faithful for all i = 0, 1, 2,,
(2) essentially surjective if L1 and L2 are essentially surjective and L0 is fully faithful.

In particular, it is an equivalence of categories if Li is an equivalence of categories for all
i = 0, 1, 2.

Proof. Exercise. □

2.60. Definition A functor F : C → C′ is called an isofibration if for all objects X ∈ C

and isomorphisms α : F (X) ∼= X ′ in C′ there exists an isomorphism ᾱ : X → X̄ such that
F (ᾱ) = α.

2.61. Example Let G0 → G1 be a functor between small groupoids which is injective on
objects and let G be another groupoid. Then the restriction functor Fun(G1,G)→ Fun(G0,G)
is an isofibration. Indeed, unwinding the definitions, we need to show that any functor
G0 ×∆1 ⨿G0×{0} G1 × {0} → G can be extended to a functor G1 ×∆1 → G, i.e. that G0 → G1

satisfies a version of a homotopy extension property. This is left as an exercise.

2.62. Lemma Let C1
F1−→ C0

F2←− C2 be functors and assume that F1 is an isofibration. Then
the canonical functor C1 ×C0 C2 → C1×̂C0C2 is an equivalence of categories.

Proof. We have already observed that the canonical functor is fully faithful. To see essential
surjectivity, consider an object (X1, X2, α : F1(X1) ∼= F2(X2)). Since F1 is an isofibration, we
find an isomorphism ᾱ : X1 → X ′

1 with F (ᾱ) = α, in particular we find F1(X
′
1) = F2(X2).

Consider then the object (X ′
1, X2, idF1(X1)). Moreover, pair (ᾱ, idX2) defines an isomorphism

from (X1, X2, α) to (X ′
1, X2, id). □

2.63.Corollary For any groupoid G, the diagram appearing in Theorem 2.57 induces a natural
equivalence of groupoids

Fun(τ≤1(X),G) −→ Fun(τ≤1(B),G)×̂Fun(τ≤1(A∩B),G)Fun(τ≤1(A),G).

Proof. First, we claim that the pushout diagram of Theorem 2.57 induces an isomorphism of
functor categories

Fun(τ≤1(X),G) ∼= Fun(τ≤1(B),G)×Fun(τ≤1(A∩B),G) Fun(τ≤1(A),G).

On the level of objects, this follows immediately from Theorem 2.57. For morphisms, we
use that the functor −×∆1 preserves pushouts (it has a right adjoint given by Fun(∆1,−)).
Hence the square of Theorem 2.57 remains a pushout upon applying −×∆1. This shows that
natural transformations between functors τ≤1(X) → G are also as claimed. Finally, we use
Lemma 2.62 together with Example 2.61, observing that τ≤1(A ∩ B) → τ≤1(B) is injective
on objects. □
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2.64. Corollary (Seifert van Kampen - Group version) Let X be a topological space and let

A,B ⊆ X be subspaces such that Å ∪ B̊ = X. Assume that A ∩ B, A, B are path connected
and choose a basepoint x ∈ A ∩B. Then the induced diagram

π1(A ∩B, x) π1(A, x)

π1(B, x) π1(X,x)

is a pushout in Grp. Equivalently, the canonical map π1(B, x) ∗π1(A∩B,x) π1(A, x)→ π1(X,x)
is an isomorphism of groups.

Proof. It suffices to show that the composite

B(π1(B, x) ⋆Bπ1(A∩B,x) π1(A, x)) −→ Bπ1(X,x)→ τ≤1(X)

is an equivalence of categories. To do this, we consider the commutative diagram

Bπ1(B, x) Bπ1(A ∩B, x) Bπ1(A, x)

τ≤1(B) τ≤1(A ∩B) τ≤1(A)

whose vertical arrows consist of equivalences by the assumptions that all spaces appearing
are path-connected. For each groupoid G, we then obtain that the canonical functor

Fun(Bπ1(B, x),G)×̂Fun(Bπ1(A∩B,x))Fun(Bπ1(A, x),G) −→ Fun(τ≤1(B),G)×̂Fun(τ≤1(A∩B),G)Fun(τ≤1(A),G)

is an equivalence of categories, see Lemma 2.59. Corollary 2.63, and its variant for the pushout
diagram

Bπ1(A ∩B, x) Bπ1(A, x)

Bπ1(B, x) B(π1(B, x) ⋆π1(A∩B,x) π1(A, x))

hence gives a natural equivalence of categories

Fun(B(π1(B, x) ⋆Bπ1(A∩B,x) Bπ1(A, x),G) ≃ Fun(τ≤1(X),G).

The Yoneda lemma then shows that the functor

B(π1(B, x) ⋆Bπ1(A∩B,x) π1(A, x)) −→ τ≤1(X)

is indeed an equivalence of categories as needed. □

2.65. Corollary There is an isomorphism π1(S
1) ∼= Z.

Proof. First, we calculate τ≤1(S
1) as follows. We cover S1 by two intervals with intersection

given by the disjoint union of two intervals. Using the above results, we then obtain a natural
equivalence

Fun(τ≤1,G) ≃ Fun(∗,G)×̂Fun(∗⨿∗,G)Fun(∗,G) ≃ G×̂G×GG

since τ≤1((0, 1)) ≃ ∗, and τ≤1((0, 1) ⨿ (0, 1)) ≃ ∗ ⨿ ∗. In the last formula, the functors that
appear are the diagonal functors. Now, let us calculate this final term: It is a groupoid whose
objects are given by triples (x, y, (α, β)) where α, β : x → y are isomorphisms, and where a
morphism to (x′, y′, (α′, β′)) are given by tuples (f, g) where f : x → x′ and g : y → y′ are
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isomorphisms intertwining α, α′ and β, β′. Now consider the category Fun(BZ,G). Its objects
are given by pairs (x, γ) where γ : x → x is an automorphism, and where morphisms from
(x, γ) to (x′, γ′) are given by isomorphisms f : x→ x′ intertwining γ, γ′. We claim that there
is a natural equivalence

Fun(BZ,G) ≃ G×̂G×GG

given by sending (x, γ) to (x, x, (γ, id)). (Exercise: the inverse is given by sending (x, y, (α, β)
to (x, α−1β)). In total, we obtain a natural equivalence

Fun(BZ,G) ≃ G×̂G×GG ≃ Fun(τ≤1(S
1),G)

so that again the Yoneda lemma implies that BZ and τ≤1(S
1) are equivalent. In particular,

π1(S
1) ∼= Z. □

2.66.Remark We will later see that one can make this a priori abstract isomorphism π1(S
1) ∼=

Z explicit in two ways: First, we claim that the map Z→ π1(S
1) given by sending 1 to [idS1 ]

is an isomorphism. Furthermore, we will construct an invariant deg : π1(S
1) → Z which

implements an inverse to this isomorphism. The degree, or the winding number of a loop
simply counts (with signs) how often the loop passes the basepoint of S1 – one can arrange
up to homotopy that γ : S1 → S1 has the property that the preimage of 1 is a discrete, and
hence finite subset of S1.

Before finishing, let us use the Seifert van Kampen theorems to calculate fundamental
further spaces.

2.67. Example (Suspensions) Let X be a path connected topological space and recall that
Σ(X) denotes its suspension. Then π1(Σ(X), x) = 1. In particular, π1(S

n, 1) = 1 for n ≥ 2.
Indeed, we may cover Σ(X) by Σ(X) \ {N} and Σ(X) \ S where N and S are the north and
south poles of the suspension, respectively. We claim that Σ(X) \ {N} is homeomorphic to
C(X) which is contractible (Exercise). Moreover, Σ(X) \ {N}∩Σ(X) \ {S} is homeomorphic
to X × (0, 1) and hence homotopy equivalent to X. Since X is path connected, the group-
version of Seifert van Kampen, Corollary 2.64, applies and gives a pushout diagram of groups
as follows:

π1(X,x) π1(C(X), x)

π1(C(X), x) π1(Σ(X), x)

Since π1(C(X), x) = 1, we deduce that π1(Σ(X), x) = 1 as well.

2.68. Example (Wedges) Let (X,x) and (Y, y) be pointed spaces. Assume that there exist
open and contractible subsets U ⊆ X and V ⊆ Y containing x and y, respectively, which
deformation retract onto x and y, respectively. Then the canonical map π1(X,x)⋆π1(Y, y)→
π1(X ∨ Y, [x]) is an isomorphism. Indeed, we consider the open cover of X ∨ Y given by

U ∨ V U ∨ Y

X ∨ V X ∨ Y
to which we want to apply Seifert van Kampen. Since U and V deformation retract to x and
y, we find that U ∨Z and Z ∨V are pointed homotopy equivalent to Z, for any pointed space
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Z. Consequently, by applying π1 to the above pushout diagram and using Corollary 2.64, we
obtain that the square

1 π1(Y, y)

π1(X,x) π1(X ∨ Y, [x])
is a pushout.

2.69. Remark CW complexes satisfy the assumption of the previous example for any base-
point. This is a slight refinement of Proposition 2.35 (6). In practice, one can also verify
this condition by hand. In particular, for CW complexes X and Y , the canonical map
π1(X) ⋆ π1(Y )→ π1(X ∨ Y ) is an isomorphism.

2.70. Example (Punctured complex line) Consider C \ {S} for a finite set S of cardinality
n. This space is homotopy equivalent to

∨
n S

1 (Exercise). Note that 1 ∈ S1 indeed has
a neighborhood which deformations retracts onto 1. Hence by the previous example and
Corollary 2.65, we obtain π1(C \ {S}) = Fn, the free group on n generators.

2.71. Example (Punctured complex projective line) Consider CP1 \ {S} where again S is a
set of cardinality n. Since CP1 ∼= S2, the stereographic projection implies that CP1 \ {S} ∼=
C \ {S \ {s}}. We deduce that

π1(CP1 \ {S}) ∼= Fn−1.

2.72. Example (Presentation complex) Let S be a set and let R ⊆ FS be a set of words in
the free group FS on the elements of S. The group G(S,R) = FS/⟨R⟩, where ⟨R⟩ denotes
the smallest normal subgroup of FS containing R, is called the group presented by (S,R).
Concretely, G(S,R) is generated by the elements of S and has relations precisely the ones
generated by R. The pushout

⨿r∈RS
1

∨
s∈S S

1

⨿r∈RD
2 C(S,R)

r

r̄

is called the presentation complex for the presentation (S,R) of G(S,R). Consider for each
r ∈ R the point r̄(0) ∈ C(S,R). Then we may consider the open cover of C(S,R) given by

C(S,R) =
⋃
r∈R

r̄(D̊2) ∪ C(S,R) \ {
⋃
r∈R

r̄(0)}.

Its intersection is given by
∐

r∈RD
2r̄(D̊2 \ {0}. These spaces are homotopy equivalent to

the three pieces defining C(S,R), in a compatible way. The groupoid version of Seifert van
Kampen implies then that the map FS

∼= π1(
∨

S S
1)→ π1(C(S,R)) is surjective with kernel

generated by R. Consequently, there is a canonical isomorphism FS/⟨R⟩ → π1(C(S,R)),
hence the name presentation complex.

2.73. Remark The presentation complex for Z/2Z with its obvious presentation is given by
RP2. We will see later, that for n ≥ 2, πn(RP2) is not necessarily trivial. In particular,
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presentation complexes can have interesting higher homotopy groups2. Suppose given a pre-
sentation (S,R) with |R| = 1, generalizing the case of Z/2Z. Such presentations are called
one-relator presentations. If FS/⟨R⟩ admits non-trivial torsion, e.g. if R = T k for some k > 1
and T ∈ FS \1, then one can show that C(S,R) must again have non-trivial higher homotopy
groups (we might see arguments that go into such a proof in the next terms). Conversely,
it is known that if FS/⟨R⟩ is torsionfree (such groups are then called torsionfree one-relator
groups) the presentation complex C(S,R) does not have non-trivial higher homotopy groups.

Furthermore, it is a conjecture (currently still open) of Whitehead that if (S,R) is a pre-
sentation such that πn(C(S,R)) = 0 for all n ≥ 2 and R′ ⊆ R, then πn(C(S,R

′)) = 0 for all
n ≥ 2 as well. When R consists of a single element and is such that FS/⟨R⟩ is torsionfree, the
conjecture predicts that C(S, ∅) =

∨
S S

1 has trivial higher homotopy groups. We will show
that this is indeed the case in the next section on covering theory.

2.74. Example (Closed orientable surfaces) Let g ≥ 0 be a natural number. Consider a
regular 4g-polygon in the plane. Identify the edges of the polygon according to the following
picture to obtain the orientable genus g surface Σg.

On the exercise sheet, you are asked to show that there exists a pushout

S1
∨

2g S
1

D2 Σg

αg

with α = x1y1x
−1
1 y−1

1 x2y2x
−1
2 y−1

2 . . . xgygx
−1
g y−1

g , thereby giving Σg the structure of a 2-
dimensional CW complex. In other words, Σg is the presentation complex of the canonical

presentation of the group F2g/⟨x1y1x−1
1 y−1

1 . . . xgygx
−1
g y−1

g ⟩, and in particular, we have

π1(Σg) ∼= F2g/⟨x1y1x−1
1 y−1

1 . . . xgygx
−1
g y−1

g ⟩.

Note that Σ1
∼= T 2 ∼= S1 × S1. Hence π1(T

2) ∼= F2/⟨xyx−1y−1⟩ ∼= Z2 ∼= Z × Z ∼= π1(S
1) ×

π1(S
1), in line with the previously established fact that π1 commutes with products.

3. Covering theory

3.1. Definition A continuous map p : E → B between topological spaces is called a covering
map if there exists an open cover {Ui}i∈I of B such that for each i ∈ I there are homeomor-
phisms θi : p

−1(Ui) ∼=
∐
Fi

Ui where Fi is a set, such that the diagram

p−1(Ui)
∐
Fi

Ui

Ui

θi

p pr

commutes, where pr denotes the canonical map which is the identity on each disjoint factor.
Such an open cover is called a trivializing open cover for p. For each b ∈ Ui, the map θi induces

2Furthermore, it turns out that πn(C(S,R)) ̸= 0 for some n ≥ 2 is equivalent to the condition that
π2(C(S,R)) ̸= 0.
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a bijection between p−1(b) and Fi. We will also write Fibpb (or Fibb is p is understood) for
p−1(b) and refer to it as the fibre of p over b.

3.2. Remark We allow that fibres are empty. In other words, the map ∅→ B is a covering
map in the above sense. As a consequence, a covering map need not be surjective. Moreover,
recall that ⨿FiUi is homeomorphic to Ui × Fi. Under this homeomorphism what we have
called pr above is indeed the projection. Therefore, we may equivalently require that θi is a
homeomorphism p−1(Ui)→ Ui × Fi.

3.3. Example The map B×F → B is a covering map. It is called the trivial covering, whose
fibres are isomorphic to F .

3.4. Definition Let G be a group and X a topological space. We say that a continuous action
of G on X is covering-like if for all x ∈ X there is an open subset U ⊆ X containing x such
that gU ∩ U = ∅ for all g ̸= e.

3.5. Lemma Let G act continuously and freely on a space X. Then for any choice of basepoint
x ∈ X, the action of G on p−1(p(x)) is free and transitive. Moreover, the quotient map
p : X → X/G is a covering map if and only if the action is covering-like.

Proof. To begin, we first observe that the action of G on p−1(p(x)) is always transitive, by
definition of the quotient space X/G. Hence if the action G action on X is also free, then the
action of G on p−1(p(x)) is free and transitive as claimed.

Now assume that the action is covering-like. To see that p is a covering map, for x in X pick
an open U containing x such that gU ∩U is empty unless g = e. Since p−1(p(U)) =

⋃
g∈G gU ,

we see that p(U) is open. The assumption that gU ∩ U is empty unless g = e shows that
p−1(p(U)) is homeomorphic to U × G, compatible with the projection to U . Hence p is a
covering map.

Conversely, assume that p is a covering map. For x ∈ X pick an open set U ⊆ X/G
containing p(x) such that p−1(U) ∼= U × F for some set F , compatible with the map p.
Choose f ∈ F such that x ∈ U × {f}. Now let g ∈ G and assume that g(U × {f})∩U × {f}
is not empty, say x is in the intersection. Then there exists y ∈ U ×{f} such that x = gy. In
particular, we have p(x) = p(gy) = p(y). Since p is injective when restricted to U × {f}, we
deduce that x = y, and consequently that y = gy. Since the G-action is assumed to be free,
we find g = e. This shows that the action is covering-like. □

3.6.Remark One cannot drop the assumption that the action of G onX is free in Lemma 3.5.
Indeed, a covering-like action is always free, but there are group actions such that X → X/G
is a covering map without the action being free: For instance, consider the trivial action of G
on X. Then X/G is homeomorphic to X, and p is a homeomorphism, in particular a covering
map.

3.7. Example (1) The action of Z on R by translation is covering-like. Consequently,
we obtain a covering map R → R/Z. Combined with the canonical homeomorphism
R/Z→ S1, this shows that exp: R→ S1 is a covering map.

(2) The actions of Z ⋊ Z and Z2 on R from Exercise 3 Sheet 2 are covering-like. Con-
sequently, we obtain covering maps R2 → T 2 and R2 → K. Likewise, the residual
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action of C2 on R2/Z2 = T 2 is covering-like, so the induced map T 2 → K is again
covering map.

3.8. Definition We define a category Cov(B) whose objects are the covering maps p : E → B
and where a morphism from p : E → B to p′ : E′ → B is given by a continuous map f : E → E′

such that p′f = p. In other words, we define Cov(B) to be the full subcategory of the slice
category Top/B whose objects are covering maps. The morphisms in Cov(B) will be called
maps of coverings.

The main goal of this section is to give an algebraic description of the category Cov(B),
whenever possible. We will deviate slightly from the usual way this is done and spell out the
classical results later.

3.9. Lemma Let p : E → B be a covering map and let f, g : Z → E be continuous maps such
that pf = pg. Assume that Z is connected and that there exists z ∈ Z such that f(z) = g(z).
Then f = g.

Proof. Consider the set {z ∈ Z | f(z) = g(z)}, i.e. the equalizer Eq(f, g) of f and g, which
is non-empty by assumption. We have that Eq(f, g) = (f, g)−1(∆(E)), where (f, g) : Z →
E ×B E and ∆: E → E ×B E is the diagonal. Since (f, g) is continuous, Eq(f, g) is closed if
∆(E) is closed. We have shown in Exercise 5 Sheet 3 that this is the case since two distinct
points in a fibre p−1(b) can indeed be separated by open subsets of E, simply by picking an
neighborhood U of b such that p−1(U) ∼= U × F . We now show that Eq(f, g) is also open.
Indeed let z ∈ Eq(f, g). Then there exists an open neighborhood V of f(z) = g(z) in E such
that p|V is injective. Consider V ′ = f−1(V ) ∩ g−1(V ) ⊆ Z, which is an open neighborhood
of z. For any z′ ∈ V ′, to see that f(z′) = g(z′) we may post compose with the injective map
p|V , where it is true by the assumption that pf = pg. Hence, Eq(f, g) ⊆ Z is closed, open
and non-empty and hence equal to Z since Z is connected. □

The following theorem is fundamental to almost all applications and results on covering
maps:

3.10. Theorem (Unique path lifting) Let p : E → B be a covering map.

(1) Let γ : [0, 1]→ B be a path and e ∈ Fibb. Then there exists a unique path γ̄e : [0, 1]→
E such that γ̄(0) = e and pγ̄ = γ.

(2) If γ and γ′ are homotopic rel endpoints, and e ∈ Fibb, then the lifted paths γ̄e and γ̄′e
are homotopic rel endpoints.

Proof. (1) Uniqueness follows from Lemma 3.9. So let us show existence. Pick a trivializing
open cover {Ui} for p. Then {Vi} = γ−1({Ui}) is an open cover of [0, 1]. We may therefore
write [0, 1] = [0, a1]∪ [a1, a2]∪ · · · ∪ [an−1, 1] as a union of closed intervals Ij = [aj−1, aj ], such
that γ(Ij) is contained in Ui for some i ∈ I. Consequently, γ can be written as a concatenation
of paths γn ⋆ · · · ⋆ γ1 such that γi has image in Ui. Inductively, it suffices to find a lift γ̄1e: Its
endpoint e2 is contained in the fibre over γ1(1) and serves as the new e, the starting point for
a lift γ̄2e2 of γ2. Since {Ui} is a trivializing open cover for p, we find a neighborhood V of e

in E such that p|V : V → Ui is a homeomorphism. So we define γ̄1e to be p−1
|V ◦ γ1.

(2) Let H : [0, 1] × [0, 1] → B be a homotopy rel endpoints from γ to γ′. By a similar
argument as above, we can find an ϵ > 0 such that [0, 1]× [0, 1] is the union of small squares
of side-length ϵ, and each of these small squares is sent viaH to one of the open sets Ui. Again,
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we wish to lift the map H inductively over all the small squares to H̄ : [0, 1] × [0, 1] → E.
We start with the square which contains (0, 0). Using again that there is a neighborhood
of e restricted to which p is a homeomorphism, we can lift H to H̄ on this small square.
This determines in similar fashion lifts of H to all squares which intersect the first one non-
trivially. We observe that the so lifted pieces indeed combine to a continuous map since any
two restrictions to the intersection of two neighboring squares are lifts of the same path in B
with same start (or end) point, and hence agree by the uniqueness part of (1). In total, we
obtain a lift H̄ ofH with H̄(0, 0) = e. Now, H̄(−, 0) is a lift of the constant homotopy at b and
H̄(−, 1) is a lift of the constant homotopy at b′ since H is relative endpoints (again using the
uniquenss of lifts). Therefore, H̄ is a homotopy relative endpoints from H̄(0,−) to H̄(1,−).
These are lifts of H(0,−) and H(1,−) which are γ and γ′, respectively. Moreover, H̄(0, 0) = e
by construction, and H̄(1, 0) = e since H̄ is relative endpoints. Again by uniqueness, H̄ is
then a homotopy rel endpoints between γ̄e and γ̄′e. □

3.11. Corollary Let p : E → B be a covering map and e ∈ E. Then the map p∗ : π1(E, e)→
π1(B, p(e)) is injective. Its image consists of the loops γ at p(e) whose (uniquely) lifted path
γ̄e is again a loop.

Proof. The subset of π1(B, p(e)) consisting of those loops which lift to closed paths is a
subgroup. On this subgroup, we find an inverse by lifting. □

3.12. Lemma Let G be a group which acts covering-like on a path connected space X and let
x ∈ X. Then there is a short exact sequence of groups as follows.

1 −→ π1(X,x)
p∗−→ π1(X/G, [x])

m−→ G −→ 1.

In particular, if π1(X,x) = 1, then π1(X/G, [x]) ∼= G.

Proof. By Corollary 3.11, we know that p∗ is injective. We write p : X → X/G for the
projection and define a map m : π1(X/G, [x])→ G as follows: Let γ : [0, 1]→ X/G be a closed
path at [x]. We may lift it to a path γ̄ : [0, 1] → X with γ̄(0) = x. Then γ̄(1) = g(γ)x
for a unique g(γ) ∈ G by Lemma 3.5. Sending [γ] to this g(γ) is then a well-defined group
homomorphism m. Now for g ∈ G, we may choose a path connecting x and gx since X is
path connected. The image of this path is then a closed path in X/G and hence represents an
element of π1(X/G, [x]). Its image under m is then given by g, showing that m is surjective.
Moreover, the kernel of m consists of those loops [γ] which lift to a closed loop at x in X.
Again by Corollary 3.11, we find that the kernel of m equals the image of p∗ as needed. □

As promised, we reprove the calculation of the fundamental group of S1:

3.13. Example We have π1(S
1, 1) ∼= Z. Indeed, we have seen earlier that the exponential

function defines a homeomorphism R/Z ∼= S1, and Z acts covering-like on R. Moreover, we
find that a concrete isomorphism is given by lifting a loop γ at 1 in S1 to a path in R starting
at 0. Its endpoint is then some integer, called the degree of the loop γ. Hence, the degree
defines an isomorphism π1(S

1, 1) → Z. Since deg(idS1) = 1, we also see that the inverse to
the degree isomorphism is the map Z→ π1(S

1) sending 1 to [idS1 ]. Moreover, this map sends
n to the map x 7→ xn on S1.

Similarly, we have π1(K, [0]) ∼= Z ⋊ Z, as the Klein bottle was defined as the quotient
R2/Z ⋊ Z, and again the action of Z ⋊ Z on R2 is covering-like.

The subgroup p∗(π1(E, e)) ⊆ π1(B, p(e)) is called the characteristic subgroup of p at e.
These subgroups serve the following purpose:
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3.14. Proposition Let p : E → B be a covering map and let f : X → B be a continuous map
with X locally and globally path connected. Then there exists a continuous map f̃ : X → E
with pf̃ = f if and only if for some basepoint x ∈ X, we have f∗(π1(X,x)) ⊆ p∗(π1(E, e)) for
some e ∈ Fibpf(x).

Proof. If there exists f̃ with pf̃ = f , then the composite

π1(X,x)
f̃∗−→ π1(E, f̃(x))

p∗−→ π1(B, f(x))

is given by f∗, showing that f∗(π1(X,x)) ⊆ p∗(π1(E, f̃(x))). Conversely, assume given an

e ∈ Fibpf(x) such that f∗(π1(X,x)) ⊆ p∗(π1(E, e)). We define f̃ as follows. Let x′ ∈ X and

pick a path γ from x to x′. The define f̃(x′) = ¯f(γ)e(1). First, we argue that the so defined

map f̃ is well-defined, i.e. independent of the choice of γ. So let γ′ be another path from x
to x′. Then γ′−1 ⋆ γ is a loop at x and f(γ−1 ⋆ γ) is therefore an element of f∗(π1(X,x)).
By assumption, this loop lifts to a closed path in E, starting (and ending) at e. This implies

that ¯f(γ−1)f̃(x)(1) = e, and hence that ¯f(γ)e = f̃(x). We note that, by construction, pf̃ = f .

It remains to show that f̃ : X → E is continuous. So let U ⊆ E be open, since any such
open is the union of opens of the form θ−1(V × {f}) for some open V ⊆ B, we may assume
that U is itself of this form, and in particular that p|U : U → V is a homeomorphism. In

this case, we find f̃−1(U) ⊆ f−1(V ). Pick x′ ∈ f̃−1(U) and an open and path-connected set

V ′ ⊆ f−1(V ) containing x. For y ∈ V ′, we may calculate f̃(y) by choosing a path γ from x′

to y in X, and then taking ¯f(γ)f̃(x). Since f(V ′) ⊆ V , a lift of f(γ) is given by p−1
|U (f(γ)).

This shows that V ′ ⊆ f̃−1(U), and hence that f̃ is continuous. □

3.15. Remark We note that the proof above shows that if f∗(π1(X,x)) ⊆ p∗(π1(E, e)), then
the constructed map f̃ satisfies f̃(x) = e. By Lemma 3.9, the map f̃ is uniquely determined

by this property together with the requirement that pf̃ = f .

3.16. Corollary Let p : E → B be a covering map and e ∈ E. Then the induced map
p∗ : πn(E, e)→ πn(B, p(e)) is an isomorphism for all n ≥ 2.

Proof. We begin with surjectivity. So let α : (Sn, 1) → (B, p(e)) be a pointed map. By
Example 2.67, π1(S

n, 1) = 1 since n ≥ 2. Therefore, Proposition 3.14 implies that α lifts to a
pointed map ᾱ : (Sn, 1)→ (E, e) as needed. To see that p∗ is injective, assume α, α′ : (Sn, 1)→
(E, e) are pointed maps and that p(α) and p(α′) are pointed homotopic. Choose such a pointed
homotopy H : Sn × [0, 1] → B. Since π1(S

n × [0, 1], (1, 0)) = 1, Proposition 3.14 gives a lift
H̄ : Sn × [0, 1]→ E with H̄(1, 0) = e. Since H(1,−) is constant at p(e) and H̄(1,−) is a lift
of H with startpoint e, we deduce from the uniqueness of the lift that H̄(1,−) is constant at
e. In particular H̄(1, 1) = e. Then we find that H̄(−, 0) and α both lift p(α) and agree on
1 ∈ Sn. Likewise, H̄(−, 1) and α′ both lift α′ and agree on 1 ∈ Sn. Therefore, H̄ is a pointed
homotopy between α and α′ (by the uniqueness of lifts yet again). □

3.17. Corollary For n ≥ 2, we have πn(S
1, 1) = 0, πn(T

2, [0]) = 0 and πn(K, [0]) = 0.
Indeed, this follows from Corollary 3.16 since R and R2 are contractible and hence have
trivial homotopy groups. Likewise, we can define T d, the d-dimensional torus as Rd/Zd for
all d ≥ 1. Then we find that T d ∼= (S1)×d and in particular we find πn(T

d, [0]) = 0 for n ≥ 2.

3.18. Example The upper half plane H = {x ∈ C | Im(x) > 0} in the complex plane
is endowed with a canonical metric, the hyperbolic metric. We do not spell this out here.
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However, we wish to say that the isometry group of H is given by PSL2(R), i.e. the quotient
of SL2(R) by the subgroup C2 generated by the matrix(

−1 0
0 −1

)
∈ SL2(R).

The quotient topology endows PSL2(R) with a topology making it a topological group (in fact,
a Lie group). The action of PSL2(R) on H is given by what are called Möbius transformations:(

a b
c d

)
· z = az + b

cz + d

Any discrete subgroup of PSL2(R), that is a subgroup whose subspace topology is the
discrete topology, therefore still acts on H and one can show that this action is proper in the
sense of Exercise 3 Sheet 8 [Kha12, Theorem 3.17]. In particular, it is covering-like if it is free.
Discrete subgroups of PSL2(R) have a name, they are called Fuchsian groups. Consequently,
whenever a Fuchsian group Γ acts freely on H (this turns out to be equivalent to the condition
that Γ is torsionfree), we obtain a topological space H/Γ with a covering map H→ H/Γ3. The
quotient spaces H/Γ then have fundamental group isomorphic to Γ and all higher homotopy
groups vanish (since H is contractible). Many interesting groups arise in this form (this is,
however, not obvious from what we have discussed so far): For instance the surface groups
π1(Σg) for g ≥ 2 are of this kind, as well as the free groups Fn for n ≥ 1.

3.19. Remark The above type of example is not restricted to 2-dimensional hyperbolic space.
For any n ≥ 2 one can consider n-dimensional hyperbolic space Hn, euclidean space Rn and
for the spheres Sn. These are examples of what are called Riemannian manifolds of constant
curvature, the curvatures being −1 in the hyperbolic, 0 in the euclidean and 1 in the spherical
case. Any discrete subgroup Γ of such isometry groups acting covering-like on these spaces
therefore give rise to covering maps, whose quotients have fundamental group Γ, and whose
higher homotopy groups are trivial (in case of Hn and Rn) or that of Sn in the remaining
case.

3.20. Example We deliver here on the promise to show that
∨

S S
1 has no higher homotopy

groups. Indeed, to show this, it suffices to construct a covering of
∨

S S
1 whose higher ho-

motopy groups vanish. An appropriate tree does covers
∨

S S
1, as we work out on Exercise

Sheet 9. We may then use that trees are contractible to deduce the result. Using such tricks
to calculate fundamental groups is a prominent tool in geometric group theory, and the above
ideas are vastly generalized by what is called Bass–Serre theory.

We continue towards describing the category Cov(B). First, we note that path lifting for
coverings gives the following construction.

3.21. Notation For a covering map p : E → B, and a path γ from b to b′ in B, we obtain a
map τγ : Fibb → Fibb′ by sending e to γ̄e(1). We call τγ the monodromy action on γ.

3The quotient spaces H/Γ therefore locally look homeomorphic to 2-dimensional euclidean space and are
consequently examples of 2-dimensional manifolds. For a general Fuchsian group Γ the topological spaces H/Γ
are still relatively nice: They are manifolds away from isolated points of singularities and the singularities can
be explicitly described in terms of the isotropy groups which appear in the Γ-action on H. These quotient
spaces H/Γ are called orbifolds.
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3.22. Lemma Let p : E → B be a covering map. The association sending b ∈ B to τb :=
Fibpb = p−1(b) and a path γ from b to b′ to its monodromy action τγ : Fibb → Fibb′ assembles
into a functor τp : τ≤1(B)→ Set.

Proof. In Theorem 3.10 (2), we have shown that τγ depends only on the homotopy class rel
endpoints of γ, and hence gives a well-defined function on the set of morphisms in τ≤1(B).
We need to check that the axioms of a functor are satisfied, that is, that τidb = idτb and that
τγ′⋆γ = τγ′ ◦ τγ , both of which follow from the uniqueness of path-lifting. □

We call the functor τp the monodromy functor of p.

3.23. Lemma For i = 0, 1, let pi : Ei → B be a covering map and let f : E0 → E1 be a
morphism in Cov(B). Then the canonical maps f : Fibp0b → Fibp1b are the components of a
natural transformation ηf : τp → τp′.

Proof. We need to show that for each path γ from b to b′, the following diagram commutes.

p−1
0 (b) p−1

1 (b)

p−1
0 (b′) p−1

1 (b′)

f

τγ τγ

f

So let e ∈ p−1
0 (b). Then the top right composite is given by e 7→ γ̄f(e)(1), whereas the lower

left composite is given by e 7→ f(γ̄e(1)). Both of these are the evaluation at 1 of a lift of γ in
E1 with starting point f(e), hence they agree by uniqueness of path lifting. □

3.24. Corollary Let B be a space. There is a functor Fib: Cov(B) → Fun(τ≤1(B), Set)
sending a covering map p to its monodromy functor τp and a map f of coverings to the
natural transformation ηf .

Proof. We need to check that Fib is compatible with identities and composition of maps of
coverings. Both follow immediately from the definitions. □

To formulate the fundamental theorem of covering theory, we need one more definition:

3.25. Definition A topological space X is called semi-locally simply-connected if for every
point x ∈ X there exists an open subset V ⊆ X containing x such that the map π1(V, x) →
π1(X,x) is trivial.

3.26. Theorem (Fundamental theorem of covering theory) Let B be a locally path connected
space. Then the functor

Fib: Cov(B)→ Fun(τ≤1(B), Set)

is fully faithful. It is essentially surjective (and hence an equivalence of categories) if and only
if B is semi-locally simply connected.

The proof will be divided into two parts: A reduction to the path connected case (which we
explain in the following remark) and then a proof of an equivalent formulation of Theorem 3.26
in this case.

3.27. Remark Suppose B is weakly locally connected. Then B is homeomorphic to the
coproduct of its components B′ ∈ π(B). We note that in this case, B is semi-locally simply
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connected if and only if all the components are semi-locally simply connected. The inclusions
of these components induce a commutative diagram

Cov(B) Fun(τ≤1(B), Set)

∏
B′∈π(B)

Cov(B′)
∏

B′∈π(B)

Fun(τ≤1(B
′),Set)

of which the vertical maps are isomorphisms of categories (Indeed, a covering over a coproduct
of spaces is the same datum as a covering over each of the spaces). Consequently, to prove
Theorem 3.26, we may assume that B is globally and locally path connected. In this case, the
choice of a basepoint b ∈ B provides an equivalence Fun(τ≤1(B), Set) ≃ Fun(Bπ1(B, b),Set)
and the latter is the category π1(B, b)-Set of sets equipped with an action of π1(B, b), see
Observation 3.29 for a recollection and some properties about sets equipped with an action
of a group. Under this equivalence, the functor Fib is explicitly given as follows. It sends
a covering map p : E → B to Fibpb = p−1(b). This set is acted upon by π1(B, b) by lifting
loops to paths. A map of covering spaces is then sent to the induced map on fibres which is
π1(B, b)-equivariant as we have established before. Theorem 3.26 is therefore equivalent to
the following special case of it:

3.28. Theorem (Fundamental theorem of covering theory, path connected case) Let B be a
locally and globally path connected space and b ∈ B. Then the functor

Fibb : Cov(B) −→ π1(B, b)-Set, (p : E → B) 7→ Fibpb

is fully faithful, and essentially surjective if and only if B is semi-locally simply connected.

Proof of fully faithfulness. We first note that since B is locally path connected, given any
covering p : E → B, then E is also locally path connected. In particular E is the disjoint union
over its path connected components. Moreover, the restriction of p to any path connected
component is again a covering map (Exercise). So E is a disjoint union of covering maps.
We first show that Fibb is faithful. So let f, f ′ : E → E′ be two maps between p : E → B
and p′ : E′ → B such that their restriction to p−1(b) agree. It suffices to show that f, f ′

agree on each component E0 of E. As we have just said, p0 : E0 → B is a covering. Since B
is connected, p0 is surjective, and hence p−1(b) ∩ E0 is non-empty. We then find that f, f ′

restrict to two maps E0 → E′ such that p′f = p′f ′ = p and they agree on a non-empty set.
By Lemma 3.9, they agree on all of E0. Since E0 was an arbitrary connected component,
faithfulness follows. Now, let us show that Fibb is full. So assume given two covering maps
p : E → B and p′ : E′ → B and a π1(B, b)-equivariant map f : p−1(b) → p′−1(b). . We aim
to use Proposition 3.14 to lift the map p : E → B along p′ : E′ → B. To do so, we pick
basepoints ei ∈ p−1(b), i ∈ π0(E) for each component Ei of E. For each such e, we claim that

p∗(π1(E, e)) ⊆ p′∗(π1(E′, f(e)))

so that Proposition 3.14 gives a map Fi : Ei → E′ sending e to f(e). Indeed, let γ ∈ π1(E, e).
To see that p(γ) lies in p′∗(π1(E

′, f(e))), it suffices to show that a lift of p(γ) with start point
f(e) is a closed path. By definition, the endpoint of such a lift is given by the action of p(γ)
(as an element of π1(B, b)) on f(e). In formulas, we need to show that p(γ) · f(e) = f(e). By
equivariance of the map f , we have p(γ) · f(e) = f(p(γ) · e) = f(e), where the latter equality
holds because γ is a lift of p(γ) and γ is a loop at e. Together, the maps Fi assemble into a
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map F : E → E′ of coverings and it remains to show that F|p−1(b) = f . By construction, this

is true for all ei ∈ p−1(B). In general, an element e ∈ p−1(B) lies in some component Ei of
E. Then e and ei lie in the same component. They are therefore connected by a path γ in
E. Then we find e = γ · ei. Hence,

f(e) = f(γ · ei) = γ · f(ei) = γ · F (ei) = F (γ · ei) = F (e)

where we have used that F induces a π1(B, b)-equivariant map on p−1(b). This finishes the
proof of fully faithfulness. □

We now aim towards proving that the functor Fibb is essentially surjective.

3.29. Observation Let G be a group, for instance G = π1(B, b). Recall that a G-set is a set
M equipped with an action of G, i.e. a map G×M → M , (g,m) 7→ gm, such that em = m
for all m ∈ M and g(hm) = (gh)m for all g, h ∈ G and all m ∈ M . Equivalently phrased,
that the map G → HomSet(M,M), g 7→ (m 7→ gm) is a monoid homomorphism. A map of
G-sets (also called an equivariant map) is a map f : M → M ′ such that f(gm) = gf(m) for
all g ∈ G and all m ∈M . It is a good exercise to show that the category of G-sets is indeed
isomorphic to the functor category Fun(BG, Set), where BG is the category with one object
∗ and HomBG(∗, ∗) = G.

Now we recall that any G-set M is a disjoint union of transitive G-sets. To do so, we first
recall that a G-set M is called transitive if for some (and hence any) m ∈ M , we have that
the induced map G → M , given by g 7→ g ·m is surjective. In this case, M is isomorphic to
G/StabG(m) where StabG(m) = {g ∈ G | g ·m = m} is the stabilizer subgroup at m of the
action of G on M . Hence, transitive G-sets are non-canonically isomorphic to orbits spaces
G/H, for H ⊆ G a subgroup.

Now for a general G-set M , denote by Mm the G-orbit of m, i.e. the image of the map
G→M , g 7→ gm. Then clearly M =

⋃
m∈M Mm and Mm is transitive for each m ∈M . The

decisive property is then the following: If Mm ∩Mm′ ̸= ∅ then Mm = M ′
m. Indeed, suppose

x ∈ Mm ∩Mm′ . Then x = gm = g′m′ for some g, g′ ∈ M . But then m′ = g′−1gm ∈ Mm.
It follows that Mm′ ⊆ Mm and by symmetry that also Mm ⊆ Mm′ . Consequently, M is the
disjoint union of subsets of the form Mm.

3.30. Corollary The functor Fibb : Cov(B) → π1(B, b)-Set is essentially surjective if and
only if for all subgroups H ⊆ π1(B, b) the orbit space π1(B, b)/H is in the image of Fibb.

Proof. The only if part is clear. To see the if part, letM be a π1(B, b)-set. By Observation 3.29
we can find a set I and subgroups Hi ⊆ π1(B, b) for i ∈ I such that M is isomorphic to∐

i∈I π1(B, b)/Hi. Pick pi : Ei → B such that Fibpib
∼= π1(B, b)/Hi. Then p =

∐
i∈I pi : E =∐

i∈I Ei → B is a covering map with Fibpb =
∐

Fibpib
∼=M as needed. □

We characterize the stabilizers appearing here in terms of the covering space:

3.31. Lemma Let p : E → B be a covering map with E path connected. Let b ∈ B and
let e ∈ p−1(b). Then the canonical map p∗ : π1(E, e) → π1(B, b) induces an isomorphism
π1(E, e) ∼= Stabπ1(B,b)(e) ⊆ π1(B, b). In particular, p−1(b) ∼= π1(B, b)/π1(E, e) as π1(B, b)-
set.

Proof. The first part follows readily from the previously established fact that p∗ is injective
with image the loops which lift to closed loops at e in E. For the “in particular”, note that
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since E is path connected, we find that p−1(b) is a transitive π1(B, b)-set. The claim then
follows from Observation 3.29. □

3.32. Corollary Let B be locally and globally path connected space. The π1(B, b) set π1(B, b)
is in the image of the functor Fibb if and only if there exists a simply connected covering

π : B̃ → B.

Before continuing to address the essential surjectivity of the functor Fibb, we introduce the
following terminology.

3.33. Definition An automorphism of a covering p : E → B is called a Deck-transformation
of p. We therefore write Deck(p) = AutCov(B)(p). For any choice of basepoint b ∈ B, the

group Deck(p) acts on p−1(b). A covering map p : E → B is called a Galois covering or a
normal covering if for all b ∈ B, the action of Deck(p) on p−1(b) is transitive.

3.34. Remark Let p : E → B be a covering map and let e ∈ p−1(b) be a basepoint of E.
Assume that E is connected. Then the action of Deck(p) on p−1(b) is free, i.e. the induced
map Deck(p)→ p−1(b) given by f 7→ f(e) is injective. Indeed, suppose given f, f ′ ∈ Deck(p)
such that fe = f ′e. Then Lemma 3.9 shows that f = f ′. Consequently, for connected E,
p : E → B is a Galois covering if and only if the action of Deck(p) on p−1(b) is free and
transitive, or again equivalently, if the map Deck(p) → p−1(b), f 7→ f(e) is bijective for all
e ∈ p−1(b).

Considering for any covering map p : E → B the canonical covering map p⨿p : E⨿E → B
we find the following. Namely we have Deck(p)×Deck(p) ⊆ Deck(p⨿ p) induced by sending
(f, g) to f⨿g : E⨿E → E⨿E. The subgroup Deck(p)×1 ⊆ Deck(p)×Deck(p) ⊆ Deck(p⨿p)
fixes all points in the second copy of E. Hence, if Deck(p) ̸= 1, we find that the action of
Deck(p⨿ p) on E is not free. Therefore, in general, we cannot drop the assumption that E is
connected in the above argurment.

3.35. Lemma Let p : E → B be a covering map with E connected. Then the action of Deck(p)
on E is covering-like.

Proof. Let e ∈ E and pick an open U ⊆ E containing e such that p restricts to a homeomor-
phism on U . Let f ∈ Deck(p) and assume that x ∈ f(U) ∩ U . Then there exists y ∈ U such
that fy = x. In particular, py = pfy = px since pf = p. Since p is injective on U , we deduce
that x = y and therefore that fx = x. But we have just recorded that the action of Deck(p)
on E is free, so f = idE and Deck(p) acts covering-like on E. □

3.36. Example Let p : E → B be a covering map with E connected. Then the tautological
action of Deck(p) on E is covering-like as we have just argued. Moreover, the map p : E → B
factors through the quotient map

E −→ E/Deck(p) −→ B

of which the first map and the composite are covering maps. This implies that E/Deck(p)→
B a covering map (we leave this as an exercise, but note that this statement uses that E →
E/Deck(p) is surjective). Now let B be locally and globally path-connected. Then p : E → B
is a Galois covering if and only if the induced map E/Deck(p) → B is a homeomorphism.
Indeed, to show this, it suffices to show that the map on fibres over points in b is an bijection
if and only if p : E → B is Galois. Now, by construction, the fibres of B are one point sets.
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The fibre of E/Deck(p) over b ∈ B is given by p−1(b)/Deck(p). This is a singleton if and only
if the action is transitive, i.e. if and only if E is Galois.

3.37. Example Let B be a locally and globally path-connected space and let p : E → B be
a covering map with E connected. For any e ∈ E we obtain an isomorphism Deck(p) ∼=
Nπ1(B,p(e))(π1(E, e))/π1(E, e)). Indeed, in general for a group G and a subgroup H of G, we
obtain an isomorphism AutG(G/H) = NG(H)/H. Here, NG(H) denotes the normalizer of H
in G, i.e. the largest subgroup of G which contains H as a normal subgroup, concretely given
by NG(H) = {g ∈ G | gH = Hg}.

The following corollary explains why Galois coverings are also called normal coverings.

3.38. Corollary Let B be locally and globally path connected and p : E → B a connected
covering. Then E is Galois if and only if for any e ∈ E, the characteristic subgroup
p∗(π1(E, e)) ⊆ π1(B, b) is a normal subgroup.

Proof. Let b = p(e). By Lemma 3.31, we have p−1(b) ∼= π1(B, b)/π1(E, e) as a π1(B, b)-
set. By definition, E is Galois if the action map Deck(p) → p−1(b), f 7→ f(e) is surjective.
By Example 3.37 we have that Deck(p) ∼= Nπ1(B,b)(π1(E, e))/π1(E, e). Under this isomor-

phism, and the isomorphism p−1(b) ∼= π1(B, b)/π1(E, e), the action map is given by the map
Nπ1(B,b)(π1(E, e))/π1(E, e) → π1(B, b)/π1(E, e) induced by the inclusion (that this is so of
course requires some unravelling of definitions). This map is surjective if and only if the
inclusion Nπ1(B,b)(π1(E, e)) ⊆ π1(B, b) is surjective, i.e. precisely when π1(E, e) is normal.
Since e was arbitrary the lemma follows. □

3.39. Remark One can also give a direct proof of Corollary 3.38 as follows. Let e, e′ ∈ p−1(b)
and let γ be a path from e to e′ in E. Then p(γ) ∈ π1(B, b) and we have

p∗(π1(E, e)) = p(γ)−1 · p∗(π1(E, e′)) · p(γ).
Hence, if all characteristic subgroups are normal, we may use Proposition 3.14 to obtain a
map f : E → E in Cov(B) sending e to e′. Likewise, we can find f ′ : E → E′ sending e′ to e.
Both composites ff ′ and f ′f are then, by uniqueness, the identity of E so that f ∈ Deck(p).
Consequently, Deck(p) acts transitively on p−1(b). Conversely, suppose that Deck(f) acts
transitively on p−1(b). Pick α ∈ π1(B, b) and e ∈ p−1(b). It suffices to show that

p∗(π1(E, e)) = α · p∗(π1(E, e)) · α−1.

Let ᾱ be a lift of α with start point e and let e′ be its endpoint. Then as observed before, we
have α · p∗(π1(E, e)) ·α−1 = p∗(π1(E, e

′)). Now let f ∈ Deck(p) be such that f(e′) = e. Then
p∗(π1(E, e

′)) = p∗(f∗(π1(E, e)) = p∗(π1(E, e)) since f∗ is an isomorphism.

We continue with reduction steps towards essential surjectivity of the fibre functor.

3.40. Corollary Let B be a locally and globally path connected space and b ∈ B. Then the
functor Fibb : Cov(B) → π1(B, b)-Set is essentially surjective if and only if there exists a
simply connected covering of B.

Proof. If Fibb is essentially surjective, then there exists a connected covering p : E → B

with Fibpb
∼= π1(B, b) and hence with π1(E, e) = 1. Conversely, if π : B̃ → B is a simply

connected covering, then π is a Galois covering by Corollary 3.38 and Deck(π) ∼= π1(B, b)

by Example 3.37. Since Deck(π) acts covering-like on B̃ by Lemma 3.35, any subgroup
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H ⊆ Deck(π) ∼= π1(B, b) also acts covering-like on B̃. Hence, for any subgroup H ⊆ π1(B, b),
we may form the quotient B̃/H whose canonical map to B is again a covering map. By
construction, the fibres of this quotient map are isomorphic to π1(B, b)/H. □

To finish the proof of the fundamental theorem of covering theory we therefore only need
to show the following result:

3.41. Proposition Let B be a locally and globally path connected space. Then there exists a

simply connected covering π : B̃ → B if and only if B is semi-locally simply connected.

Proof. Let π : B̃ → B be a simply connected covering. Let b ∈ B and let U ⊆ X be a
trivializing open subset containing x. Consider γ ∈ π1(U, x). Since π is trivial on U , we can
lift γ to a loop γ′ : S1 → π−1(U). Moreover, the diagram

π−1(U) B̃

U B

commutes. Since π1(B̃, b̃) is trivial for all b̃ we see that the map π1(U, b)→ π1(B, b) is trivial,
so B is semi-locally simply connected.

The converse is of course more elaborate: We need to construct a simply connected covering.

We define B̃ as follows. Its underlying set is given by

{γ : [0, 1]→ B | γ(0) = b}/homotopy rel endpoints =
∐
x∈B

Homτ≤1(B)(b, x)

and the projection map B̃ → B is given by [γ] 7→ γ(1). We topologize B̃ as follows. A subset

U ⊆ B̃ is open if for each [γ] ∈ U , there exists a path connected open V ⊆ B containing γ(1)
such that for every path γ′ : [0, 1]→ V with γ′(0) = γ(1), we have [γ′ ⋆ γ] ∈ U . This is indeed

a topology on B̃: Obviously ∅ is open, and B̃ is also open. Indeed, for the required path
connected neighborhoods of γ(1) we can choose B since B is globally path connected. That
the union of opens is open is tautologically true. To see that finite (equivalently by induction
binary) intersections of opens are open, one uses the local path connectivity of B: Suppose
[γ] ∈ U1 ∩U2 with U1, U2 open. Choose V1, V2 path connected neighborhoods of U1 and U2 as
in the definition of the open sets. Then choose a path connected open V ⊆ V1∩V2 containing
γ(1). It has the desired properties.

To see that π is continuous, let U ⊆ B open. To see that π−1(U) is open, pick [γ] ∈ π−1(U).
By local path connectivity of B, we may choose a path connected open subset V ⊆ U with
γ(1) ∈ V . Consequently, for all γ′ : [0, 1]→ V with γ′(0) = γ(1), we find [γ′ ⋆ γ] ∈ π−1(U), so
π−1(U) is open.

Next, we wish to show that π : B̃ → B is a covering map. To do so, consider a point
b′ ∈ B and an open path connected subset V containing b′ with the property that π1(V, b

′)→
π1(B, b

′) is trivial. This can be done since B is locally path connected and semi-locally
simply connected. We will construct a homeomorphism π−1(V )→ V ×F for a discrete set F ,
compatible with the projections to V . So first, we need to construct F and a continuous map
π−1(V ) → F δ. We let F = Homτ≤1(B)(b, b

′). Now let [γ] ∈ π−1(V ), i.e. γ(1) ∈ V . Choose

an arbitrary path α from γ(1) to b′ inside V . Then define θ([γ]) = [α ⋆ γ] ∈ Homτ≤1(B)(b, b
′).

First, we note that this map is independent of the choice of α: Indeed, since α′−1⋆α ∈ π1(V, b),
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its image in π1(B, b) is trivial. Hence, the paths α′ ⋆ γ and α ⋆ γ represent the same element
in Homτ≤1(B)(b, b

′). We claim that the resulting map π−1(V )→ V ×F δ is a homeomorphism.

To see that it is bijective, we note that an inverse is given by sending the pair (v, γ) to
[α ⋆ γ] where again α is a path from b′ to v in V . It remains to show that the so constructed
bijection π−1(V )→ V ×F δ is continuous and open. To see continuity, consider V ′ ⊆ V open,
and [γ̄] ∈ F . Then

(π × θ)−1(V ′ × {γ̄}) = {[γ] | γ(1) ∈ V ′, [α ⋆ γ] = [γ̄]}

where α is a path in V from γ(1) to x. To see that this is open, consider an element [γ] in
it. Choose a path connected open subset V̄ ⊆ V ′ and let β be a path from γ(1) to v′ ∈ V ′.
To see that [β ⋆ γ] ∈ (π × θ)−1(V ′ × {[γ̄]}) (and hence that the latter set is open) note that
π(β ⋆γ) = β(1) ∈ V ′ ⊆ V . Moreover, to calculate θ([β ⋆γ]), we may choose an arbitrary path
from β(1) to x inside V . First, pick α a path from γ(1) to x in V . Then consider α⋆β−1, which
is a path from β(1) to x inside V , showing that θ([β ⋆ γ]) = [α ⋆ γ] = [γ̄] as needed. It follows
that π−1(V ) is given by the coproduct of the subsets (π × θ)−1(V × {f}). Consequently, it
suffices to show that the restricted maps (π × θ) : (π × θ)−1(V × {f}) → V × {f} ∼= V are
open. So let U ⊆ (π × θ)−1(V × {f}) be open. For [γ] ∈ U , there is then a path connected
open subset W ⊆ V such that for any path β from γ(1) to w, we have that β ⋆ γ ∈ U . This
implies that W ⊆ π(U), so that π(U) is open by the self-indexing trick.

Finally, we need to show that B̃ is path connected and simply connected. So consider an

element [γ] ∈ B̃. We consider the map Φγ : [0, 1]→ B̃ sending s to [γ(s · −)]. To see that it is

continuous, let U ⊆ B̃ be open with Φγ(s) ∈ U . This means that there exists a path connected
open subset V ⊆ B containing γ(s) such that for all α : [0, 1]→ V with α(0) = γ(s), we have
[α ⋆ γ(s−)] ∈ U . Since γ : [0, 1] → B is continuous and γ(s) ∈ V , we find that γ(t) ∈ V for
|t− s| < ϵ for some ϵ. Now notice that [γ(t · −)] = [γ(s, t) ⋆ γ(s · −)] where γ(s, t) is the path
γ restricted to the interval [s, t] when t ≥ s and its inverse restricted to [t, s] when t < s. We
deduce that [γ(t · −)] ∈ U for |t − s| < ϵ and hence that Φγ is continuous. Moreover, it is a

path in B̃ from [constb] to [γ], so B̃ is path-connected.

Likewise, let γ : [0, 1] → B̃ be a closed path at [constb]. By Corollary 3.11, it suffices to
show that π◦γ is homotopic to the constant path at b. Now, π◦γ is the path sending t ∈ [0, 1]
to γ(t)(1). It is therefore homotopic rel endpoints to the path sending t to γ(t)(0), which, by

construction of B̃ is given by the constant path at b. □

We now briefly mention what we like to refer to as a universal cover (rather than a simply
connected cover):

3.42. Definition Let B be a space. For b ∈ B we may consider the functor

Fibb : Cov(B) −→ Set

We say that B admits a universal cover at b if Fibb is representable, and call any representing
object a universal cover at b.

Unravelling the definitions, a universal cover at b is therefore a covering map p : E → B
equipped with an isomorphism HomCov(B)(E,−) ≃ Fibb. Such an isomorphism in particular

determines (by Yoneda) an element e in Fibpb . That the resulting natural transformation
τe : HomCov(B)(E,−)→ Fibb is an isomorphism concretely means that for any other covering
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map p′ : E′ → B and any element e′ ∈ Fibp
′

b , there exists a unique map of coverings f : E → E′

with f(e) = e′.

3.43. Lemma Let p : E → B be a covering map with E simply connected and locally and
globally path connected. Then p : E → B is universal at b for all b ∈ p(E).

Proof. Let e ∈ p−1(b) and let p′ : E′ → B be another covering and e′ ∈ p′−1(b). Consider the
following diagram

E′

E B

p′

p

Then by Proposition 3.14 a dashed arrow sending e to e′ exists (uniquely) if and only if
p∗(π1(E, e)) ⊆ p′∗(π1(E′, e′)). This is tautologically true since π1(E, e) is trivial. □

In other words, for appropriate B (e.g. locally and globally path connected), any simply
connected covering is a universal covering at all points of B. The converse is not true.
Thinking about precise relationships is a nice topic for a bachelor’s thesis. However, for
locally and globally path connected, as well as semi-locally simply connected spaces, the
notion of universal and simply connected coverings agree.

Finally, we record the following characterizations of universality:

3.44. Lemma Let B be locally and globally path connected and p : E → B a covering map.
Then the following are equivalent:

(1) p is universal at all points b ∈ B,
(2) p is universal at some b ∈ B, and
(3) E is connected and Galois and for any covering map p′ : E′ → B, there exists a map

of coverings E → E′.

Proof. Clearly, (1) implies (2). Let us now assume (2). First, we show that E is connected.
So let e ∈ p−1(b) and let Ee be the component of e. Then pe : Ee → B is a covering map. Con-
sequently, there exists a unique map E → Ee sending e to e. The composite Ee → E → Ee

is then a self-map of a connected covering map which fixes the point e. By Lemma 3.9,
it is the identity. Likewise, the composite E → Ee → E is a self-map of E which fixes
the point e. By universality of p at b, it is again the identity. In particular, E is homeo-
morphic to Ee and hence connected. Now we show that E is Galois. Again, universality
implies that Deck(p) acts transitively on p−1(b). Therefore, for any point e ∈ p−1(b), the
subgroup p∗(π1(E, e)) is normal in π1(B, b). We need to show that for any e′ ∈ E, the sub-
group p∗(π1(E, e

′)) ⊆ π1(B, p(e
′)) is normal. To see this, we pick a path γ from e to e′.

This induces an isomorphism π1(E, e
′) ∼= π1(E, e). Moreover, p(γ) induces an isomorphism

π1(B, p(e)) ∼= π1(B, p(e
′)). Under these isomorphisms p∗(π1(E, e

′)) ⊆ π1(B, p(e
′)) corre-

sponds to p∗(π1(E, e)) ⊆ π1(B, p(e)), so is again normal. Now let us consider a covering map
p′ : E′ → B. Then p′−1(b) is non-empty, so we may choose e′ in it. By universality of E at b
there is a unique map E → E′ of coverings sending e to e′. In particular, there exists a map
of coverings from E to E′. Therefore, (2) implies (3). Now assume (3). To show that E is
universal at b ∈ B, it suffices to show that for all e ∈ p−1(b), all coverings p′ : E′ → B and
e′ ∈ p′−1(b), there exists a map f : E → E′ with f(e) = e′ (by Lemma 3.9 and connectedness
of E, such a map is unique). We may assume that E′ is also connected since the inclusion
of any connected component of E′ is a map of coverings. By assumption, there is a map
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g : E → E′ of coverings. Pick a path γ from g(e) to e′ and left γ̄ be a lift of p′(γ) along p
with startpoint e. Then ē = γ̄(1) ∈ p−1(b) and g(ē) = e′. Since E is Galois, there exists a
Deck transformation φ of E sending e to ē. The composite f = g ◦ φ is then a map E → E′

sending e to e′. □

The following is a nice and purely group theoretic application of all we have seen so far.

3.45. Theorem Any subgroup of a free group is free.

Proof. Let H ⊆ F be a subgroup of a free group F . Choose a generating set S for F , so
that there is an isomorphism FS

∼= F . We now show that FS
∼= π1(

∨
S S

1). Indeed, we have
already seen this in case S is finite using Seifert van Kampen, see Example 2.68 and 2.70. In
general, we claim that the canonical map

colim
S′⊆S

∨
S′

S1 →
∨
S

S1

where S′ runs through the finite subsets of S is a homeomorphism. To see this, we consider
the pushout of the diagram

colim
S′⊆S

∐
S′ D1 colim

S′⊆S

∐
S′ S0 colim

S′⊂S
∗

Since colimits commute with each other and since colim′
S

∐
S′ X =

∐
S X for any topological

space, as well as colim′
S ∗ = ∗, we obtain the claimed homeomorphism

colim
S′⊆S

∨
S′

S1 ∼=
∨
S

S1.

We now use that the canonical map

colim
S′⊆S

π1(
∨
S′

S1)→ π1(colim
S′⊆S

∨
S′

S1) ∼= π1(
∨
S

S1)

is an isomorphism. This is not trivial (in the sense that in general π1(−) does not commute
with arbitrary filtered colimits) and follows essentially from the fact that S1 is compact, so
that the image of any continuous map S1 →

∨
S S

1 is contained in
∨

S′ S1 for some finite
subset S′ ⊆ S, see Proposition 2.35 (1). Hence, we obtain an isomorphism

FS
∼= colim

S′⊆S
FS′ ∼= π1(

∨
S

S1).

The first isomorphism holds since the functor S′ 7→ FS′ commutes with colimits (it is a left
adjoint) and colimS′⊆S S

′ = S.
We observe that

∨
S S

1 is locally and globally path connected and semi-locally simply
connected, in fact, every point has a contractible neighborhood, see Proposition 2.35 (6). In
particular, by Theorem 3.28 there exists a covering space X →

∨
S S

1 such that π1(X,x) ∼= H.
Now on Exercise Sheet 11 we show that a covering space of a 1-dimensional CW complex
(such as

∨
S S

1) again admits the structure of a 1-dimensional CW complex. In Exercise 3
Sheet 6, we have shown that any 1-dimensional CW complex is homotopy equivalent to

∨
T S

1

for some set T . Hence, by the previous reasoning, we have H ∼= π1(
∨

T S
1) ∼= FT , so H is a

free group. □
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4. Singular homology

4.1. A first glance at homology. We have now seen that understanding the fundamental
group and covering theory allowed us to deduce some nice consequences, e.g. that subgroups
of free groups are free and that S1 is not homotopy equivalent to Sn for n ≥ 2. In particular,
we can extend Proposition 1.50 to one further case, namely that R2 is not homeomorphic to
Rk for k ̸= 2. Indeed, if R2 is homeomorphic to Rn, then S1 ≃ R2 \ {0} ∼= Rn \ {x} ≃ Sn−1.
In particular, we get n = 2. The main geometric reason here is that π1(−) is able to see that
S1 has a hole, but Sn for n ≥ 2 does not have a hole. In some sense, however, Sn has an
n-dimensional hole and we would like to have an invariant which detects that this is so. We
have already indicated that πn(−) in fact does the job (though actually proving this requires
some work), but it would be nice to have an invariant which sees that Sn has precisely one
n-dimensional hole an no holes of other dimension. It will turn out that singular homology is
good invariant which does this. This invariant is extremely useful for many other purposes,
too, so it is time that we introduce it. Before giving a definition of singular homology and
establishing its properties, let us list some desirable properties of homology.

Any form of homology should consist of abelian group valued functors X 7→ Hn(X) for all
n ≥ 0, called the homology groups of a topological space X. These functors should satisfy a
number of properties:

(1) They should be non-trivial but as easy as possible. In particular, they should satisfy
Hn(∅) = 0 for all n ≥ 0 and H0(∗) = Z and Hn(∗) = 0 for n > 0.

(2) They should be homotopy invariant in the sense of Remark 2.8, that is if f, g : X → Y
are homotopic maps, then Hn(f) = Hn(g) as maps Hn(X)→ Hn(Y ).

(3) They should be additive in the sense that Hn(X)⊕Hn(Y ) ∼= Hn(X⨿Y )4 for all n ≥ 0
and Hn(X)⊕Hn(Y ) ∼= Hn(X ∨ Y ) for n > 0.

(4) They should detect n-dimensional holes in that its values on spheres are given by

Hn(S
k) ∼=

{
Z for n = 0, k

0 else

4.1. Remark It is worthwile to note that the family of functors πn(−) does not give rise to
homology in the above sense. First and foremost, it doesn’t take values in abelian groups.
One could remedy this fact by replacing π0(X) by Z[π0(X)] and π1(X) by its abelianization
π1(X)ab.5

But also, πn(S
k) is often non-zero when n > k (this is not at all clear, but a true statement),

πn(−) is not additive on disjoint unions of spaces (it sees only the component of a chosen
basepoint) and not additive on wedge sums of spaces (again, this is not clear, but a true
statement). In addition, πn(−) simply is not a functor on topological spaces (as it requires
the choice of a basepoint).

In any case, as a consequence of the above properties (2) and (4) above we obtain a well-
defined map

deg : [Sn, Sn] −→ Hom(Hn(S
n), Hn(S

n))
∼=←− Z, [f ] 7→ Hn(f)←[ deg(f)

4In fact, they should send arbitrary coproducts of topological spaces to sums of abelian groups.
5It will turn out that singular homology looks precisely like this in degrees 0 and 1.
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where deg(f) is called the homological degree of f . By definition, it records the effect of f on
the top-dimensional homology of Sn.

We will establish a number of key results about the homological degree below. In order to
do so, we will introduce an improved version of (4) which gives not only the same answer,
but also a reason for why it should be true. To put it into perspective, recall that there is

a canonical homeomorphism Sn ∼= Σ(Sn−1). For a pointed space (X,x) let us set H̃k(X) =
coker(Hk(∗)→ Hk(X)). The improved version of (4) then reads as follows:

(4’) For every topological space X and every n ≥ 0, there is a natural isomorphism

H̃n(X) ∼= H̃n+1(Σ(X))

called the suspension isomorphism.

Exercise: Property (4’) implies property (4) above.
Property (4’) shows that in a homology theory, the functors Hn(−) for different values of

n are not unrelated to each other. Later, we will see another form of this relation which is a
(vastly) improved version of both (3) and (4) above. With (4’) at hand, we can prove that
the homological degree has the following properties.

4.2. Proposition Let n ≥ 1 be a natural number and f : Sn → Sn be a continuous map. The
homological degree has the following properties.

(1) If f is homotopic to a constant map, then deg(f) = 0 and deg(idS1) = 1.
(2) deg(g ◦ f) = deg(g) · deg(f),
(3) deg(Σ(f)) = deg(f)
(4) deg(r) = −1, whenever r : Sn → Sn is a reflection along any hyperplane.
(5) deg(−idSn) = (−1)n+1.
(6) deg : [Sn, Sn]→ Z is surjective.

Proof. (1) follows from the fact that Hn(−) is homotopy invariant, Hn(∗) = 0 and Hn(−) is
a functor. (2) follows from the fact that Hn(−) is a functor. The naturality of the suspension
isomorphism gives rise to the following commutative diagram, showing (3).

[Sn, Sn] [Sn+1, Sn+1]

Z

Σ

deg deg

To see (4), note that for any reflection r, there is a isometric homeomorphism φ : Rn+1 → Rn+1

such that φrφ−1 is given by the map (x1, . . . , xn+1) 7→ (x1,−x2, , x3 . . . , xn+1). This map is
an (n− 1)-fold suspension of the map (x1, x2) 7→ (x1,−x2), which restricted to S1 is the map
x 7→ x̄ = x−1. Hence we deduce from (1)–(3) that

deg(r) = deg(φ) · deg(r) · deg(φ)−1 = deg(φrφ−1) = deg(x 7→ x−1) = −1.

For (5), simply note that −idSn is an (n+ 1)-fold composite of reflections:

(x1, . . . , xn+1) 7→ (−x1, x2, . . . , xn) 7→ (−x1,−x2, . . . , xn) 7→ · · · 7→ (−x1, . . . ,−xn).

Hence, deg(−idSn) = (−1)n+1 by (2). Finally, we show (6). By (3), it suffices to show that
deg : [S1, S1] → Z is bijective. We will show that the map deg(x 7→ xn) = n. To do so, we
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first note that deg(idS1) = 1, by functoriality of H1(−). Now let f, g ∈ [S1, S1]∗ = π1(S
1).

Recall that f + g ∈ π1(S1) is represented by the composite

S1 p−→ S1 ∨ S1 f∨g−−→ S1.

Applying H1(−) to this diagram and using that homology is additive on wedge sums, we
obtain a diagram

Z p∗−→ Z⊕ Z deg(f)⊕deg(f)−−−−−−−−−→ Z
where the first map is the diagonal by the counitality of the pinch map p. Hence the composite
is given by deg(f) + deg(g) so we obtain the formula

deg(f + g) = deg(f) + deg(g).

Since [x 7→ xn] = [id]+ · · ·+[id], we find that deg(x 7→ xn) = n for all n ≥ 0. Now, for n < 0,
we have (x 7→ xn) is the composite of a reflection with x 7→ x−n. The result then follows from
(4). □

4.3. Remark Let us consider the composite

Z
∼=−→ [S1, S1]∗ → [S1, S1]

deg−−→ Z.

Part of Exercise 3 Sheet 11 is to show that this composite is the identity. Since the middle
map is surjective (Exercise), we deduce that it is also bijective. Consequently, all maps in the
above display are in fact bijective.

Moreover, one can show that the map Σ: [Sn, Sn]→ [Sn+1, Sn+1] is surjective for all n ≥ 1.
This is for istance a consequence of Freudenthal’s suspension theorem which we will discuss
at some point next term. In particular, with this at hand, it follows that the degree map
deg : [Sn, Sn]→ Z is bijective for all n ≥ 1 (this, a generalization of this result was proven by
Hopf and is therefore often referred to as the theorem of Hopf).

4.2. Applications of homology. Before explaining how one could try to construct an ho-
mology theory in the above sense, we want to give several applications which make only use
of the above listed properties. Hopefully, these will motivate us to go through the (rather
lengthy and partly technical) construction of homology and the verification of its basic prop-
erties (which includes more than the above mentioned properties).

4.4. Theorem (Invariance of dimension) If Rn is homeomorphic to Rm, then n = m.

Proof. Let f : Rn → Rm be a homeomorphism. Then f restricts to a homeomorphism
Rn \ {0} → Rm \ {f(0)}. In particular, f induces a homotopy equivalence Sn−1 ≃ Sm−1.
Consequently we find that

Hn−1(S
m−1) ∼= Hn−1(S

n−1) ∼= Z.

By the properties of homology alluded to above, this implies that n = 1 or n = m. If n = 1
we may appeal to Proposition 1.50 to see that m = 1 as well (recall that R is homeomorphic
to (0, 1)). □

4.5. Theorem (Brouwer’s fixed point theorem) Let f : Dn → Dn be a continuous function.
Then there exists x ∈ Dn such that f(x) = x.6

6Such a point is called a fixed point for f .
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Proof. Assume that f is such that there is no fixed point. Then we consider a function
g : Dn → Sn−1 given by sending x to the intersection of {tx+ (1− t)f(x) | t ≥ 1

2} with S
n−1.

Then g is a continuous function whose restriction to Sn−1 is the identity. Applying homology
we obtain that the composite

Hn−1(S
n−1)→ Hn−1(D

n)
g∗−→ Hn−1(S

n−1)

is the identity (because Hn−1(−) is a functor). This is a contradiction: For n > 1 the above
is isomorphic to the composite Z→ 0→ Z (which is not the identity) and for n = 1 it is the
composite Z2 → Z→ Z2 (which is also not the identity). □

4.6. Theorem (The Surjectivity theorem) Let f : Sn → Sn be a continuous function. If
deg(f) ̸= 0 then f is surjective. Likewise, let g : Dn → Dn be a continuous function such that
g(Sn−1) ⊆ Sn−1 and the resulting map f = g|Sn−1 has non-trivial degree. Then g is surjective.

Proof. Exercise 4 Sheet 11. □

4.7. Theorem (The fundamental theorem of algebra) 7 Every non constant complex polyno-
mial P ∈ C[X] has a root.8

Proof. Let P be a polynomial of degree n with n ≥ 1. Assume that P does not have a root.
Then also P divided by its leading coefficient does not have a root, so we may assume that

P is monic. The map f given by x 7→ P (x)
∥P (x)∥ is a continuous map C→ S1 (here we have used

that P does not have a root). Its restriction to S1 is therefore null homotopic. However, we
will show that the restricted map f : S1 → S1 is also homotopic to x 7→ xn, which induces the
multiplication by n map on H1(S

1) ∼= Z, a contradiction. Let P =
∑n

i=0 aiX
i and consider

the family of polynomials Pt =
∑n

i=0 ait
n−iXi with t ∈ [0, 1]. We have P1 = P and P0 = Xn

(recall that P is monic). Moreover, for t > 0, Pt(z) = tnP ( zt ) and hence has no zero. We

may therefore consider (x, t) 7→ Pt(x)
∥Pt(x)∥ as a continuous function on S1 × [0, 1]→ S1. It gives

a continuous homotopy from f to x 7→ xn, showing that f|S1 has degree n as claimed. □

4.8. Theorem (The hairy ball theorem) There exists a continuous function s : Sn → Rn+1 \
{0} such that ⟨x, s(x)⟩ = 0 if and only if n is odd. In particular, it does not exist for n = 2.

In case n = 2, one imagines that this says that we cannot comb hair on a head (which
we picture as S2) in a continuous way as to lie nicely on our head. The set {(x, v) ∈ Sn ×
Rn+1 | ⟨x, v⟩ = 0} of pairs of perpendicular vectors in Rn+1, one of which is in Sn also has
a name: it is called the tangent bundle TSn of Sn. The hairy ball theorem therefore says
that there is no section of the tangent bundle of an even dimensional sphere which does not
attain the value 0 somewhere. Tangent bundles are topological spaces one can associate to
smooth manifolds, and they allow for many more interesting invariants of smooth manifolds
other than their homology groups. For instance, they often give rise to functionals on the
homology groups.9

Proof. Suppose n is odd. For x = (x0, . . . , xn) ∈ Sn consider the element

s(x) = (−x1, x0,−x3, x2, . . . ,−xn, xn−1).

7Thanks to Panagiotis Papadopoulos for suggesting to improve the earlier proof.
8In other words, the field C is algebraically closed.
9These functionals are induced by what are called characteristic classes.
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Then ⟨x, s(x)⟩ = 0 and s(x) ̸= 0 for all x ∈ Sn. Moreover, the so defined function s is
continuous. Now assume that n is even and there exists a function s : Sn → Rn \ {0} such
that ⟨x, s(x)⟩ = 0 for all x ∈ Sn. Consider the map

H : Sn × [0, 1]→ Sn, (x, t) 7→ cos(πt) · x+ sin(πt) · s(x)

∥s(x)∥
.

which is well-defined since x and s(x) are perpendicular and sin(a)2 + cos(a)2 = 1 for any
a ∈ R. Then H is a homotopy from idSn to −idSn . This contradicts that deg(idSn) = 1 ̸=
(−1)n+1 = deg(−idSn) since n is even. □

4.9. Theorem (The Borsuk–Ulam theorem) Let n ≤ 2. For every continuous map f : Sn →
Rn there exists x ∈ Sn such that f(x) = f(−x).

For n = 2, this is often pictured as saying that there are always two antipodal points on
the surface of the earth (i.e. two points that lie on the line through the centre of the earth)
where the temperature and air pressure agree (one thinks that the temperature and the air
pressure are continuous functions and one thinks that the surface of the earth is S2).

Proof. Assume that for all x ∈ Sn, we have f(x) ̸= f(−x). Then the function

g(x) =
f(x)− f(−x)
|f(x)− f(−x)|

is a continuous function Sn → Sn−1, equivariant with respect to the antipodal actions on
both sides, i.e. g(−x) = −g(x). For n = 1 this is a contradiction since S1 is connected so the
image of g must be a connected subset of S0. For n ≥ 2, by taking quotients with respect to
the C2-actions, we consider the induced map ḡ : RPn → RPn−1. Consider the diagram

1 π1(S
n) π1(RPn) C2 1

1 π1(S
n−1) π1(RPn−1) C2 1

g∗ ḡ∗

mn

mn−1

with rows as in Lemma 3.12. It is a direct check that the diagram commutes (it is clear for the
left hand side, see Exercise 2 Sheet 9 for the right square). In particular, the middle vertical
map is non-trivial (in fact an isomorphism if n > 2). When n = 2, the middle vertical map
is isomorphic to Z/2→ Z which is the trivial map, a contradiction. □

4.10. Remark The Borsuk-Ulam theorem also holds for n ≥ 3. Following the above proof,
one can try show that there does not exist a continuous map RPn → RPn−1 which induces
an isomorphism on π1. This will be shown next term making use of singular cohomology and
its structure of a graded ring.

4.3. Singular homology - Definitions and first examples. Recall that homology ought
to detect n-dimensional holes in the sense that it ought to have a particular value on spheres
Sn. We recall that the sphere Sn is the boundary of the disk Dn+1. To define singular
homology, it turns out to be useful to approximate spheres (and in fact all spaces) by simpler
combinatorial spaces: In our case we wish to replace disks by simplices. Let us recall their
definition.
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4.11. Definition Let n ≥ 0. The topological n-simplex ∆n
top is the following topological space

∆n
top = {(x0, . . . , xn) ∈ (R≥0)

n+1 |
n∑

i=0

xi = 1}.

4.12. Example We have ∆0
Top = {1} ∈ R. Moreover, ∆1

Top is homeomorphic to [0, 1] via the

parametrization t 7→ (t, 1 − t) ∈ R2. ∆2
Top looks like a filled triangle in R3, and ∆3

Top like a

solid tetrahedron. In general, ∆n
Top is homeomorphic to Dn as well as to [0, 1]n.

4.13. Definition Let n ≥ 0. Then the boundary ∂∆n
Top of the topological n-simplex is given

by

∂∆n
Top = {(x0, . . . , xn) ∈ ∆n

Top | ∃i ∈ {0, . . . , n} s.th. xi = 0}.

4.14. Example We have ∂∆0
Top = ∅, ∂∆1

Top
∼= {a, b}. In general ∂∆n

Top is the topological

boundary in the technical sense, i.e. ∂∆n
Top = ∆n

Top \ ∆̊n
Top. It is homeomorphic to Sn−1, as

follows from Example 4.12 and the fact that a homeomorphism between topological spaces
induces a homeomorphism of their respective boundaries.

It will turn out that it is convenient to think of simplices rather than disks. We record the
following structure that the association n 7→ ∆n

Top has.

4.15. Observation Let n ≥ 0 and let 0 ≤ i ≤ n and 0 ≤ j ≤ n − 1. Then there canonical
maps

(1) δi : ∆
n−1
Top → ∆n

Top, sending (x0, . . . , xn−1) to the point (x0, . . . , xi−1, 0, xi, . . . , xn), and

(2) σi : ∆
n
Top → ∆n−1

Top sending (x0, . . . , xn) to (x0, . . . , xi−1, xi + xi+1, xi+2, . . . , xn).

We note that ∂∆n
Top =

⋃
0≤i≤n

δi(∆
n−1
Top ). Moreover, the above maps satisfy the following

relations:

(1) δiδj = δj+1δi as maps ∆n−1
Top → ∆n+1

Top whenever i ≤ j,
(2) σjσi = σiσj+1 as maps ∆n+1

Top → ∆n−1
Top whenever i ≤ j,

(3) σjδi =


δiσj−1 whenever i < j

id∆nTop
whenever i = j, j + 1

δi−1σj whenever j + 1 < i

It will also be convenient to gather the above data into compact categorical language. To
this end, we define a category ∆, the simplex category, to have objects [n] for n ≥ 0 and
whose morphisms are generated by maps δi : [n− 1]→ [n] and σj : [n]→ [n− 1] satisfying the
above relations. With this, we obtain a functor ∆Top : ∆→ Top, sending [n] to ∆n

Top.

4.16. Lemma The category ∆ is concretely given by the category whose objects are the non-
empty finite linearly ordered sets [n] = {0, . . . , n} and whose morphisms f : [n] → [m] are
monotone maps, that is, f(a) ≤ f(a′) whenever a ≤ a′.

Proof. Any monotone map f : [n] → [m] is uniquely given by a surjection followed by an
injection. Any surjection is a composite of σj ’s and any injection is a composite of δi’s, where
σj : [n]→ [n− 1] is the unique surjective map with σj(j) = σj(j +1) = j and δi is the unique
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injective map [n − 1] → [n] such that i /∈ δi([n − 1]). The so constructed maps δi and σj
satisfy the above observed relations. □

4.17. Notation Let C be a category. An object of Fun(∆,C) is called a cosimplicial object in
C, and an object of Fun(∆op,C) is called a simplicial object in C. In particular, the collection
of the topological n-simplices ∆n

Top form a cosimplicial topological space, i.e. a cosimplicial
object in the category of topological spaces.

The idea now is to use simplices to measure to what extent a topological space admits holes
of dimension n. Since singular homology ought to take values in abelian groups, we simply
consider the following abelian group:

4.18. Definition Let n ≥ 0. We define the abelian group Csing
n (X) of singular n-simplices in

X to be
Csing
n (X) = Z[HomTop(∆

n
Top, X)],

i.e. the free abelian group generated by all continuous maps σ : ∆n
Top → X. For n < 0, we set

Csing
n (X) = 0.

An element in Csing
n (X) is therefore a finite linear combination (with integer coefficients)

of maps σ : ∆n
Top → X. Since we wish to detect n-dimensional holes and since ∂∆n+1

Top ought
to have such an n-dimensional hole, we will not be too interested in all singular n-simplices,
but rather only those, which look like ∂∆n

Top is the following way. We note that for 0 ≤ i ≤ n,
the maps δi : ∆

n−1
Top → ∆n

Top induce maps δ∗i : C
sing
n (X)→ Csing

n−1(X) sending σ to σ ◦ δi.

4.19. Definition For n ≥ 0, we define a map dn : C
sing
n (X)→ Csing

n−1(X) as dn =
∑n

i=0(−1)iδ∗i .
A singular n-simplex x ∈ Csing

n (X) is called closed if dn(x) = 0. The collection of closed

singular n-simplices Zn(X) forms an abelian subgroup of Csing
n (X) called the abelian group

of singular n-cycles.

4.20. Example Since C−1(X) = 0, we may set d0 : C
sing
0 (X)→ Csing

−1 (X) to be the zero map.

The map d1 : C
sing
1 (X)→ Csing

0 (X) sends σ : ∆1
Top
∼= [0, 1]→ X to σ(0)−σ(1). Hence d1 sees

whether or not a path in X is closed. Similarly, d2 : C
sing
2 (X)→ Csing

1 (X) takes σ : ∆2
Top → X

to the σ12−σ02+σ01, where the subscripts refer to the restriction of σ to the interval between
the two indicated edges of ∆2

Top.

We then note that a closed singular n-simplex is an abstract way to see a potential n-
dimensional hole in X. But we do not want to measure potential n-dimensional holes in X,
but rather actual such holes. To do so, we wish to discard closed singular n-simplices if they
can be filled in the following sense.

4.21. Definition For n ≥ 0, we say that the image Bn(X) of dn+1 : C
sing
n+1(X) → Csing

n (X)
consists of boundary singular n-simplices.

4.22. Lemma For any n ≥ 0, the composite

Csing
n+1(X)

dn+1−−−→ Csing
n (X)

dn−→ Csing
n−1(X)

is the zero map.



70 MARKUS LAND

Proof. It suffices to show that this is true on generators of the free abelian group Csing
n+1(X),

which are given by σ : ∆n
Top → X. By definition, we have

dn(dn+1(σ)) = dn(

n+1∑
i=0

(−1)iσ ◦ δi) =
n∑

j=0

n+1∑
i=0

(−1)i+jσ ◦ δi ◦ δj .

Now, we recall the relations among the δi’s observed in Observation 4.15. We then have

dn(dn+1(σ)) =

n∑
j=0

n+1∑
i=0

(−1)i+jσ ◦ δi ◦ δj

=
∑

0≤i≤j≤n

(−1)i+jσδiδj +
∑

0≤j<i≤n+1

(−1)i+jσδiδj

=
∑

0≤i≤j≤n

(−1)i+jσδj+1δi +
∑

0≤j<i≤n+1

(−1)i+jσδiδj

=
∑

0≤i<j≤n+1

(−1)i+j+1σδjδi +
∑

0≤j<i≤n+1

(−1)i+jσδiδj

= 0

as needed. □

With this at hand we define the singular homology of a space X as follows.

4.23. Definition Let X be a topological space and n ∈ Z. Define Hn(X) = Zn(X)/Bn(X)
as the quotient abelian group of the inclusion Bn(X) ⊆ Zn(X).

We gather the following immediate consequences of the definition.

4.24. Remark (1) The association X 7→ Hn(X) is a functor Top→ Ab.
(2) Hn(∅) = 0 for all n ∈ Z.
(3) For n < 0, we have Hn(X) = 0.

(4) For n = 0, we have H0(X) ∼= Z[π0(X)]. Indeed, Z0(X) = Csing
0 (X) = Z[X] is the

free abelian group on the set X and B0(X) consists of the elements of the form x− y
whenever there is a path between x and y. Therefore H0(X) is the quotient of Z[X]
by the equivalence x ∼ y whenever [x] = [y] ∈ π0(X). Since Z[−] : Set → Ab is a
left adjoint, it preserves quotients by equivalence relations, and we obtain H0(X) ∼=
Z[π0(X)] as claimed.

(5) Hn(∗) = 0 for n ̸= 0. Indeed, we have Csing
n (∗) ∼= Z for all n ≥ 0. Moreover, the

map dn : C
sing
n (∗)→ Csing

n (∗) is given
∑n

i=0(−1)ndi where each di is the identity map.
In particular, the map dn is an isomorphism for n > 0 even and the zero map for
n > 0 odd. Therefore Zn(∗) = 0 if n > 0 is even and Bn(∗) = Zn(∗) if n > 0 is odd.
Consequently, Hn(∗) = 0 for all n > 0.
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Indeed, the decisive part for (1) is that the maps dn : C
sing
n (X)→ Csing

n−1(X) are natural in
X. That is, given f : X → Y , the square

Csing
n (X) Csing

n−1(X)

Csing
n (Y ) Csing

n−1(Y )

commutes. This follows essentially from the fact that for σ : ∆n
Top → X and 0 ≤ i ≤ n, we

have (f ◦ σ) ◦ δi = f ◦ (σ ◦ δi).

4.25. Proposition Let X be a path connected topological space and x ∈ X. There is a
canonical group homomorphism h : π1(X,x) → H1(X). This map induces an isomorphism
π1(X,x)

ab ∼= H1(X).

Proof. Recall that π1(X,x) is the set of homotopy rel endpoint classes of paths γ : [0, 1]→ X
with γ(0) = x = γ(1). Recall that [0, 1] ∼= ∆1

Top. Under this homeomorphism, we can send γ

to γ ∈ Csing
1 (X) and observe that it lies in Z1(X) since d1(γ) = γ(0)− γ(1) = 0. We wish to

show that its class in H1(X) is independent of the choice of representative γ of [γ] ∈ π1(X,x)
and that the resulting association is a group homomorphism. First, we note that for γ and γ′

composable paths, there is a continuous map σ : ∆2
Top → X such that d2(σ) = γ′, d1(σ) = γ⋆γ′

and d0(σ) = γ. We deduce that γ−γ′⋆γ+γ′ = 0 in H1(X) so that [γ]+[γ′] = [γ′⋆γ] ∈ H1(X).
This applies in particular to closed paths γ and γ′ at x ∈ X. In particular, we deduce that
[constx] = 0 ∈ H1(X) since constx ⋆constx = constx. Moreover, suppose [γ] = [γ′] ∈ π1(X,x).
Pick a homotopy rel endpoints H : [0, 1] × [0, 1] → X between γ and γ′. There is then a
quotient map [0, 1] × [0, 1] → ∆2

Top which collapses the subspace {1} × [0, 1]. Since H is a

pointed homotopy, it factors through this quotient map and the resulting map σ : ∆2
Top → X

has the property that its boundary 1-simplices are given by γ, γ′ and constx. We deduce
that γ − γ′ + constx = 0 ∈ H1(X) and therefore that γ = γ′ in H1(X). In total, this shows
that there is a well-defined map π1(X,x) → H1(X) which sends a π1(X,x) representative γ
to the image of γ in H1(X), and that this map is a group homomorphism. Since H1(X) is
abelian, we obtain a canonical induced map π1(X,x)

ab → H1(X). We now show that this
map is an isomorphism. To do so, we simply construct an inverse as follows. For any point
y ∈ X, we fix a path αy from x to y, and we choose αx = constx. For a singular 1-simplex

f : ∆1
Top → X, we may consider the loop α−1

f(1) ⋆ f ⋆ αf(0). Since Csing
1 (X) is a free abelian

group on 1-simplices, these choices give a group homomorphism φ : Csing
1 (X) → π1(X,x)

ab.
We now claim that the composite

Csing
2 (X)

d2−→ Csing
1 (X)

φ−→ π1(X,x)
ab
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is the trivial homomorphism. To see this, it suffices to show it on generators of the source.
So consider σ : ∆2

Top → X and let σi = σ ◦ δi). Then we get

φ(d2(σ)) = φ(σ0 + σ2 − σ1)
= (α−1

σ0(1)
⋆ σ0 ⋆ ασ0(0)) ⋆ (α

−1
σ2(1)

⋆ σ2 ⋆ ασ2(0)) ⋆ (α
−1
σ1(0)

⋆ σ−1
1 ⋆ ασ1(1))

= α−1
σ0(1)

⋆ σ0 ⋆ σ2 ⋆ σ
−1
1 ⋆ ασ0(1)

= constx

in π1(X,x)
ab. Here, the third equality holds since σ0(0) = σ2(1), σ2(0) = σ1(0), and σ0(1) =

σ1(1), and the last equality holds since σ witnesses that the two paths σ0 ⋆ σ2 and σ1 are ho-
motopic rel endpoints. Consequently, φ descends to a well-defined map H1(X)→ π1(X,x)

ab.
The composite π1(X,x)

ab → H1(X) → π1(X,x)
ab is the identity by construction. It there-

fore suffices to show that π1(X,x) → H1(X) is surjective. So let t ∈ Zn(X) be an arbitrary
element, written as

∑
i nifi with fi : ∆

1
Top → X. That d1(t) = 0 means that the image of the

fi’s give rise to several closed loops in X. For each of such closed loops, we can choose some
i and a path from x to fi(0). Conjugating the loop by this path doesn’t change the class in
H1(X) and shows that each such path is in the image of the map h, and since h is a group
homomorphism, we finally deduce that h is surjective and hence an isomorphism. □

4.26. Remark The homomorphism h : π1(X,x) → H1(X) is called the Hurewicz homo-
morphism. It exists more generally for all n ≥ 1, i.e. there are group homomorphisms
hn : πn(X,x) → Hn(X). The above proposition is then part of the Hurewicz theorem which
we will prove later. In addition to Proposition 4.25 it states the following. Suppose X is
a simply connected10 topological space and n ≥ 2. If πi(X,x) = 0 for all 1 ≤ i ≤ n − 1,
then Hi(X) = 0 for all 1 ≤ i ≤ n − 1. Moreover, in this case, the Hurewicz homo-
morphism hn : πn(X,x) → Hn(X) is an isomorphism and the Hurewicz homomorphism
hn+1 : πn+1(X,x)→ Hn+1(X) is surjective.

In general, the Hurewicz homomorphism π2(X,x) → H2(X) is not surjective, even if
π1(X,x)→ H1(X) is an isomorphism. For instance, this is the case for X = T 2 the 2-torus:
We have seen already that π2(T

2) = 0, but we will show later that H2(T
2) ∼= Z.

4.27. Corollary We have that H1(S
1) ∼= Z, H1(S

n) = 0 for n ≥ 2, H1(RPn) ∼= Z/2Z for n ≥
2, H1(CPn) = 0 and H1(HPn) = 0 for n ≥ 1, H1(T

2) = Z2, H1(K) = (Z⋊Z)ab ∼= Z⊕Z/2Z,
H1(Σg) = Z2g, H1(

∨
S S

1) = Z|S|.

Proof. This is an exercise in calculating abelianizations of groups with explicit presentations.
The only group where we have not discussed a presentation is Z ⋊ Z which has the follow-
ing presentation Z ⋊ Z ∼= ⟨a, b | abab−1⟩. This shows that (Z ⋊ Z)ab has a presentation
⟨a, b | aba−1b−1, 2a⟩ showing the claim. □

4.28. Corollary Let X be a path connected space. Then H1(Σ(X)) = 0. For X and Y path
connected CW complexes, we have H1(X∨Y ) = H1(X)⊕H1(Y ). For X and Y path connected
spaces, we have H1(X × Y ) = H1(X)×H1(Y ).

Proof. The first follows from π1(Σ(X), x) = 0, see Example 2.67. For the second, recall from
Example 2.68 that π1(X ∨ Y ) ∼= π1(X) ⋆ π1(Y ). The functor (−)ab : Grp→ Ab is left adjoint
to the inclusion and hence preserves colimits, in particular coproducts. Now use that in Ab

10Recall that this means that X is path connected and π1(X,x) = 1 for some x ∈ X.
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coproducts are given by the direct sum of abelian groups. For the final claim, recall from
Lemma 2.24 (2) that π1(X × Y ) ∼= π1(X)× π1(Y ). Then we can use that (−)ab : Grp→ Ab
also commutes with finite products (Exercise), and that finite products in Ab are also given
by the direct sum. □

The following is essentially the only computation we can do using the definition of singular
homology.

4.29. Proposition Let X ⊆ Rn be a star-shaped subset with x ∈ X a star. Then Hn(X) = 0
for n > 0.

Proof. Being star-shaped with star x means that for all y ∈ X, the straight line between x
and y (inside Rn) is contained in X. Note that ∆n+1 consists of all straight lines between
∆n and (1, 0, . . . , 0) ∈ Rn+2. Hence, given an n-simplex σ : ∆n

Top → X, we obtain a map

hn(σ) : ∆
n+1
Top → X by requiring that its restriction along δ0 to ∆n

Top is σ, that the opposite

vertex (1, 0 . . . , 0) is sent to x, and straight lines between two points in ∆n+1
Top are sent to

straight lines in X. Sending σ to hn(σ) defines homomorphisms hn : C
sing
n (X) → Csing

n+1(X)
which for n > 0 satisfy the relation

dn+1hn + hn−1dn = id

as one readily calculates. Hence, if σ ∈ Zn(X) and n > 0, we find

σ = dn+1hn(σ) + hn−1dn(σ) = dn+1hn(σ) ∈ Bn(X)

so that Hn(X) = 0 as claimed. □

4.30. Example Typical examples of star-shaped sets are the spaces ∆n
Top for n ≥ 0 or other

convex subsets of Rn. The product of any two star-shaped subsets of Rn and Rm is canonically
a star-shaped subset in Rn+m. In particular, ∆n

Top ×∆m
Top is star-shaped.

In order to formulate all properties that singular homology enjoys, it is beneficial to intro-
duce a relative version of singular homology.

4.31. Definition Let A ⊆ X be a subspace of a topological space X. We define the rel-

ative singular n-simplices Csing
n (X,A) of the pair (X,A) to be the quotient abelian group

Csing
n (X)/Csing

n (A).

4.32. Lemma The abelian group Csing
n (X,A) is free abelian. There is a unique map dn : C

sing
n (X,A)→

Csing
n−1(X,A) making the diagram

Csing
n (X) Csing

n−1(X)

Csing
n (X,A) Csing

n−1(X,A)

dn

dn

commute. It again satisfies dn ◦ dn+1 = 0.

Proof. It is not hard to check that Csing
n (X,A) is the free abelian group on those simplices

σ : ∆n
Top → X whose image is not contained in A, simply because this is the complement of
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all n-simplices whose image does lie in A. Now we consider the commutative diagram

Csing
n (A) Csing

n (X) Csing
n (X,A)

Csing
n−1(A) Csing

n−1(X) Csing
n−1(X,A)

in which the left square commutes by naturality of the map dn. Hence, there exists a dashed
arrow making the right square commute. In addition, it is uniquely determined by the commu-
tativity since the upper horizontal map is surjective. To see that it again satisfies dn◦dn+1 = 0,
we again use this surjectivity to deduce from the case of X. □

4.33. Definition Let (X,A) be a pair of spaces and n ≥ 0. We define the relative singular
homology Hn(X,A) to be the quotient ker(dn)/Im(dn+1).

Note that Hn(X, ∅) = Hn(X) by definition since Csing
n (∅) = 0 for all n ≥ 0. We are now

ready to state all properties singular homology enjoys.

4.4. Singular homology - Properties.

4.34. Theorem The association (X,A) 7→ {Hn(X,A)}n∈Z satisfies the following properties.

(1) Hn(∅) = 0 for all n ∈ Z and Hn(∗) = 0 for all 0 ̸= n ∈ Z and H0(∗) ∼= Z.
(2) If f and g are homotopic maps of pairs (X,A) → (Y,B), then they induce the same

map Hn(X,A)→ Hn(Y,B).
(3) For any family of topological spaces {Xi}i∈I and all n ∈ Z, the evident map⊕

i∈I
Hn(Xi)→ Hn(

∐
i∈I

Xi)

is an isomorphism.
(4) For any n ∈ Z and pair (X,A) there exists a boundary map ∂n : Hn(X,A)→ Hn−1(A)

making the following sequence exact.

Hn(A)
i∗−→ Hn(X)

p∗−→ Hn(X,A)
∂n−→ Hn−1(A)

i∗−→ Hn−1(X)

(5) For a pair (X,A) and U ⊆ A such that U ⊆ Å and all n ∈ Z, the evident inclusion
induces an isomorphism

Hn(X \ U,A \ U)
∼=−→ Hn(X,A).

(6) For a space X and subspaces A,B ⊆ X such that Å∪ B̊ = X and any n ∈ Z, there is
a natural11 boundary map ∂n : Hn(X)→ Hn−1(A ∩B) making the following sequence
exact.

Hn(A∩B)
(ιA∗ ,ιB∗ )−−−−→ Hn(A)⊕Hn(B)

(jA∗ −jB∗ )−−−−−→ Hn(X)
∂n−→ Hn−1(A∩B)→ Hn−1(A)⊕Hn−1(B)

(7) For non-empty X, there is a natural suspension isomorphism Hn+1(Σ(X), N) ∼=
Hn(X,x).

11see Warning 4.59 for a discussion of the naturality that ∂ satisfies.
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4.35.Corollary Let (X,x) and (Y, y) be pointed spaces such that the respective basepoints have
pointed contractible open neighborhoods12 and n ≥ 0. Then there is a canonical isomorphism

H̃n(X)⊕ H̃n(Y ) ∼= H̃n(X ∨ Y ).

Proof. Exercise. □

We will now move towards proving the above properties, then continue with calculations
of various homology groups as well as a description of singular homology for CW complexes
called cellular homology. To address the first properties, it will be convenient to discuss
the notions of chain complexes and general statements therein. We formulate everything for
modules over a fixed base ring, the main case of interest being the case of the integers.

4.36. Definition Let R be a ring. A chain complex (M•, d•) of R-modules13 consists of a
sequence of R-modules {Mn}n∈Z together with maps dn : Mn →Mn−1 such that dn◦dn+1 = 0
for all n ∈ Z. We often write

· · · →Mn+1
dn+1−−−→Mn

dn−→Mn−1 → . . .

for such a chain complex.
We define the homology of (M•, d•) to be the family of R-modules given by {Hn(M•, d•) =

ker(dn)/Im(dn+1)}n∈Z. We say that a chain complex is exact at place n if Hn(M•, d•) = 0,
and simply exact if it is exact at every n ∈ Z. An exact chain complex is also called a long
exact sequence.

4.37. Remark An exact chain complex of the form

0→M ′ i−→M
p−→M ′′ → 0

is called a short exact sequence. Concretely, this means that i is injective, p is surjective and
ker(p) = Im(i). An even shorter exact sequence, i.e. an exact chain complex of the form

0→M
f−→M ′ → 0

is one where f is an isomorphism. An extremely short exact sequence, i.e. one of the form

0→M → 0

is one where M = 0.

4.38. Example (1) Let X be a topological space. Then (Csing
• , d•) is a chain complex of

abelian groups (i.e. Z-modules). The homology of this chain complex is precisely the
singular homology H•(X) of X.

(2) Likewise, for a pair (X,A), we have that (Csing
• (X,A), d•) is a chain complex of abelian

groups. Its homology is the relative singular homology H•(X,A) of (X,A).

As always, we shall be interested not only in chain complexes, but also in morphisms of
chain complexes.

12E.g. CW complexes.
13We work with left R-modules.



76 MARKUS LAND

4.39. Definition Let (M•, d•) and (M ′
•, d

′
•) be chain complexes of R-modules. A chain map

f• consists of R-linear maps fn : Mn →M ′
n for all n ∈ Z such that for all n ∈ Z, the squares

Mn Mn−1

M ′
n M ′

n−1

dn

fn fn−1

d′n

commute. We write Ch(R) for the category of chain complexes of R-modules and chain maps.
An isomorphism in Ch(R) is equivalently a chain map f• such that fn is an isomorphism of
R-modules for all n ∈ Z.

4.40. Lemma For every n ∈ Z, the association (M•, d•) 7→ Hn(M•, d•) refines to a functor
Hn(−) : Ch(R)→ Mod(R).

Proof. By definition, a chain map f• : (M•, d•) → (M ′
•, d

′
•) induces maps ker(dn) → ker(d′n)

and Im(dn+1)→ Im(d′n+1). Consequently, it also induces a map Hn(f) : Hn(M•)→ Hn(M
′
•).

It then follows readily from the definitions thatHn(id) = id andHn(g◦f) = Hn(g)◦Hn(f). □

4.41. Definition Let f• : M• →M ′
•
14 be a chain map. Then f is called a quasi-isomorphism

if it induces an isomorphism on all homology groups, i.e. if Hn(f) is an isomorphism for all
n ∈ Z.

4.42. Example Any isomorphism is a quasi-isomorphism, but the converse is not true: For
instance, the unique map from the chain complex

· · · → 0→M
id−→M → 0→ . . .

to the 0-chain complex is a quasi-isomorphism for any R-module M .

4.43. Definition Let f, g : M →M ′ be two chain maps. A chain homotopy between f and g
consists of maps hn : Mn →M ′

n+1 for all n ∈ Z satisfying the relation

dn+1hn + hn−1dn = fn − gn.

A chain homotopy equivalence is a map f : M →M ′ such that there exists a map g : M ′ →M
such that fg and gf are chain homotopic to idM ′ and idM , respectively.

4.44. Lemma Chain homotopic maps induce the same map on homology. In particular, a
chain homotopy equivalence is a quasi-isomorphism.

Proof. Let x ∈ ker(dn) represent an element of Hn(M). Then we have

fn(x) = gn(x) + dn+1hn(x) + hn−1dn(x) = gn(x) + dn+1hn(x)

so indeed [fn(x)] = [gn(x)] ∈ Hn(M
′). The second claim then follows immediately. □

4.45. Example There are chain maps which are quasi-isomorphisms but not chain homotopy
equivalences: For instance, the chain complex

· · · → 0→ Z ·p−→ Z→ 0→ . . .

14As usual, we start being slightly sloppy in notation and don’t always add the differentials explicitly.
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with non-trivial terms in degree 1 and 0 is quasi-isomorphic to the chain complex concentrated
in degree 0 and given by Z/pZ there. However, every chain map in the other direction is the
zero map. This implies that the two complexes are not chain homotopy equivalent.

4.46. Example Let X ⊆ Rn be a starshaped subset with star x ∈ X. Then the canonical

map Csing
• (X)→ Z, where we view the latter as a complex concentrated in degree 0, induced

by the map Csing
0 (X) → H0(X) ∼= Z is a chain homotopy equivalence. Indeed, consider the

map Z → Csing
• (X) given by sending 1 to the 0-simplex {x} ⊆ X. Then the composite

Z → Csing
• (X) → Z is the identity. We claim that the maps hn : C

sing
n (X) → Csing

n+1(X) from

Proposition 4.29 form a chain homotopy between the identity and the composite Csing
• (X)→

Z→ Csing
• (X). Indeed, we have verified in Proposition 4.29 that for n > 0, we have

dn+1hn + hn−1dn = id = id− 0

and d1h0 is the map sending a point y to the difference y− x which is the difference between

the identity of Csing
0 (X) and the above described composite Csing

0 (X) → Z → Csing
0 (X) as

needed.

After this small digression on chain complexes, we come back to singular homology:

4.47. Lemma The association (X,A) 7→ Csing
• (X,A) refines to a functor from pairs of topo-

logical spaces to Ch(Z).

Proof. The argument from Remark 4.24 shows that X 7→ Csing
• (X) refines to a functor Top→

Ch(Z). It follows that a map of pairs (X,A)→ (Y,B) induces a commutative square

Csing
• (A) Csing

• (X)

Csing
• (B) Csing

• (Y )

and hence induces a canonical map Csing
• (X,A)→ Csing

• (Y,B) which one readily checks to be
functorial. □

Let us now introduce homology with coefficients in an arbitrary abelian group M .

4.48.Definition Let (X,A) be a pair of spaces andM an abelian group. We define Csing
• (X,A;M) =

Csing
• (X,A)⊗Z M and H•(X,A;M) as its homology.

4.49. Remark Note that for any chain complex M•, the tensor product with any abelian
group is indeed again a chain complex. Moreover, if M is an R-module for some ring R, then

Csing
• (X,A;M) is a chain complex of R-modules and its homology groups are therefore also

R-modules. In particular, if K is a field like Fp or Q, then H•(X,A;K) consists of K-vector
spaces. Moreover, the formation of the singular chain complex with coefficients in M gives
rise to a functor Pairs→ Ch(R) whenever M is an R-module.

4.50. Remark In fact, for a commutative ring R like the integers Z, there is a canonical
symmetric monoidal structure on Ch(R) given as follows: For chain complexes C• and D•
one defines a double complex (i.e. an chain complex of chain complexes) with (p, q) entry given
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by Cp ⊗R Dq and horizontal and vertical maps given by the respective differentials. For a
double complex one can construct its total complex which sums up terms of fixed total degree:
Concretely, we obtain

(C ⊗R D)n =
⊕

p+q=n

Cp ⊗R Dq.

The differential ∂⊗ on C⊗RD is determined by its restriction to Cp⊗RDq and on elementary
tensors is given by

∂⊗n (x⊗ y) = dn(x)⊗ y + (−1)|x|x⊗ dn(y).
This squares to zero as one checks directly (it is here that the introduction of some signs
is necessary). Moreover, the symmetry isomorphism for the claimed symmetric monoidal

structure also adds a sign: on elementary tensors, it is given by τ(x ⊗ y) = (−1)|x||y|y ⊗ x.
These sign conventions are often referred to as the Koszul sign rule. With these conventions,
the tensor product of a chain complex of R-modules C with an R-module M is the same as
the tensor product of C with the chain complex M [0] consisting of M in degree 0 and 0’s
everywhere else.

4.51. Definition A short exact sequence of chain complexes of R-modules consists of chain
maps

0→M ′
•

i•−→M•
p•−→M ′′

• → 0

such that the induced sequence of R-modules

0→M ′
n

in−→Mn
pn−→M ′′

n → 0

is a short exact sequence in the sense of Remark 4.37 for every n ∈ Z.

4.52. Example Let (X,A) be a pair of spaces. Then the sequence

0→ Csing
• (A)→ Csing

• (X)→ Csing
• (X,A)→ 0

is a short exact sequence of chain complexes. We have already see that the evident maps are
maps of chain complexes, and by definition, for all n ∈ Z, the sequence

0→ Csing
n (A)→ Csing

n (X)→ Csing
n (X,A)→ 0

is short exact. Moreover, since all abelian groups appearing above are free for, we also obtain
that for any abelian group M , the sequence

0→ Csing
• (A;M)→ Csing

• (X;M)→ Csing
• (X,A;M)→ 0

is a short exact sequence.

4.53. Example Let (X,A) be a pair of spaces and let

0→M ′ →M →M ′′ → 0

be a short exact sequence of abelian groups. Then

0→ Csing
• (X,A;M ′)→ Csing

• (X,A;M)→ Csing
• (X,A;M ′′)→ 0

is a short exact sequence of chain complexes. This uses again that for all n ∈ Z, the abelian

groups Csing
n (X,A) are free.

Short exact sequences of chain complexes play an important role.
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4.54. Lemma For a short exact sequence in Ch(R)

0→M ′
•

i•−→M•
p•−→M ′′

• → 0

and every n ∈ Z there is defined a natural boundary map ∂n : Hn(M
′′
• ) → Hn−1(M•). The

associated sequence

. . . Hn(M
′)→ Hn(M)→ Hn(M

′′)
∂n−→ Hn−1(M

′)→ Hn−1(M)→ . . .

is long exact.

Proof. We apply the snake lemma Lemma B.32 three times (Exercise 1 Sheet 13). Once, to
see that the upper and lower sequence in the following diagram are exact, and then a final
time to the following diagram itself:

M ′
n/Im(d′n+1) Mn/Im(dn+1) M ′′

n/Im(d′′n+1) 0

0 ker(d′n−1) ker(dn−1) ker(d′′n−1)

d′n dn d′′n

Then we use that the kernels of the vertical maps are isomorphic to Hn(M
′), Hn(M) and

Hn(M
′′), respectively and that the cokernels are isomorphic to Hn−1(M

′), Hn−1(M), and
Hn−1(M

′′). Naturality of the boundary operator follows from the naturality of the snake
lemma. □

4.55. Remark Naturality of the bounday operator in Lemma 4.54 simply means that given
a map f between two short exact sequences of chain complexes, i.e. a commutative diagram
of chain complexes

0 M ′
• M• M ′′

• 0

0 N ′
• N• N ′

• 0

f ′
• f• f ′′

•

then for all n ∈ Z, the square

Hn(M
′′
• ) Hn−1(M

′
•)

Hn(N
′′
• ) Hn−1(N

′
•)

∂n

Hn(f ′′
• ) Hn−1(f ′

•)

∂n

commutes.

4.56. Corollary Let (X,A) be a pair of spaces and k ∈ Z an integer. Then there exists a
natural map βk : H•(X,A;Z/kZ)→ H•−1(X,A), called the Bockstein operator. It sits inside
a long exact sequence

· · · → Hn(X,A)
·k−→ Hn(X,A)→ Hn(X,A;Z/kZ)

βn−→ Hn−1(X,A)
·k−→ Hn−1(X,A)→ . . .

4.57. Remark It follows that for each n ∈ Z, we obtain a short exact sequence

0→ Hn(X,A)/k → Hn(X,A;Z/kZ)→ Hn−1(X,A)[k]→ 0

where the first and last term denote the cokernel and kernel of the multiplication by k map
on the respective abelian group. Later, i.e. next term, we will show that
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(1) this sequence splits, i.e. the middle term is the direct sum of the outer two terms, and
(2) there exists a variant for Z/kZ replaced by an arbitrary abelian group M , in which

the outer terms have to be replaced with terms involving the functors − ⊗M and
Tor(−,M).

Proof of parts of Theorem 4.34. (1) was already shown in Remark 4.24. For (3), we note that
the evident map ⊕

i∈I
Csing
n (Xi)→ Csing

n (
∐
i∈I

Xi)

is a chain map on general categorical grounds. Furthermore, this map is in fact an isomor-
phism of chain complexes, and in particular induces an isomorphism on homology. (4) follows
from Example 4.52 together with Lemma 4.54.

For (6), use the excision property (5) for the pair (X,B) with U = X \A. Note that indeed
X \A = X \ Å ⊆ B̊ since Å ∪ B̊ = X and that we have B \ (X \ A) = A ∩ B. We obtain a
commutative diagram as follows.

. . . Hn+1(A,A ∩B) Hn(A ∩B) Hn(A) Hn(A,A ∩B) . . .

. . . Hn+1(X,B) Hn(B) Hn(X) Hn(X,B) . . .

∼=

iA∗

iB∗

p

jA∗

∂n

∼=
jB∗ q

The map ∂ : Hn(X)→ Hn−1(A ∩B) is given by the composite

Hn(X)→ Hn(X,B)
∼=←− Hn(A,A ∩B)

∂n−→ Hn−1(A ∩B).

It is then an exercise in diagram chasing that this map fits into a long exact sequence as
claimed; let us show only some of the required things. For instance, assume x ∈ ker(∂n).
Then its image in Hn(A,A ∩ B) lies in the kernel of ∂n : Hn(A,A ∩ B) → Hn−1(A ∩ B) and
hence is of the form p(y) for some y ∈ Hn(A) by exactness of the top row. Then q(jA∗ (y)−) = 0
and hence there exists z ∈ Hn(B) such that x = jA∗ (y)− jB∗ (z) as needed. Similarly, suppose
that x ∈ Hn−1(A ∩B) satisfies iA∗ (x) = iB∗ (x) = 0. Then there exists z ∈ Hn(A,A ∩B) with
∂n(z) = x and its image in Hn(X,B) lies in the kernel of the map to Hn−1(B). Consequently,
it lifts to Hn(X), showing that x is in the image of the map Hn(X) → Hn−1(A ∩ B). All
other cases are similar or easier.

For (7), cover Σ(X) by the contractible open subsets Σ(X) \ {N} and Σ(X) \ {S}. The
intersection is homotopy equivalent to X. The long exact Mayer-Vietoris sequence reads as

· · · → Hn({S})⊕Hn({N})→ Hn(Σ(X))→ Hn−1(X)→ Hn−1({S})⊕Hn−1({N})→ . . .

from which the claim follows immediately. □

(7) above can also be proved using the following lemma (applied in the case Y = ∗) which
we will need later.

4.58. Lemma Let f : X → Y be a map. Then Csing
• (Cyl(f), X) is canonically quasi-isomorphic

to Csing
• (C(f), ∗). In particular, there is a long exact sequence

· · · → Hn(X)→ Hn(Y )→ H̃n(C(f))→ Hn−1(X)→ Hn−1(Y )→ . . .

Proof. Consider the pair (C(f),C+(X)) where C+(X) denotes the upper half part of the cone
on X which is glued onto Y to form C(f). This pair is quasi-isomorphic to (C(f), ∗) since
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C+(X) is contractible. By excision, i.e. Theorem 4.34 (5), there is a further quasi-isomorphism

Csing
• (C(f),C+(X)) ∼= Csing

• (C(f) \ {∞},C+(X) \ {∞}) where∞ is the cone point of C+(X).
The latter is in turn quasi-isomorphic to the pair (Cyl(f), X) as needed. □

4.59. Warning We issue a warning about the naturality of the boundary operator in the
Mayer-Viertoris long exact sequence. Note that we have in fact made a choice when defining
it: Essentially, given A,B covering X, we consider the triple (X,B,X \A) and used excision
for X \ A ⊆ B to define the boundary map ∂n : Hn(X) → Hn−1(A ∩ B). To emphasize that
we have chosen this triple (as opposed to the triple (X,A,X \B)), let. us write more carefully

∂A,B
n for this map. Then, as just indicated, there is also a map ∂B,A

n : Hn(X)→ Hn−1(A∩B),
which uses excision for X \ B ⊆ A instead. We will argue in Addendum 4.73 that we have

∂B,A
n = −∂A,B

n . In particular, the boundary map in the Mayer-Vietoris long exact sequence
is natural with respect to covers of X by ordered pairs (A,B). If one is uncareful about the
order of (A,B) used to define the boudary map, then the diagrams involving ∂n will only
commute up to a sign. You will find such statements (diagrams of long exact Mayer-Viertoris
sequences which commute possibly only up to a sign) in many places in the literature.

The properties we have left open are then homotopy invariance and excision. Both of these
require a technical argument in chain complexes which we will have to provide. We will do
so by proving a suitable abstract form of the “fundamental theorem of homological algebra”
which in the literature is often referred to as (in similar form) the theorem of acyclic models.
We first phrase the following general result and then specialize to the case we care about
later. It will be convenient to introduce the following construction.

4.60. Notation Let M ∈ Ch(R) be a chain complex and let n ∈ Z. Then we define a new
chain complex σ≤n(M) with σ≤n(M)k = Mk if k ≤ n and σ≤n(M)k = 0 if k > n. There is
an evident chain map σ≤n(M)→M which is the identity whenever possible.

4.61. Lemma Let A be an abelian category, P ∈ Ch(A) a chain complex in A consisting of
projective objects and let M ∈ Ch(A) be a further chain complex.

(1) Assume given n ∈ Z and a chain map σ≤n(f) : σ≤n(P ) → σ≤n(M). Then σ≤n(f)
extends to a chain map σ≤n+1(P ) → σ≤n+1(M) if and only if the canonical map
Pn+1 → Hn(M) induced by fnd

P
n+1 is the zero map. Diagrammatically:

. . . Pn+1 Pn Pn−1 . . .

. . . Mn+1 Mn Mn−1 . . .

dPn+1

fn+1

dPn

fn fn−1

dMn+1 dMn

(2) Assume given n ∈ Z, chain maps f, g : P →M and for k ≤ n−1 maps hk : Pk →Mk+1

satisfying

dMk+1hk + hk−1d
P
k = fk − gk.



82 MARKUS LAND

Then there exists hn : Pn → Mn+1 satisfying the analogous relation if and only if the
map Pn → Hn(M) induced by fn − gn − hn−1d

P
n is zero. Diagrammatically:

. . . Pn+1 Pn Pn−1 Pn−2 . . .

. . . Mn+1 Mn Mn−1 Mn−2 . . .

dPn+1 dPn

hn

dPn−1

hn−1 hn−2

dMn+1 dMn dMn−1

In particular, given maps f, g : P →M such that σ≤n(f) = σ≤n(g) and HomA(Pk, Hk(M)) =
0 for all k ≥ n+ 1, then f and g are chain homotopic.

Proof. (1) Consider as written above the diagram

Pn+1 Pn Pn−1

Mn+1 Mn Mn−1

dPn+1 dPn

fn fn−1

dMn+1 dMn

Note that the composite Pn+1 → Pn →Mn →Mn−1 is zero by commutativity of the diagram
and the fact that the top composite is zero. Therefore, we obtain a canonical map Pn+1 →
ker(dMn ) induced by fn. The assumption that the map Pn+1 → Hn(M) is zero implies that
fn in fact induces a map Pn+1 → Im(dMn+1). Since dn+1 : Mn+1 → Im(dMn+1) is surjective and
Pn+1 is projective, a dashed map fn+1 making the left square commute exists.

(2) Again, we note that

dMn (fn − gn − hn−1d
P
n ) = dMn fn − dMn gn − (dMn hn−1)d

P
n

= fn−1d
P
n − gn−1d

P
n − (fn−1 − gn−1 − hn−2d

P
n−1)d

P
n

= 0

so that the assumptions imply that fn− gn− hn−1d
P
n induces a map Pn → Im(dMn+1). Hence,

the projectivity of Pn again implies the existence of a map hn with the required properties.
The in particular is an immediate consequence of (2). □

Before coming to applications in topology of Lemma 4.61, we record the following important
applications in homological algebra.

4.62. Corollary (The fundamental theorem of homological algebra) Let P ∈ Ch(A)≥0 be a
non-negatively graded chain complex consisting of projective objects in an abelian category A

and let M ∈ Ch(A) be an exact chain complex. Suppose given f0 : P0 → ker(d0) ⊆M0. Then
f0 extends to a chain map f : P →M which is unique up to chain homotopy.

Proof. By Lemma 4.61 (1), f0 extends to a chain map f : P → M since Hn(M) = 0 for all
n ∈ Z by assumption. Now suppose f and f ′ are two such extensions. For k ≤ 0, define
0 = hk : Pk → Mk+1. Then dMk+1hk + hk−1d

P
k = fk − f ′k holds true since f0 = f ′0. Since M is

exact, Lemma 4.61 (2) implies that there exists a chain homotopy between f and f ′. □

4.63. Corollary Any object in Mod(R) admits a projective resolution P ∈ Ch(R)≥0, unique
up to chain homotopy equivalence and an injective resolution I ∈ Ch(R)≤0 again unique up
to chain homotopy equivalence.
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Proof. Pick M ∈ Mod(R). Then there exists a surjection P0 → M with P0 surjective.
Inductively, there exists a surjection Pn+1 → ker(Pn → Pn−1) with Pn+1 projective. The
resulting sequence

. . . Pn+1 → Pn → Pn−1 → · · · → P0 → 0

is a projective non-negatively graded chain complex P with Hk(P ) = 0 for k ̸= 0 and H0(P ) ∼=
M . Such a chain complex is called a projective resolution of M . It remains to show that such
a projective resolution is unique up to chain homotopy equivalence. To see this, suppose P ′

is another such resolution. Then a dashed arrow in the diagram

P0 H0(P )

P ′
0 H0(P

′)

∼=

exists since P0 is projective and the vertical lower map is surjective. By Lemma 4.61 (1),
the obstructions to extending f0 to a chain map f : P → P ′ vanish since Hk(P

′) = 0 for
k > 0. Similarly, we can construct a chain map g : P ′ → P such that the composites fg and
gf induce the identity on H0. We will now show that given φ : P → P a chain self-map of a
projective resolution of H0(P ) which induces the identity on H0(P ) is chain homotopic to the
identity. To do so, we apply Lemma 4.61 (2): For k < 0 we have maps hk = 0 satisfying all
we want. Then we can construct h0 since the composite P0 → H0(P ) induced by id − φ0 is
trivial. Inductively, we can then construct hn for n > 0 simply because Hn(P ) = 0 for n > 0.

The argument with injective resolutions is similar, or can formally be deduced from the
above fact by arguing in Mod(R)op. In this abelian category, projective objects are the
injective objects of Mod(R). Therefore, in order to run the above argument, we only need to
know that for every M ∈ Mod(R), there exists an injection M → I with I injective. This is
a classical result which we will not argue here (perhaps we’ll have it in the appendix at some
point). □

4.64. Remark The argument above is an easy case of the following more general result which
we will treat in Exercise 1 Sheet 14: Suppose P and Q are non-negatively graded chain
complexes of projective modules and suppose given a quasi-isomorphism f : P → Q. Then
f is a chain homotopy equivalence. Note that for projective resolutions, the first step above
produces a quasi-isomorphism between projective resolutions, and the second one then shows
that this quasi-isomorphism is in fact a chain homotopy equivalence.

We move towards the topological applications of Lemma 4.61. First, we prove homotopy
invariance of singular homology.

4.65. Lemma Let X be a topological space and denote by iX0 and iX1 the evident inclusions

X → X × [0, 1]. Then Csing
• (iX0 ) and Csing

• (iX1 ) are chain homotopic, naturally in X. That

is, there exists a chain homotopy hX from Csing
• (iX0 ) to Csing

• (iX1 ) such that for any map
f : X → Y and all n ∈ Z, the diagram

Csing
n (X) Csing

n+1(X × [0, 1])

Csing
n (Y ) Csing

n+1(Y × [0, 1])

hXn

Csing
n (f) Csing

n+1(f×id)

hYn
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commutes.

Proof. We will pretend that Fun(Top,Mod(Z)) is an abelian category (it only not so up to the
set theoretic problem that it is not a category - for our applications, however, this does not

play a role). Then X 7→ Csing
• (X) is an object of Ch(Fun(Top,Mod(Z)), which we claim to

consist of levelwise projective objects. Indeed, Csing
n (−) = Z[HomTop(∆

n
Top,−)]. To see that

this object is projective, consider a surjection α : F → G in Fun(Top,Mod(Z)), i.e. a natural

transformation of functors which is objectwise surjective, and a morphism g : Csing
n (−)→ G.

To show projectivity, we need to show that there exists a dashed arrow in the diagram

F

Csing
n (−) G

f

making it commute. By definition of free abelian groups and the Yoneda lemma, the morphism
g corresponds to an element ĝ ∈ G(∆n

Top) and the putative morphism f to an element f̂ ∈
F (∆n

Top). That the diagram commutes translates to the condition that α(f̂) = ĝ. Hence, the
required f exists since α is objectwise surjective.

We will apply Lemma 4.61 (2) in the following way: We let P = Csing
• (−) and M =

Csing
• (− × [0, 1]) viewed as objects of Ch(Fun(Top,Ab)). For n = 0, we consider the map

h0 : C
sing
0 (−) → Csing

1 (− × [0, 1]) which corresponds under the Yoneda lemma to canonical
homeomorphism ∆1 → [0, 1]15. Then the composite

Csing
0 (−)→ Csing

1 (−× [0, 1])
d1−→ Csing

0 (−× [0, 1])

is given by Csing
0 (i0)−Csing

0 (i1). We now want to argue inductively that h0 can be extended to

a natural chain homotopy between Csing
• (i0) and C

sing
• (i1). This amounts to showing that for

n > 0 certain maps Csing
n (−)→ Hn(−× [0, 1]) vanish. By Yoneda, such maps are equivalently

described by elements in Hn(∆
n
Top× [0, 1]) which is the trivial group by Proposition 4.29. □

4.66. Remark The naturality of the above chain homotopy implies (by the Yoneda lemma

yet again) that the homotopies hXn are induced by elements Csing
n+1(∆

n
Top × [0, 1]) satisfying

certain relations. We have argued the existence of such elements by envoking the fact that
Hn+1(∆

n
Top × [0, 1]) = 0 for all n ≥ 0 since ∆n

Top × [0, 1] is star-shaped, but we have not
made explicit choices for such elements. This can, however, be done: Indeed, such elements
are given by subdividing a prism ∆n

Top × [0, 1] into (n + 1)-simplices, and then adding up

(with appropriate signs) these (n + 1)-simplices of ∆n
Top × [0, 1]. To obtain the relevant

(n + 1)-simplices of ∆n
Top × [0, 1] denote for k ∈ {0, . . . , n} and ϵ ∈ {0, 1} by vϵk the point

in ∆n
Top × [0, 1] ⊆ Rn+2 which has for 1 ≤ i ≤ n + 1 its (k − 1)st coordinate equal to 1, its

n+ 2nd coordinate equal to ϵ and all other components equal to 0. Then the convex hull of
{v00, . . . , v0i , v1i , . . . , v1n} is an (n+ 1)-simplex inside ∆n

Top × [0, 1] which, added up (with signs

determined by i) gives rise to the Prism operator Pn : C
sing
n (−) → Csing

n+1(− × [0, 1]), see e.g.
[?] for the details.

15Concretely, h0 sends a 0-simplex {x} ⊆ X of a space X to the 1-simplex {x} × [0, 1] → X × [0, 1].
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4.67. Corollary Let f, g : (X,A) → (Y,B) be homotopic maps of pairs. Then Csing
• (f) and

Csing
• (g) are chain homotopic maps Csing

• (X,A) → Csing
• (Y,B). In particular, for all n ∈ Z,

we have Hn(f) = Hn(g).

Proof. By Lemma 4.65 there exists for each n ∈ Z a commutative diagram

Csing
n (A) Csing

n+1(A× [0, 1]) Csing
n+1(B)

Csing
n (X) Csing

n+1(X × [0, 1]) Csing
n+1(Y )

hAn

hXn

witnessing compatible chain homotopies between the maps induced on Csing
• (−) by the maps

f|A, g|A : A→ B and f, g : X → Y . Passing to vertical cokernels, we obtain a map

Csing
n (X,A)→ Csing

n+1(Y,B)

which one checks to be a chain homotopy between the maps

Csing
• (f), Csing

• (g) : Csing
• (X,A)→ Csing

• (Y,B).

□

4.68. Remark Since for each abelian groupM , the functor −⊗M : Ch(Z)→ Ch(Z) preserves
chain homotopies, one formally deduces that if f, g : (X,A)→ (Y,B) are homotopic maps of
pairs, then Hn(f ;M) = Hn(g;M) as maps Hn(X,A;M)→ Hn(Y,B;M) for all n ∈ Z.

To finish the verification of all properties of singular homology, it remains to prove excision.
To do so, we need a procedure to make represent a given singular homology class by (sums
of) simplices which are so small that they are contained in suitable subspaces of the given
space. This motivates the following construction.

4.69. Construction Let n ≥ 0 and let bsdn ∈ Csing
n (∆n

Top) be given inductively as follows.

First, we define the barycenter bn = 1
n+1(1, . . . , 1) ∈ ∆n

Top of ∆n
Top. We note that it is

a star for the starshaped (in fact convex) set ∆n
Top. Now to the construction: We define

bsd0 = id∆0
Top
∈ Csing

0 (∆0
Top). Inductively, for n ≥ 1 we then define

bsdn =

n∑
i=0

(−1)ihn−1[(δi)∗(bsdn−1)]

where we use hn−1 : C
sing
n−1(∆

n
Top)→ Csing

n (∆n
Top) as in Proposition 4.29 with star the barycen-

ter bn and (δi)∗ : C
sing
n−1(∆

n−1
Top )→ Csing

n−1(∆
n
Top) is the map on singular (n−1)-simplices induced

by δi : ∆
n−1
Top → ∆n.

4.70. Lemma (Barycentric subdivision) The elements {bsdn}n≥0 give rise to a chain map

bsd: Csing
• (−)→ Csing

• (−) called the barycentric subdivision map. This map is naturally chain
homotopic to the identity.
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Proof. By Yoneda, bsdn gives rise to a map Csing
n (−)→ Csing

n (−)16. That this map is a chain
map is equivalent means that for all n ≥ 0, the diagram

Csing
n (−) Csing

n (−)

Csing
n−1(−) Csing

n−1(−)

bsdn

dn dn

bsdn−1

commutes. For n = 0 this is true tautologically, and for n ≥ 1, by Yoneda yet again, this is
equivalent to the equality

dn(bsdn) =
n∑

i=0

(−1)i(δi)∗(bsdn−1) ∈ Csing
n−1(∆

n
Top).

We then simply calculate

dn(bsdn) =

n∑
i=0

(−1)idnhn−1[(δi)∗(bsdn−1)]

=

n∑
i=0

(−1)i
[
(δi)∗(bsdn−1)− hn−2(δi)∗(dn−1(bsdn−1))

]
=

n∑
i=0

(−1)i(δi)∗(bsdn−1)− hn−2

[ n∑
i=0

(−1)i(δi)∗(dn−1(bsdn−1))
]

where we have used the relation dnhn−1 = id− hn−2dn−1 established in the proof of Proposi-
tion 4.29. It then suffices to prove that

n∑
i=0

(−1)iδi(dn−1(bsdn−1)) = 0.

For n = 0, 1 this is tautologically true. By induction, we then have

dn−1(bsdn−1) =

n−1∑
j=0

(−1)jδj(bsdn−1).

Inserting this we obtain

n∑
i=0

(−1)iδi(dn−1(bsdn−1)) =
n∑

i=0

n−1∑
j=0

(−1)i+jδiδj(bsdn−2) = 0

Indeed, the same argument as in Lemma 4.22 (proving d2 = 0) shows that the latter terms
cancel out as needed. To see that the resulting chain map bsd is homotopic to the identity,
we note that its degree 0 part is the identity. As a consequence of Lemma 4.61 (2), there is
no obstruction for constructing a natural chain homotopy between bsd and id. □

4.71. Theorem Let (X,A) be a pair of spaces and let U ⊆ A such that U ⊆ Å. Then for all
n ∈ Z, the canonical map Hn(X \ U,A \ U)→ Hn(X,A) is an isomorphism.

16Concretely, it sends σ : ∆n
Top → X viewed as element in Csing

n (X) to the element σ∗(bsdn) ∈ Csing
n (X),

i.e. it restricts σ to the barycentrically defined subsimplices in ∆n and adds those up with appropriate signs.
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Proof. Let us denote by Csing
• (X |X \ U,A) the image of the map of chain complexes

Csing
• (X \ U)⊕ Csing

• (A)→ Csing
• (X)

and by H•(X |X \U,A) its homology. First, we note that the commutative diagram of chain
complexes

Csing
• (A) ∩ Csing

• (X \ U) Csing
• (X \ U)

Csing
• (A) Csing

• (X |X \ U,A)

induces an isomorphism on horizontal cokernels, as follows from the first isomorphism theorem

in group theory17. Moreover, the top left term is simply given by Csing
• (A \ U). Next we will

argue that the canonical inclusion Csing
• (X | X \ U,A) → Csing

• (X) is a quasi-isomorphism.
Given this, for all n ∈ Z, in the composite

Hn(X \U,A\U)→ Hn(C
sing
• (X |X \U,A)/Csing

• (A))→ Hn(C
sing
• (X)/Csing

• (A)) = Hn(X,A),

the first map is an isomorphism by the observation about horizontal cokernels in the above
square of chain complexes, and the second map is an isomorphism by the 5-lemma.

Let us therefore show that the map Csing
• (X |X \U,A)→ Csing

• (X) is a quasi-isomorphism.

To show surjectivty, let σ ∈ Csing
n (X) represent an element of Hn(X). By a Lebesgue lemma

argument and the fact that the simplices in the barycentric subdivision of ∆n
Top become

successively smaller, there exists a k ≥ 1 such that bsdk(σ) ∈ Csing
n (X |X\U,A). Here, we have

used that X \U, Å is an open cover of X and applied the Lebesgue lemma to the open cover of

∆n
Top given by σ−1 of this open cover. Since Csing

• (X |X\U,A) is a subcomplex of Csing
• (X), we

find that bsdk(σ) represents an element of Hn(XX \U,A). Its image in Hn(X) is represented

by bsdk(σ), but by Lemma 4.70, bsd induces the identity on homology, showing surjectivty

of the map in question. Now assume that σ ∈ Csing
n (X | X \ U,A) represents an element

in homology whose image in Hn(X) vanishes. Then there exists ρ ∈ Csing
n+1(X) such that

dn+1(ρ) = σ. Similarly as above, there exists k ≥ 1 such that bsdk(ρ) ∈ Csing
n+1(X |X \ U,A).

Moreover, dn+1(bsd
k(ρ)) = bsdk(dn+1(ρ)) = bsdk(σ). Now we note that bsd: Csing

• (X) →
Csing
• (X) restricts to a self map of Csing

• (X |X \ U,A) and that this map is again homotopic
to the identity, which follows from the naturality of the map bsd and its chain homotopy to
the identity. Consequently, we have 0 = [bsdk(σ)] = [σ] ∈ Hn(X | X \ U,A) and the map
under investigation is injective. □

4.72. Remark You can go through the above argument and convince yourself that also for
any abelian group M and all n ∈ Z, the canonical map Hn(X \U,A \U ;M)→ Hn(X,A;M)
is an isomorphism. Alternatively, one can use the following approach: Theorem 4.71 shows

that Csing
• (X \ U,A \ U) → Csing

• (X,A) is a quasi-isomorphism. Since both chain complexes
are levelwise projective and non-negatively graded, we can deduce from Remark 4.64 (see
Exercise 1 Sheet 14) that it is in fact a chain homotopy equivalence. Hence it remains so
after applying − ⊗M , and consequently, Hn(X \ U,A \ U ;M) → Hn(X,A;M) is also an
isomorphism.

17Recall that this says that for subgroups M,N of an abelian group A, there is a canonical isomorphism
(M +N)/N ∼= M/(M ∩N).
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4.73. Addendum We finish the argument in Warning 4.59 about the two boundary maps
Hn(X) → Hn−1(A ∩ B) for A,B ⊆ X with Å ∪ B̊ = X. To compare the two maps, we may

represent an element of Hn(X) by a cycle x ∈ Csing
n (X). Using the barycentric subdivision

as in the proof of Theorem 4.71, we may assume that x = a + b where a ∈ Csing
n (A) and

b ∈ Csing
n (B). Now let us recall the definition of ∂A,B

n : It is given by the composite

Hn(X)→ Hn(X,B)
∼=←− Hn(A,A ∩B)→ Hn−1(A ∩B).

The first map sends x = a+b simply to a which is already in the image of the map Csing
n (A,A∩

B) → Csing
n (X,B), and hence x is sent under the first two maps to the element represented

by a. The final map is given by the boundary map in the long exact sequence of the pair

(A,A∩B). Recall that this is concretely given choosing e.g. a ∈ Csing
n (A) as a lift of its image

in Csing
n (A,A ∩B), applying dn to it and observing that dn(a) ∈ Csing

n (A ∩B) is a cycle and
hence represents an element in homology. Hence, we get

∂A,B
n (x) = [dn(a)] ∈ Hn−1(A ∩B).

Analogously, we obtain

∂B,A
n (x) = [dn(b)] ∈ Hn−1(A ∩B).

Therefore, we have

(∂A,B
n + ∂B,A

n )(x) = [dn(a)] + [dn(b)] = [dn(a+ b)] = [dn(x)] = 0

since x is a cycle. As x was arbitrary, we deduce ∂B,A
n = −∂A,B

n as claimed.

4.74. Proposition Theorem 4.34 is true for the functors (X,A) 7→ {Hn(X,A;M)}n∈Z for
any abelian group M .

Proof. (1) follows from the definitions: We have Csing
n (∗;M) = M for each n ≥ 0 and the

differentials are id and 0 in turn. (2) was argued in Remark 4.68 (3) follows formally from
the fact that −⊗M is a left adjoint and hence commutes with coproducts. (4) follows from
Example 4.52 and Lemma 4.54 just as before. (5) is the content of Remark 4.72, (6) formally
follows from (5) and (4), just as we have proved (6) earlier. (7) formally follows from (6). □

4.75. Lemma Let (X,A) be a pair of spaces. Then for all n ∈ Z there is a commutative
triangle

Hn(X,A) Hn(Σ(A), ∗)

Hn−1(A, ∗)
∂

σ

whose diagonal arrow is the boundary map of the pair (X,A), whose vertical map is the
suspension isomorphism and whose horizontal map is induced by the map C(i)→ Σ(A) under
the isomorphism Hn(X,A) ∼= Hn(C(i), ∗) from Lemma 4.58.

Proof. We consider the following commutative diagram of pairs of spaces:

(C(i),C+(A)) (Σ(A),C+(A))

(Cyl(i), A) (C−(A), A)
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Here, we picture the vertical maps as inclusions, the left being where we attach C+(A) on
top of Cyl(i) to obtain C(i), and the right where C−(A) is the southern hemisphere of the
suspensions. Applying the functor Hn we obtain the top part of the following commutative
square

Hn(C(i),C
+(A)) Hn(Σ(A),C

+(A))

Hn(X,A) Hn(Cyl(i), A) Hn(C
−(A), A)

Hn−1(A, ∗) Hn−1(A, ∗) Hn−1(A, ∗)

∼=

∂

∼=

∂

∼=

∂

of which the top to vertical maps are isomorphism by excision and the lower vertical maps are
boundary maps for pairs. In particular, the lower square commutes by the naturality of the
boundary map for pairs. Then we recall that the suspension isomorphism σ is by construction
given by the right vertical composite. Finally we may use that C+(A) is contractible so that
the whole diagram gives a commutative square

Hn(C(i), ∗) Hn(Σ(A), ∗)

Hn(X,A) Hn−1(A, ∗)

σ∼=∼=

∂

The claim then follows from the observation that the left vertical isomorphism in this square
is indeed the one considered in Lemma 4.58. □

4.5. Singular homology of CW complexes. Having now verified all properties of singular
homology, we can perform more calculations. First, we investigate the effect in homology of
a cell attachement and general properties of homology of CW complexes. In the following,
Hn(−) refers to homology with arbitrary (but not in the notation fixed) coefficients.

4.76. Corollary Consider a pushout diagram∐
i∈I S

n−1 A

∐
i∈I D

n X

i

Then there exists a canonical exact sequence

0→ Hn(A)→ Hn(X)→
⊕
i∈I

H̃n−1(S
n−1)→ Hn−1(A)→ Hn−1(X)→ 0

and Hk(A) → Hk(X) is an isomorphism for k ̸= n − 1, n. In particular, if Y is an n-
dimensional CW complex, we have Hk(Y ) = 0 for k > n and Hn(Y ) is torsionfree. Moreover,
for any CW complex Y , we have that the canonical map

colim
n≥0

Csing
• (skn(Y ))→ Csing

• (Y )

is an isomorphism. In particular, for each k ≥ 0, the canonical map

colim
n≥0

Hk(skn(Y ))→ Hk(Y )
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is an isomorphism.

Proof. Recall from Lemma 2.53 that C(i) ≃ X/A ∼=
∨

i∈I S
n. It then follows from Lemma 4.58

that Csing
• (X,A) is quasi-isomorphic to

⊕
i∈I C

sing
• (Sn, ∗) since reduced homology commutes

with (arbitrary) wedge sums of CW complexes (Exercise). Consequently, for Y an n-dimensional
CW complex, we find inductively that 0 = Hk(∅) → Hk(Y ) is an isomorphism for k > n.
Moreover, considering A = skn−1(Y ), the above exact sequence implies that Hn(Y ) is a sub-
group of a free abelian group and hence itself free abelian. The first displayed isomorphism
follows from the fact that ∆n

Top is compact: By Proposition 2.35 (1) it follows that the image

of any continuous map σ : ∆n
Top → Y is contained in skn(Y ) for some n ≥ 0. The final part

follows from the fact that a filtered colimit is an exact functor and hence commutes with
taking homology (it preserves kernels and cokernels of maps). □

4.77. Example In this example, we use the above to calculate Hn(−) for all n ≥ 1 for all
the spaces we have previously calculated H1, that is RPn, CPn, HPn, T 2, K, Σg (notice that
T 2 = Σ1. We will revisit these calculations more systematically later.

We recall that there are pushouts

S1 S1 ∨ S1 S1
∨

2g S
1

D2 K D2 Σg

f αg

where f = xyxy−1 ∈ π1(S1 ∨ S1) and αg = [x1, y1] · · · · · [xg, yg]. By Corollary 4.76 and the
fact that H1(−) is abelian, we get an exact sequence

0→ H2(K)→ H1(S
1)

f∗−→ H1(S
1 ∨ S1)→ H1(K)→ 0

and the map f∗ identifies with the map (2, 0) under the isomorphism H1(S
1∨S1) ∼= H1(S

1)⊕
H1(S

1) ∼= Z ⊕ Z. This map is injective and has cokernel isomorphic to Z/2Z ⊕ Z. Hence,
H2(K) ∼= 0 and H1(K) ∼= Z/2Z⊕ Z.

For Σg, we get an exact sequence

0→ H2(Σg)→ Z→ Z2g → H1(Σg)

where now the middle map is induced by αg and vanishes as a consequence of the Hurewicz
theorem: the element αg ∈ π1(

∨
S1) lies in the commutator, i.e. the kernel of the map to the

abelianization. Hence H2(Σg) ∼= Z and H1(Σg) ∼= Z2g.
We move on to the projective spaces and treat the cases KPn for K = C,H. Let k denote

the real dimension of K, i.e. 2 in case K = C and 4 in case K = H. In Exercise 2 Sheet 6 we
have seen that there are pushouts

Snk−1 KPn−1

Dnk KPn

Consequently, by induction and the facts CP1 ∼= S2 and KP1 ∼= S4, we deduce thatHk(CPn) =
0 if k is odd, H2k(CPn) ∼= Z for 0 ≤ k ≤ n, Hk(CPn) = 0 for k > 2n, and likewiseHk(HPn) = 0
unless k = 4a with 0 ≤ a ≤ n in which case H4a(HPn) ∼= Z.
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Finally, we move to the more complicated case of RPn. Here, we have pushouts

Sn−1 RPn−1

Dn RPn

and RP1 ∼= S1. Since Hk(RPn) = 0 for k > n we obtain an exact sequence

0→ Hn(RPn)→ Z→ Hn−1(RPn−1)→ Hn−1(RPn)→ 0

so we need to make the second map explicit. To do so, we can use Lemma 4.75 to see that
this map is induced by the canonical map

Sn ∼= RPn/RPn−1 → ΣRPn−1

under the suspension isomorphism. We may then consider the composite of this map with
the projection ΣRPn−1 → Σ(RPn−1/RPn−2) ∼= Sn. We will show later that the degree of the
resulting self map of Sn is given by 1 + (−1)n, see Example 4.83.18

Inductively, we then deduce that

Hk(RPn) ∼=


Z if k = 0 or k = n and n is odd

Z/2 if 0 < k < n and k is odd

0 else

4.78. Remark Note that the same argument shows that Hk(RPn;Z/2Z) ∼= Z/2Z for all
0 ≤ k ≤ n, compatible with the inductive proof of this result using Exercise 2 Sheet 14.

We have seen above that we can inductively calculate the homology of a cell attachment,
provided we understand the effect of the attaching map on homology. This suggests that we
should be able to calculate the homology of CW complexes in general. However, we have
seen that concretely, we need to calculate degrees of self-maps of spheres in order to calculate
homology. Often, the following local formula for the degree will allow us to do this.

4.79. Definition Let f : Sn → Sn be a map and n ≥ 1. Let x ∈ Sn and assume that f
restricts to a homeomorphism U → V where U is an open neighborhood of x and V is an
open neighborhood of f(x). The composite

Hn(S
n)→ Hn(S

n, Sn\{x})
∼=←− Hn(U,U\{x})

∼=−→ Hn(V, V \{f(x)})→ Hn(S
n, Sn\{f(x)})

∼=←− Hn(S
n)

is given by multiplication by a unique integer which we denote by degx(f), the local degree
of f at x.

4.80. Remark All maps appearing in the definition of the local index are isomorphisms.
Hence degx(f) ∈ {±1}.

4.81. Proposition Let f : Sn → Sn be a map and n ≥ 1. Assume that there exists y ∈ Sn

such that f−1(y) = {x1, . . . , xk} for some k ≥ 0 and assume that for each 1 ≤ i ≤ k, there

18We will argue later that the map under investigation is the suspension of the map Sn−1 → RPn−1 →
RPn−1/RPn−2, where the first map is the canonical projection (which is also the attaching map of the n-cell of
RPn). In Example 4.83 we calculate the degree of this unsuspended map, and hence also that of its suspension
by Proposition 4.2.
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exists an open neighborhood Ui of x and that f restricts to a homeomorphism Ui → Vi for
some open neighborhood Vi of y. Then we have

deg(f) =
k∑

i=1

degxi(f).

4.82. Remark Before giving the proof, we remark on the assumptions in Proposition 4.81.
Without explaining in detail what this means, assume that f is a smooth map. Then a
point y ∈ Sn is called a regular value if for each x ∈ f−1(y), the differential at x is surjective
(and hence an isomorphism for dimension reasons). In this case, the implicit function theorem
implies that f restricts to a diffeomorphism in a neighborhood of x (onto a neighborhood of y).
In particular, f−1(y) is discrete and compact (since it is a closed subset of the compact space
Sn) and therefore finite. In other words, the assumptions in Proposition 4.81 are satisfied
for all regular values y ∈ Sn. It is a theorem of Sard that regular values exist in abundance
(more precisely, the set of regular values is dense in Sn). Moreover, any continuous map is
homotopic to a smooth map, so the required data exist for in all situations we care about.

Proof. By passing to possibly smaller open sets, we may assume that all Ui are pairwise
disjoint. Consider the triple (Sn, Sn \ {x1, . . . , xk}, Sn \

⋃
Ui). Then excision implies the

isomorphism

Hn(S
n, Sn \ {x1, . . . , xk}) ∼= Hn(

⋃
Ui,

⋃
(Ui \ {xi})) ∼=

k⊕
i=1

Hn(Ui, Ui \ {xi})

where the last isomorphism follows from the fact that the Ui’s are pairwise disjoint. Moreover,
the map Hn(S

n) → Hn(S
n, Sn \ {y}) ∼= Hn(Vi, Vi \ {y}) is an isomorphism, and there is a

commutative diagram

Hn(S
n) Hn(S

n)

Hn(S
n, Sn \ {x1, . . . , xk}) Hn(S

n, Sn \ {y})

k⊕
i=1

Hn(Ui, Ui \ {xi})
k⊕

i=1
Hn(Vi, Vi \ {y})

f∗

∼=

∼= ⊕

in which all so labelled morphisms are isomorphisms and the morphism labelled ⊕ is the one
which is an isomorphism on each summand. Since the lower horizontal map is determined by
the sum of the local degrees of f , the proposition follows. □

4.83. Example The degree of the map f : Sn → RPn → RPn/RPn−1 ∼= Sn is 1 + (−1)n+1.
Indeed, from its explicit description we see that N and S, the north and south pole of Sn−1

are points as needed in order to apply Proposition 4.81. Hence we obtain

deg(f) = degN (f) + degS(f) = degN (f) + degS(f ◦ (−idSn))

where the latter equality stems from the fact that f = f ◦ (−idSn). Now just as the degree,
the local degree satisfies a compatibility formula in composites (when it makes sense, but in
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particular for compositions with homeomorphisms). In our case this reads as follows:

degS(f ◦ (−idSn)) = degN (f) · degS(−idSn).

Here, we have used N = −S = −idSn(S), of course. Proposition 4.81 and Proposition 4.2
give degS(−idSn) = deg(−idSn) = (−1)n+1. Finally, we note that f restricted to the upper
hemisphere Dn

+ ⊆ Sn is concretely given by the canonical projection Dn
+ → Dn

+/∂D
n
+
∼= Sn.

In particular, degN (f) = 1, finishing the calculation.

Continuing towards calculating homology for general CW complexes, we make the following
definition. In what follows, for a CW complex X, let us write Xn := skn(X) for its n-skeleton
to shorten notation.

4.84. Definition For a CW complex X, an abelian group M , and n ≥ 0, let Ccell
n (X;M) =

Hn(Xn, Xn−1;M) and let ∂Mn : Ccell
n (X;M)→ Ccell

n−1(X;M) be the boundary map associated
to the short exact sequence of chain complexes

0→ Csing
• (Xn−1, Xn−2;M)→ Csing

• (Xn, Xn−2;M)→ Csing
• (Xn, Xn−1;M)→ 0.

4.85. Theorem Let X be a CW complex. Then (Ccell
• (X;M), ∂M• ) is a chain complex, the

cellular chain complex of X with coefficients in M . We have Ccell
• (X;M) ∼= Ccell

• (X;Z)⊗ZM .
Its homology Hcell

• (X;M) is canonically19 isomorphic to the singular homology H•(X;M) of
X. In particular, cellular homology does not depend on the choice of a CW structure.

Proof. We claim that there is a commutative diagram

Hn(Xn, Xn−1;Z)⊗Z M Hn−1(Xn−1, Xn−2;Z)⊗Z M

Hn(Xn, Xn−1;M) Hn−1(Xn−1, Xn−2;M)

∂Z
n⊗M

∂Mn

whose vertical maps are induced by sending (α ⊗m) to m∗(α) where we view m ∈ M also
as a map m : Z → M . As such, it induces a map Hn(Y ;Z) → Hn(Y ;M) which we call m∗.
One checks directly that this map is an isomorphism for Y = Sn, using that the suspension
isomorphism is natural in coefficients. This reduces the claim to n = 0 where it is immediate.
It follows that the above vertical maps induce a map Ccell

• (X;Z)⊗ZM → Ccell
• (X;M) which

is levelwise an isomorphism.
Now we show that ∂Zn∂

Z
n+1 = 0, which by the above implies that (Ccell

• (X;M), ∂M• ) is a

chain complex for all M , and that this is isomorphic to Ccell
• (X;Z) ⊗Z M . To do so, we

observe that the above defined boundary maps ∂n factor as the composite

Hn(Xn, Xn−1)→ Hn−1(Xn−1)→ Hn−1(Xn−1, Xn−2)

whose first map is the boundary map in the long exact sequence of the pair (Xn, Xn−1) and
the second map is induced by the canonical projection. The composite ∂Zn∂

Z
n+1 therefore

factors through the composite

Hn(Xn)→ Hn(Xn, Xn−1)→ Hn−1(Xn−1)

which is zero by exactness of the long exact sequence of pairs.

19More precisely, naturally in cellular maps.



94 MARKUS LAND

Let us now consider the following commutative diagram consisting of exact rows and
columns:

Hn+1(Xn+1, Xn;M) 0 = Hn−1(Xn−2;M)

0 = Hn(Xn−1;M) Hn(Xn;M) Hn(Xn, Xn−1;M) Hn−1(Xn−1;M)

Hn(Xn+1;M) Hn−1(Xn−1, Xn−2;M)

0 = Hn(Xn+1, Xn;M)

α
∂Mn+1

β

γ

∂Mn

Then ker(∂Mn )/Im(∂Mn+1) = Hcell
n (X;M) by definition. All groups which are equal to 0 are so

as a consequence of Corollary 4.76. Since the top most right term is zero, we have ker(∂Mn ) =
ker(γ) = Im(β) ∼= Hn(Xn;M) since β is injective. Under this isomorphism, Im(∂Mn+1) corre-

sponds to Im(α). Hence we deduce that Hcell
n (X;M) ∼= Hn(Xn;M)/Im(α) ∼= Hn(Xn+1;M)

by exactness of the left vertical sequence. Moreover, the map Xn+1 → X induces an isomor-
phism Hn+1(Xn;M)→ Hn+1(X;M) by Corollary 4.76, finishing the proof of the theorem as
all maps appearing in the above diagram are natural in cellular maps of CW complexes. □

4.86. Remark We recall that if Xn is obtained from Xn−1 by attaching |Jn| many cells,
then Ccell

n (X;M) ∼=
⊕

Jn
M as we have argued in the proof of Corollary 4.76 for the case of

M = Z. The general case follows from the isomorphism Ccell
n (X;M) ∼= Ccell

n (X;Z) ⊗Z M .
In particular, the cellular chain complex of a CW pair of finite type with coefficients in Z
consists of finitely generated free modules in each degree, and is hence much smaller than the
singular chain complex.

All of the following results can also be (in part, we have already done so) proven using
Corollary 4.76.

4.87. Corollary Let X be a CW complex with Xn = Xn−1, i.e. in which no n-cells are
attached. Then Hn(X;M) = 0.

Proof. We have Hn(X;M) ∼= Hcell
n (X;M) which is a subquotient of Ccell

n (X;M) which van-
ishes. □

4.88. Corollary Let X be an n-dimensional CW complex. Then Hn(X;Z) is free abelian, in
particular torsionfree.

Proof. We have Hn(X;Z) ∼= Hcell
n (X;Z) which is a subgroup of the free abelian group

Ccell
n (X;Z) since Ccell

n+1(X;Z) is trivial. The claim then follows from the fact that subgroups

of free abelian groups are free abelian.20 □

4.89. Corollary Let X be a CW complex with the following property, for Jn the set of n-cells
which are attached to Xn−1: If Jn ̸= ∅ then Jn±1 = ∅. For instance, if X has only even
dimensional or only odd dimensional cells (of positive dimension). Then for n > 1, we have
Hn(X;M) ∼=

⊕
Jn
M .

20For finitely generated groups this follows immediately from the classification, but the result is true in
general, see e.g. [?].
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Proof. The differentials in Ccell
• (X;M) are trivial because their source or target is trivial. □

4.90. Example Complex and Quaternionic projective spaces have the above property. Much
more deep is the following wonderful result of Bott: Let G be a compact and simply connected
Lie group. Then ΩG admits a CW structure with only even dimensional cells. In particular,
π2(G) ∼= π1(ΩG) ∼= H1(ΩG) = 0. Since any Lie group is homotopy equivalent to a compact

Lie group (a maximal compact subgroup) and π2(G) ∼= π2(G̃) where G̃ is a simply connected
cover of G, in fact π2(G) = 0 for all Lie groups.21 There are various other proofs of this fact,
and in general the topology of Lie groups is a wonderful topic.

We finish this part by describing the differentials in the cellular chain complex. To do so,
let X be a CW complex and consider for n ≥ 2 the composite

φn :
∐
Jn

Sn−1 → Xn−1 → Xn−1/Xn−2 ≃
∨
Jn−1

Sn−1.

This map induces a map

(φn)∗ :
⊕
Jn

Z ∼= Hn−1(
∐
Jn

Sn−1)→ Hn−1(
∨
Jn−1

Sn−1) ∼=
⊕
Jn−1

Z.

with preferred isomorphism on source and target coming from the suspension isomorphism

(and a once in life fixed choice of isomorphism H̃0(S
0) ∼= Z).

4.91. Lemma For n ≥ 2, the differential ∂Zn : C
cell
n (X) → Ccell

n−1(X) is given by (φn)∗ under

the isomorphisms Ccell
k (X) ∼= Z[Jk] discussed above. For n = 1, it is induced by sending a

1-cell σ to the difference of its boundaries.

Proof. For n = 1, the differential is simply the boundary map H1(X1, X0) → H0(X0) =
Z[X0] = Z[J0] of the pair (X1, X0). The claim then follows from the fact that the 1-cells of X

give rise to particular elements in Csing
1 (X1) whose images in Csing

1 (X1, X0) define a basis for
H1(X1, X0). On these particular elements, the boundary map indeed has the claimed form.

For n ≥ 2, it follows from Lemma 4.75 that the differential is induced by the composite∨
Jn

Sn ≃ Xn/Xn−1 → Σ(Xn−1)→ Σ(Xn−1/Xn−2) ≃
∨
Jn−1

Sn.

Since the degree is unchanged upon passing to suspended maps, it then suffices to argue that
restricted to a single sphere, the first map is homotopic to the suspension of the attaching map
Sn−1 → Xn−1. To show this, we may assume that Xn is obtained from Xn−1 by attaching
a single cell. In this case, the result follows from the naturality (up to homotopy) of the
map B/A → Σ(A) for a cofibration A → B: Indeed, we apply it to the square of vertical
cofibrations

Sn−1 Xn−1

Dn Xn

α

21A Lie group is a smooth manifold which is a topological group and all of whose structure maps (multi-
plication, inversion) are smooth maps. Examples are the usual matrix groups you know from linear algebra,
like GLn(R), SLn(R), orthogonal and unitary groups as well as Spin and SpinC groups and various exceptional
Lie groups. See e.g. [Kir08, Hal03] for introductions to Lie groups, their relation to Lie algebras and their
classification and representation theory, and [DW98] for basic results on the topology of compact Lie groups.
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which in turn gives a square (commutative up to homotopy)

Dn/Sn−1 Σ(Sn−1)

Xn/Xn−1 Σ(Xn−1)

∼=

Σ(α)

where the vertical maps are as constructed in Corollary 2.54. □

4.92. Example For instance, we obtain that the cellular chain complex for RPn is given as
follows:

0→ Z 1+(−1)n−−−−−→ Z→ . . .
0−→ Z 2−→ Z 0−→ Z

which has homology as inductively calculated in Example 4.77 where the essential ingredient
was also to identity a certain map via the local degree formula.

4.93. Example Similarly, there is a CW structure on L(p; q1, . . . , qn), a (2n− 1)-dimensional
lens space with fundamental group Cp, having a single cell in each dimension 0 ≤ d ≤ 2n− 1

and where, as in the case of RPn, the projection maps S2k−1 → L(p; q1, . . . , qk) appear as
attaching maps for the CW structure on L(p; q1, . . . , qn) and the local degree formula allows
to determine Ccell

• (L(p; q1, . . . , qn)) to be given by:

0→ Z 0−→ Z p−→ Z→ · · · → Z p−→ Z 0−→ Z.

In particular, Hk(L(p; q1, . . . , qn)) is independent of the choice of qi’s. This, however, is no
coincidence: Any lens space L(p; q1, . . . , qn) admits a map to a space called BCp and this
map induces an isomorphism on homology in degrees 0 ≤ d ≤ 2n− 2. Furthermore, the top
dimensional homology is isomorphic to Z simply because L(p; q1, . . . , qn) are orientable closed
manifolds (we will see this homological behaviour of manifolds next term).

4.6. The Euler characteristic.

4.94. Definition Let X be a homologically finite topological space, i.e. such that Hk(X) is
finitely generated for all k and zero for all but finitely many k. We define its homological
Euler characteristic χ(X) as follows:

χhom(X) =
∑
n≥0

(−1)nrkHn(X).

When X is a finite CW complex, we can also define its combinatorial Euler characteristic

χCW(X) =
∑
n≥0

(−1)n|Jn|

where Jn denotes the set of n-cells of the CW structure.

4.95. Theorem Let X be a finite CW complex and k any field. Then

χhom(X) = χCW(X) =
∑
n≥0

(−1)n dimk(Hn(X; k))

i.e. the combinatorial and homological Euler characteristic agree and can be computed from
homology with field coefficients for an arbitrary field.
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Proof. Let D = Ccell
• (X; k) ∼= Ccell

• (X;Z)⊗Z k. We will show∑
(−1)n dimDn =

∑
(−1)n dimHn(D).

Note that the LHS is equal to χCW(X) and that Hn(D) ∼= Hn(X; k) by Theorem 4.85. The
above equality follows readily from the dimension formula for maps of k-vector spaces applied
to all differentials in the chain complex:∑

(−1)n dimDn =
∑

(−1)n[dimker(dn) + dim Im(dn)]

=
∑

(−1)n[dimker(dn)− dim Im(dn+1)]

=
∑

(−1)n dimHn(D)

as needed. This shows the second of the two equalities in the statement of the theorem. To
see the first, we note that

χhom(X) =
∑

(−1)n dimHn(X;Q)

and the latter term is by the first argument equal to χCW(X). □

4.96. Remark Note that Theorem 4.95 implies that the term
∑

(−1)n dimHn(X; k) is inde-
pendent of a chosen field k. The individual dimensions appearing, however, do very much de-
pend on k: For instance, for all n ≥ 1, we have Hn(RP2n;Q) = 0 whereas Hn(RP2n;F2) = F2.

Consequently, we will from now on write χ(X) for the (unambigious) Euler characteristic
of a finite CW complex. Note that the above says that the combinatorial Euler characteristic
is an invariant under homotopy equivalences of CW complexes. An example of this kind is
Euler’s polyeder formula, which we phrase here as follows.

4.97. Corollary Let Σg be an orientable surface of genus g which is triangulated by vertices,
edges, and triangles. Then we find

2− 2g = |vertices| − |edges|+ |triangles|.

Proof. The LHS is χhom(Σg) and the RHS is χCW(Σg) for a CW structure associated to the
triangulation. □

4.98. Corollary Let X be a finite CW complex and Y → X an n-sheeted cover. Then
χ(Y ) = n · χ(X).

Proof. In Exercise 1 Sheet 11 we have shown that Y admits a CW structure with |Jn(Y )| =
n · |Jn(X)|. □

4.99. Corollary Let G be a finite group which acts freely (and hence covering-like) on S2n.
Then |G| ≤ 2.

Proof. We will not give a full proof. The main fact we will assume is that the quotient space
S2n/G admits a finite CW structure.22 Then we find that |G| · χ(S2n/G) = χ(S2n) = 2,
proving the claim. □

Exercise. Give a proof of the above Corollary without making use of Euler characteristics.

22The quotient S2n/G is a topological manifold. Unless the dimension of it is 4, it admits a CW structure
(in dimension 4, the statement is not known) but in any case it is homotopy equivalent to a finite CW complex
– this is in fact sufficient for our purposes and much easier than the existence of CW structures on the nose.
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4.100. Corollary Suppose given a covering map Σh → Σg between orientable surfaces. Then
there is an n ≥ 1 such that h = ng − n+ 1.

To finish, we apply Euler’s polyeder formula and study platonic solids. Recall that a
platonic solid is a convex polyhedron P embedded in R3 all of whose faces are congruent
regular n-gons, all of whose vertices have the same number d of edges which touch the vertex,
and where any two faces meet in precisely one edge (along which we think the surface of the
polyhedron to be glued together). Note that with these assumptions and notations, we have
n, d ≥ 3.

4.101. Corollary There are only 5 platonic solids: The cube, the tetrahedron, the octahedron,
the icosahedron and the dodecahedron.

Proof. A platonic solid P has a CW structure with faces given by regular polygons which are
glued together at single edges. Let us denote by n the number of edges in such a face and d
the number of edges that meet a fixed vertex. Let v be the number of vertices, e the number
of edges and f the number of faces of the platonic solid. Then we find nf = 2e = dv (each
edge lies in exactly two faces and each edge meets exactly two vertices). Moreover, since the
surface of the platonic solid is homotopy equivalent to a sphere, we obtain v − e + f = 2.
Substituting e = dv

2 and f = dv
n , we obtain

2 = v − e+ f = v − dv

2
+
dv

n
⇔ 4n = v(2n− dn+ 2d)

⇒ 0 < 2n− dn+ 2d = −(n− 2)(d− 2) + 4

⇔ 4 > (n− 2)(d− 2)

In total, we deduce that the only possible pairs for (n, d) are the pairs

- (3, 3) which is the tetrahedron
- (3, 4) which is the octahedron,
- (3, 5) which is the icosahedron,
- (4, 3) which is the cube, and
- (5, 3) which is the dodecahedron

□
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Appendix A. Category theory

A.1. Definition A category C consists of a class of objects ob(C), and for any two objects x
and y a set HomC(x, y) of morphisms between them, equipped with composition maps

HomC(x, y)×HomC(y, z)→ HomC(x, z)

and identities ∗ → HomC(x, x) for all objects x, satisfying associativity and unitality. A
morphism f : c→ c′ is called an isomorphism if there exists g : c′ → c such that gf = idc and
fd = idc′ . In this case we write f−1 for g (note that g is uniquely determined if its exists).

A category as defined above is sometimes also called a locally small category. A category
is called small if the class of objects is a set. It is called essentially small if the class of
isomorphism classes of objects is a set.

A.2. Definition Let C be a category. Then Cop denotes the category with ob(Cop) = ob(C)
and

HomCop(c, c′) = HomC(c
′, c)

with same identities and obvious composition structure.

A.3. Example Sets, (abelian) groups, rings, vector spaces, modules, topological spaces all
canonically form categories with morphisms set map, group homomorphisms, ring homomor-
phisms, linear maps, linear maps, and continuous maps.

A.4. Example Let C be a category with a single object ∗. Then C is equivalently described by
the monoid (under composition) EndC(∗). Conversely, any monoid M gives rise to a category
denoted BM which has one object ∗ and M = EndBM (∗).

A.5. Definition A functor F : C→ D consists of a map ob(C)→ ob(D), c 7→ F (c), and for a
pair of objects c, c′ ∈ ob(C) a map HomC(c, c

′)→ HomD(F (c), F (c
′)) which is

(1) compatible with identities: F (idc) = idF (c) ∈ HomD(F (c), F (c)), and
(2) compatible with composition: F (g ◦ f) = F (g) ◦ F (f) ∈ HomD(F (c), F (c

′′)) for each

pair of composable morphisms c
f→ c′

g→ c′′.

A natural transformation between funtors F,G : C → D is a functor τ : C × [1] → D such
that τ(−, 0) = F and τ(−, 1) = G. Here, [1] denotes the category with two objects 0 and 1
and exactly one non-identity morphism which goes from 0 to 1.

A.6. Remark Concretely, a natural transformation between F and G consists of a map
τc : F (c)→ G(c) for all objects c ∈ ob(C) such that for each map f : c→ c′ the diagram

F (c) G(c)

F (c′) G(c′)

τc

F (f) G(f)

τc′

commutes. The maps τc are called the components of τ .

A.7. Definition A natural transformation τ : F → G is called a natural isomorphism if there
exists a natural transformation τ ′ : G→ F such that τ◦τ ′ = idG and τ ′◦τ = idF . Equivalently,
if each map τc is an isomorphism (Exercise).



100 MARKUS LAND

A.8. Example There is a category Cat whose objects are small categories and whose mor-
phisms are functors. Note that the restriction to small categories is necessary, for if C is not
small, the collection of functors from C to D form a proper class.

A category is called a groupoid if all its morphisms are isomorphisms. We denote by Gpd
the full subcategory of Cat consisting of small groupoids.

A.9. Example Let C and D be categories.

(1) There is a category C ×D whose objects are pairs (c, d) with c ∈ C and d ∈ D, and
where HomC×D((c, d), (c

′, d′)) = HomC(c, c
′)×HomD(d, d

′).
(2) If C is small, there is a category Fun(C,D) whose objects are functors and whose

morphisms are natural transformations.

If C and D are groupoids, then so is C×D. If D is a groupoid, then so is Fun(C,D).

A.10. Example (1) Let K be a field. Then association V 7→ V ∨ = HomK(V,K) canoni-
cally is a functor (VectK)op → VectK . The evaluation map V 7→ (V ∨)∨, v 7→ f 7→ f(v)
is a natural transformation id→ ((−)∨)∨.

(2) Let G be a group, let F, F ′ : BG → Set be two functors. Then F and F ′ are equiv-
alently described by the sets M = F (∗) and M ′ = F ′(∗), which are acted upon by
G. Indeed, part of the functor F is a map G = EndBG(∗) → EndSet(F (∗)) which
is a monoid homomorphism (by the compatibility of functors with composition). A
natural transformation τ : F → F ′ is then the same thing as a G-equivariant map
f : M → M ′, i.e. a map such that f(gm) = gf(m) for all g ∈ G and all m ∈ M
(Exercise).

(3) Consider the functor CRing → Groups from commutative rings to groups given by
GLn, n ≥ 1, sending R to GLn(R). Then the determinant is a natural transformation
GLn → GL1.

(4) The canonical maps π0(X)→ π(X) for topological spaces X are the components of a
natural transformation π0 → π as functors Top→ Set.

A.11. Definition A functor F : C→ D is called

(1) full, faithful, and fully faithful, respectively if for all pairs of objects c, c′ ∈ ob(C) the
induced map

HomC(c, c
′) −→ HomD(F (c), F (c

′))

is surjective, injective, and bijective, respectively.
(2) essentially surjective, if for all d ∈ ob(D) there exists c ∈ ob(C) and an isomorphism

F (c) ∼= d.
(3) conservative, if F detects isomorphisms, that is, if f is an isomorphism if F (f) is an

isomorphism.

A.12. Definition A functor F : C → D is called an equivalence of categories if there exists
G : D → C such that FG ≃ idD and GF ≃ idC (here, ≃ refers to the existence of a natural
isomorphism).

A.13. Definition A (co)limit of a functor F : I → C consists of an object of C, written
colimI F equipped with maps F (i)→ colimI F for every i which are compatible in the sense
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that for every morphism i→ j in I, the diagram

F (i) colimI F

F (j)

commutes (such a datum is also called a cone over F ). This datum is required to satisfy the
following universal property: Whenever given a further object X ∈ C, also equipped with
maps F (i)→ X which are compatible in the above way, then there exists a unique morphism
colimI F → X making the diagrams

F (i) X

colimI F

commute (we then say that this is a colimit cone).
Dually, a limit of F is an object limI F , equipped with maps limI F → F (i), which are

again compatible, satisfying the dual universal property: Whenever we are given an object X
equipped with compatible morphisms X → F (i) for all i ∈ I, there exists a unique morphism
X → limI F making the obvious diagram commute.

A.14. Remark Notice that such a universal property specifies an object up to unique isomor-
phism. Notice also that the universal property refers to more than just the object colimI F .
The reference maps are part of the data, and this is what makes the object unique up to
unique isomorphism.

A.15. Definition A category is called (co)complete, if it admits (co)limits indexed over arbi-
trary small categories. It is called bicomplete if it is both complete and cocomplete.

A.16. Example (1) A colimit of the empty diagram ∅ → C is an initial object: It is an
object which admits a unique morphism to any other object. Dually, A limit of the
empty diagram ∅ → C is a terminal object: It is an object which admits a unique
morphism from any other object.

(2) A colimit of the diagram • ← • → • is called a pushout.
(3) A limit of the diagram • → • ← • is called a pullback.
(4) A colimit over a discrete category (no non-identity morphisms) is called a coproduct.
(5) A limit over a discrete category is called a product.
(6) A colimit of the identity functor C→ C is a terminal object (this is a great exercise!)

A.17. Observation One can phrase general (co)limits via inital and terminal objects. Given
a functor F : I → C we can consider the category of (co)cones of this functor. Given a category
I we consider a new category I◁ and I▷, which are constructed from I by adding an initial
respectively a terminal object. There is an obvious functor I → I◁ and I → I▷. We can thus
consider the functor categories

FunF (I
◁,C) and FunF (I

▷,C)
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of functors which restrict to F along the above mentioned inclusion. These are called the
categories of cones and cocones over F , respectively. A colimit is then an initial cone and a
limit is a terminal cocone.

A.18. Lemma Let C be a category which admits coproducts and coequalizers. Then C is
cocomplete. Dually, when C admits products and equalisers, it is complete.

Proof. The second part follows from the first by considering Cop. Let F : I → C be a diagram.
Then

Coeq
[ ∐
(f : i→j)∈Arr(C)

F (i) ⇒
∐

k∈ob(C)

F (k)
]

is a colimit as one checks by the universal property. Here, the maps are as follows: Restricted
to the component F (i) indexed over f : i→ j, the one map is the canonical inclusion F (i)→∐
k∈ob(C)

F (k) and the other map is the map F (f) : F (i) → F (j) followed by the canonical

inclusion to
∐

i∈ob(C)
F (i). □

A.19. Lemma The category Set is bicomplete.

The following lemma is immediate from the definition of (co)limits, and the just established
fact established that the category Set is bicomplete.

A.20. Lemma Let C be a category and let F : I → C be an I-shaped diagram in C. Then, for
every object x ∈ C, there are canonical bijections

(1) HomC(colimI F, x) ∼= limI HomC(F (i), x), and
(2) HomC(x, limI F ) ∼= limI HomC(x, F (i)).

Moreover, this property characterizes (co)limits uniquely.

A.21. Example The category Cat has binary products given (C,D) 7→ C×D.

A.22.Definition An adjunction consists of a pair of functors (F : C→ D, G : D→ C) together
with a natural isomorphism τ between the two functors Cop ×D→ Set given by

HomD(F (−),−) and HomC(−, G(−)).
If f : F (X) → Y , then we refer to τ(f) : X → G(Y ) as the adjoint of f . We also refer to
τ−1(g) as the adjoint of g : X → G(Y ).

A.23.Remark Equivalently, adjunctions can be described by unit and counit transformations
satisfying the triangle equalities. In more detail, the maps ηX : X → GF (X) adjoint to the
identity of F (X) and the maps εY : FG(Y ) → Y adjoint to the identity of G(Y ) are the
components of natural transformations η : idC → GF and ε : FG → idD. η is called the unit
of the adjunction and ε is called the counit of the adjunction. These maps satisfy the following
relations, often called the triangle equalities: Namely, the composite

F (X)
F (ηX)−−−−→ F (GF (X)) ∼= FG(F (X))

ηF (X)−−−−→ F (X)

and the composite

G(Y )
ηG(Y )−−−→ GF (G(Y )) ∼= G(FG(Y ))

G(εY )−−−−→ G(Y )

are the identities (this is somewhat of a fun exercise).
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Given two functors F : C → D and G : D → C and natural transformations η : idC → GF
and ε : FG→ idD satisfying the above triangle equalities, then there exists a unique natural
isomorphism τ : HomD(F (−),−) ∼= HomC(−, G(−)) making F and G adjoint to each other
such that the associated unit and counit are given by η and ε, respectively.

A.24. Example (1) Let C be a small category. Then the functors C×− is left adjoint to
the functor Fun(C,−).

(2) Let K be a field. The forgetful functor VectK → Set has a left adjoint. It sends a set
M to a vector space

⊕
M K with basis given by M .

(3) The forgetful functor CRing→ Set has a left adjoint. It sends a setM to a polynomial
ring Z[Xm;m ∈M ] with one variable for each element in M .

(4) The inclusion functor Group→ Monoid has both left and right adjoint (Exercise).
(5) The inclusion td− spaces ⊆ Top of totally disconnected spaces inside all topological

spaces has a left adjoint (Exercise).

A.25. Lemma Suppose given a functor F : C → D. Specify for each object d ∈ ob(D) an
object Gd together with a map F (Gd)→ d such that the maps

HomC(c,Gd)
F−→ HomD(F (c), F (Gd)) −→ HomD(F (c), d)

are isomorphisms. Then the association d 7→ Gd assembles into a functor G : D → C which
is right adjoint to F . There is an obvious dual statement for the existence of left adjoints.

A.26.Remark The above condition is equivalently phrased as follows. Namely, that a functor
F : C→ D admits a right adjoint if and only if for all d ∈ D, the functor HomD(F (−), d) : Cop →
Set is representable. I recommend trying to spell out why these two notions are equivalent.

A.27. Lemma Let F : C→ D be a functor which admits right adjoints G and G′. Then there
is a specified natural isomorphism between G and G′. (Adjoints, if they exist, are unique up
to unique isomorphism).

Proof. Consider the following two natural bijections

HomC(Gx,G
′x) ∼= HomD(FGx, x) ∼= HomC(Gx,Gx).

Then the identity of Gx corresponds to a natural transformation G→ G′. Applying the same
trick for HomC(G

′x,Gx) shows that this must be a natural isomorphism. □

A.28. Lemma For an adjunction (F,G, η, ε) we have

(1) F is fully faithful if and only if the unit η is an isomorphism,
(2) G is fully faithful if and only if the counit ε is an isomorphism,
(3) F is an equivalence of categories if and only if η and ε are isomorphisms.

Moreover, F is an equivalence (with inverse G) if F is fully faithful and G is conservative
(and vice versa).

A.29. Lemma If C is bicomplete, then (co)lim is left/right adjoint to the constant diagram
functor. In particular, forming (co)limits determines a functor

Fun(I,C)→ C.

Proof. Let’s spell out the colimit case. Consider the constant functor const : C → Fun(I,C).
Now we specify, for each functor F : I → C an object, namely colimI F . Part of the datum of
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a colimit are compatible maps {F (i)→ colimI F}{i∈I} which are easily seen to assemble into
a natural transformation

F → const(colim
I

F ).

Then we consider the composite

HomC(colim
I

F,X)→ HomFun(I,C)(const(colim
I

F ), constX)→ HomFun(I,C)(F, constX)

which is a bijection by the universal property of a colimit. The lemma thus follows from
Lemma A.25. The case of limits is completely analogous. □

A.30. Lemma Given an adjunction with F : C → D being left adjoint to G : D → C, and
given a further auxiliary small category I, then the functors

F∗ : Fun(I,C) Fun(I,D) : G∗

again form an adjoint pair (with F∗ left adjoint to G∗).

Proof. The adjunction is determined by a counit map ε : FG→ idD and a unit map η : idC →
GF that satisfy the trinagle identities. We now use these to construct counit and unit maps
for the pair of functors (F∗, G∗) as follows: Let φ ∈ Fun(I,D). We need to specify a natural
map ε∗ : F∗(G∗(φ))→ φ of functors I → D, so let x ∈ E. We define the new counit ε∗ to be
the map

F (G(φ(x)))
εφ(x)−→ φ(x).

It is easy to see that this is natural in φ, since ε itself is a natural transformation. Similarly
we define a natural transformation η∗ : ψ → G∗F∗(ψ) to be given by

ψ(y)
ηψ(y)−→ G(F (ψ(y))).

It is then easy to see that the snake identities are satisfied, because (ε, η) satisfy the snake
identities. □

A.31. Proposition Let C be a bicomplete category, then Fun(I,C) is bicomplete as well. A
(co)limit of a diagram X : J → Fun(I,C) is given by the functor sending i ∈ I to colimJ X(j)(i).

Proof. Let us argue that Fun(I,C) is cocomplete. The completeness argument is similar
(or can be formally deduced from this case by applying op correctly). We claim that the
composite

Fun(J,Fun(I,C)) ∼= Fun(I,Fun(J,C)) Fun(I,C)
colimJ

is a colimit functor we wish to show exists. By Lemma A.30 this functor has a right given by

const∗ : Fun(I,C)→ Fun(I,Fun(J,C)) ∼= Fun(J,Fun(I,C))

it the proposition is shown once we convince ourselves that this is itself the constant functor
(which is immediate from the definition), as then we allude to Lemma A.29. □

A.32. Definition Let C be a category. We denote the category of functors Fun(Cop,Set) by
P(C) and call it the category of presheaves on C. An object x ∈ C determines a representable
presheaf, namely the presheaf HomC(−, x) which sends y ∈ C to the set of morphisms from y
to x. This determines a functor C→ P(C) which is called the Yoneda embedding.
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A.33. Lemma The Yoneda lemma: Let F : Cop → Set be a functor and x ∈ C an object. Then
the map

HomP(C)(HomC(−, x), F )→ F (x)

given by sending η to η(idx) is a bijection. Moreover, the Yoneda embedding C → P(C) is
fully faithful.

Proof. The inverse is given by sending an element s ∈ F (x) to the function HomC(y, x)→ F (y)
sending f to f∗(s). It is an explicit check to see that this is a natural transformation and
an inverse the the above described map. The fully faithfulness follows immediately from the
Yoneda Lemma: The effect of the Yoneda embedding on morphisms is the map

HomC(x, y)→ HomP(C)(HomC(−, x),HomC(−, y))
given by sending f to

HomC(z, x)
f∗−→ HomC(z, y).

We claim that this map is inverse to the map described in the Yoneda lemma, which is given
by sending a map f : HomC(x, y) to the function HomC(z, x)→ HomC(z, y) given by sending
φ to φ∗(f) = f∗φ. □

A.34. Lemma Left adjoints preserve colimits, right adjoints preserve limits.

Proof. Let F : C → D be a functor which admits a right adjoint, say G. Let X : I → C be a
diagram which has a colimit colimI X ∈ C. We claim that F sends that colimit to a colimit
of the diagram I → C→ D. In formulas, we claim that the canonical map colimI F (X(i))→
F (colimI X(i)) induced from the compatible maps F (X(i)) → F (colimI X(i)) that are part
of the datum of the colimit (and then applying F ) is an isomorphism. To see this, it suffices
to show that it induces a bijection on hom sets for all other objects y ∈ D:

HomD(F (colim
I

X(i)), y) ∼= HomC(colim
I

X(i), Gy)

∼= lim
I

HomC(X(i), Gy)

∼= lim
I

HomD(F (X(i)), y)

∼= HomD(colim
I

F (X(i)), y)

so we are done by the Yoneda lemma, see Lemma A.33. The argument for the claim that
right adjoints preserve limits is similar. □



106 MARKUS LAND

Appendix B. Some homological algebra

B.1. Modules.

B.1. Definition Let R be a ring. A (left) R-module consists of an abelian group M together
with a ring map R→ EndZ(M) written r 7→ (m 7→ rm), and called the scalar multiplication.
Equivalently, the scalar multiplication is determined by a map R ×M → M , (r,m) 7→ rm
satisfying the following axioms:

(1) r(m+m′) = rm+ rm′,
(2) (r + r′)m = rm+ r′m,
(3) (rs)m = r(sm), and
(4) 1m = m.

From now on, an R-module refers to a left R-module. A right R-module is then given by an
Rop-module. If R is commutative, R = Rop and the notions agree. An R-submodule N of an
R-module M is a subgroup N ⊆M closed under the scalar multiplication, that is: for r ∈ R
and n ∈ N , one has rn ∈ N . An R-module homomorphism f : M →M ′ between R-modules
is a map of abelian groups, such that for all r ∈ R and m ∈M , one has f(rm) = rf(m), i.e.
that f is R-linear. We write HomR(M,N) for the set of R-linear maps from M to N and
Mod(R) for the category of R-modules. Forgetting the scalar multiplication and the abelian
group structure gives forgetful functors Mod(R)→ Ab→ Set.

B.2. Example (1) Let K be a field. Then a K-module is precisely a K-vector space.
(2) Let R be a ring. Then R is an R-module via the multiplication map of R. An

R-submodule of R is precisely a left ideal of R.
(3) Let f : S → R be a ring map. Then there is a canonical restriction of scalars functor

Mod(R) → Mod(S), sending an R module (M,R → EndZ(M)) to the S-module
(M,S → R → EndZ(M)). In particular, R is canonically an S-module with module
multiplication given by s · r = f(s)r.

(4) The forgetful functor Mod(R)→ Ab is conservative (that is, it detects isomorphisms).
Indeed, if f : M → N is R-linear and bijective, then its inverse f−1 satisfies

f(f−1(rn)) = rn = r(ff−1(n)) = f(rf−1(n))

so that the bijectivity of f implies that f−1(rn) = rf−1(n).
(5) The forgetful functor Mod(Z)→ Ab is an isomorphism of categories (Exercise). Under

this isomorphism, the forgetful functor Mod(R) → Ab corresponds to the restriction
of scalars functor Mod(R)→ Mod(Z) along the unique map of rings Z→ R.

(6) Given an R-linear map f : M → N , the kernel of f , ker(f) = {m ∈ M | f(m) = 0}
is an R-submodule of M and the Image ℑ(f) = f(M) ⊆ N is canonically an R-
submodule of N .

(7) Given an R-module M and an R-submodule N ⊆ M , the quotient of abelian groups
M/N is canonically an R-module vie r[m] = [rm]. It satisfies the expected universal
property: For any other R-module L, the quotient map induces an injection

HomR(M/N,L) −→ HomR(M,N)

whose image consists precisely of those R-linear maps f : M → N whose kernel is
contained in N .

(8) Given an R-linear map f : M → N , we define its cokernel coker(f) to be the quotient
R-module N/Im(f). Kernel and cokernel then have the expected universal properties:
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the maps

HomR(L, ker(f))→ HomR(L,M) and HomR(coker(f), L)→ HomR(N,L)

are injective with image given by those maps L → M or N → L respectively, whose
composite with f is the zero map.

(9) Given a commutative ring R, an R-module M and an ideal a ⊆ R, we let aM =
{
∑

i aimi | ai ∈ a and mi ∈ M}. This is an R-submodule of M . Then quotient
R-module M/aM is in the image of the restriction of scalars functor Mod(R/a) →
Mod(R), that is, the scalar multiplication map R → EndZ(M/aM) factors through
the projection R→ R/a.

(10) Given a family of R-modules {Mi}i∈I indexed over a set I, then the abelian groups⊕
iMi and

∏
iMi canonically admit the structure of R-modules via componentwise

scalar multiplication. We have that
⊕

iMi ⊆
∏

iMi is an R-submodule. These
constructions are coproducts and products in the categorical sense, that is, they satisfy
the following universal properties: For each j ∈ I, the canonical maps Mj →

⊕
iMi

and
∏

iMi →Mj are R-linear and or another R-module N , one has that the canonical
maps

HomR(
⊕
i

Mi, N)→
∏
i

HomR(Mi, N) and HomR(N,
∏
i

Mi)→
∏
i

HomR(N,Mi)

are bijections. We write R(I) for
⊕

I R and RI for
∏

I R. Modules isomorphic to R(I)

are called free (on the set I), and finitely generated free if I is finite (in which case

R(I) ∼= RI).
(11) Given a commutative ring R and R-modules M and N , the set of R-linear maps

HomR(M,N) is naturally an R-module23. Indeed, first we note that it is an abelian
group with monoid structure given as follows24. For f, g ∈ HomR(M,N), define the
map f + g via (f + g)(m) = f(m) + g(m). Immediately from the definitions, we
find that f + g ∈ HomR(M,N). The neutral element is the zero map 0 sending
all elements of M to 0. The inverse of a map f is then given by −f , defined via
(−f)(m) = −f(m). This shows that HomR(M,N) is indeed an abelian group. We
define a scalar multiplication as follows: For r ∈ R and f ∈ HomR(M,N) we set
(rf)(m) = rf(m). Since R is commutative, one checks that rf is again R-linear and
that this defines an R-module structure on HomR(M,N).

(12) Given a commutative ring R and an R-linear map f : M →M ′ and another R-module
N , the canonical maps

HomR(N,M)
f∗→ HomR(N,M

′) and HomR(M
′, N)

f∗
→ HomR(M,N)

given by postcomposition and precomposition with f respectively, are R-linear. In
particular, the bijections appearing in the display in (10) are isomorphisms of R-
modules. These maps induce functors
(a) HomR(M,−) : Mod(R)→ Mod(R), and
(b) HomR(−,M) : Mod(R)op → Mod(R),
which can in fact be combined to a single functor HomR(−,−) : Mod(R)op×Mod(R)→
Mod(R). Composing this functor with the forgetful functor Mod(R)→ Set gives the
usual Hom functor of the category Mod(R).

23The same is not generally true if R is not commutative.
24This is true also when R is not commutative.
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Exercise. The category Mod(R) admits all small limits and colimits and the restriction of
scalar functors Mod(R)→ Mod(S), for ring maps S → R, commute with all small limits and
colimits. Hint: It suffices to consider equalizers and coequalizers.

Exercise. Let R be a commutative ring and M be an R-module. Then the scalar multi-
plication map R→ EndZ(M) factors through the forgetful map EndR(M)→ EndZ(M), that
is, scalar multiplication by a fixed element of R on M is an R-linear map.

B.3. Definition An R-module M is called

(1) finitely generated, if there exists a finite set I and a surjection RI → M . In other
words, if M is a quotient of a finitely generated free R-module,

(2) finitely presented, if there exists a finite set I and a surjection RI →M whose kernel
is again a finitely generated R-module.

In what follows we will discuss tensor products of R-modules which we do for convenience
in the case where R is commutative (so that we do not have to talk about left and right
modules at the same time).

B.4. Definition Let R be a commutative ring and M,N and L be R-modules. A map
f : M ×N → L is called R-bilinear if for all m,n′ ∈M , n, n′ ∈ N and r ∈ R, one has:

(1) f(m+m′, n) = f(m,n) + f(m′, n),
(2) f(m,n+ n′) = f(m,n) + f(m,n′), and
(3) f(rm, n) = rf(m,n) = f(m, rn).

We denote by HomR,R(M×N,L) the set of R-bilinear maps. Note again, that it is canonically
an R-module via (rf)(m,n) = r · f(m,n).

B.5. Remark For R-modules M,N and L, the map

HomR,R(M ×N,L)→ HomR(N,HomR(M,L))

sending f to the map n 7→ f(−, n) is R-linear and a bijection, hence an isomorphism of
R-modules.

B.6. Definition Let R be a commutative ring and let M and N be R-modules. A tensor
product of M and N consists of an R-module M ⊗R N equipped with a R-bilinear map
M × N → M ⊗R N satisfying the following universal property: For every R-bilinear map
φ : M ×N → L, there exists a unique R-linear map φ̄ : M ⊗R N → L making the diagram

M ×N L

M ⊗R N

φ

φ̄

commute. In other words, the universal property says that the canonical map

HomR(M ⊗R N,L) −→ HomR,R(M ×N,L)
is a bijection.

B.7. Remark If a tensor product exists, it is specified up to unique isomorphism by its
universal property. The question thus really is, do tensor products exist. The answer is yes:
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B.8. Lemma Let R be a commutative ring and M and N be R-modules. Then a tensor
product (M ⊗R N,M ×N →M ⊗R N) exists.

Proof. We define M ⊗R N by brut-force: First we consider F (M,N) = R(M×N), the free R-
module on the setM×N . This comes with a map of sets ι : M×N → F (M,N). The universal
property says that the map φ : M × N → L extends uniquely to a map φ̃ : F (M,N) → L
of R-modules. The map ι is not R-bilinear: For instance, ι(rm, n) ̸= rι(m,n), and likewise
ι(m,n+ n′) ̸= ι(m,n) + ι(m,n′). So consider the sub R-module V of F (M,N) generated by
the set{
ι(m+m′, n)−ι(m,n)−ι(m′, n), ι(m,n+n′)−ι(m,n)−ι(m,n′), ι(rm, n)−rι(m,n), ι(m, rn)−rι(m,n)

}
where m,m′ ∈ M,n, n′ ∈ N, r ∈ R are arbitrary elements. Then define M ⊗R N as the
quotient R-module F (M,N)/V . By construction, the composite

M ×N ι−→ F (M,N) −→ F (M,N)/V =M ⊗R N

is R-bilinear. Moreover, since φ is R-bilinear, the map φ̃ extends uniquely to the quotient
M ⊗R N , showing that this object satisfies the required universal property. □

B.9. Remark The image under the map M × N → M ⊗R N of an element (m,n) is often
written m⊗ n and called an elementary tensor. It is important to keep in mind that not all
elements ofM ⊗RN are of this form (but they form a generating set, that is, every element is
of a sum of elementary tensors). For instance, m⊗n+m′⊗n′ is in general not an elementary
tensor. But the tensor product is bilinear, so that

m⊗ n+m⊗ n′ = m⊗ (n+ n′) and m⊗ n+m′ ⊗ n = (m+m′)⊗ n.
The R-module structure is then given by r · (m ⊗ n) = rm ⊗ n = m ⊗ rn, that is, we are
allowed to move scalars from R through the tensor sign.

B.10. Example Let p and q be different prime numbers. Then Z/pZ⊗ Z/qZ = 0. Indeed, it
suffices to show that any biadditive map f : Z/pZ×Z/qZ→M , for an arbitrary abelian group
M , is the zero map. Since f(m,n) = mn · f(1, 1), this map is determined by x = f(1, 1).
Moreover, this element satisfies px = qx = 0 since pf(1, 1) = f(p, 1) = f(0, 1) = 0 and
likewise qf(1, 1) = f(1, q) = f(1, 0) = 0. But since p and q are coprime, there exists n,m
such that np+mq = 1, and consequently that

x = (np+mq)x = npx+mqx = 0.

B.11. Example Let p be a prime number. Then Z/pZ ⊗Z Q = 0. Indeed, by the same
argument as above, any biadditive map f : Z/pZ × Q → M is determined by m = f(1, 1).
Then we have

m = pf(1, 1/p) = f(p, 1/p) = f(0, 1/p) = 0.

B.12. Lemma There are canonical isomorphisms αM,N,L : (M ⊗RN)⊗RL ∼=M ⊗R (N ⊗RL)
and canonical isomorphisms τM,N : M ⊗R N → N ⊗R M . Furthermore, there are canonical
isomorphisms R⊗R M ∼=M ∼=M ⊗R R. These isomorphisms make (Mod(R),⊗R, R) into a
symmetric monoidal category, that is, they satisfy various coherence axioms.

Proof. The isomorphisms α and τ are inherited from the corresponding isomorphisms for
the cartesian product. Finally, the scalar multiplication map R × M → M is R-bilinear
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and satisfies the universal property of a tensor product. The coherence axioms for the τ is
that τM,N ◦ τN,M = idN⊗RM for all N,M and that τR,M interchanges the two isomorphisms
R ⊗R M ∼= R and M ⊗R R ∼= R. There is also a coherence axiom for the interplay of τ and
α. Furthermore, there is a coherence axiom for α involving 4 objects. Have a look at the
wikipedia page for (symmetric) monoidal categories. All of these coherence axioms follow
from the versions for the cartesian products. □

Recall that an adjunction of categories consists of functors F : C → D and G : D → C

together with a natural isomorphism

τ : HomD(F (−),−) ∼= HomC(−, G(−)) : Cop ×D→ Set.

Given a functor G : D → C, recall also that it admits a left adjoint if and only if for each
c ∈ C, the functor

HomC(c,G(−)) : D→ Set

is corepresentable, i.e. isomorphic to HomD(F (c),−) for some object F (c) ∈ D which is called
a corepresenting object. If this is the case, choices of corepresenting objects F (c) assemble
into a functor F : C → D which is then left adjoint to G. This says that checking whether
or not a given functor admits an adjoint is a “pointwise” question. Moreover, left adjoints
commute with colimits and dually, right adjoints commute with limits. See chapter 6 in my
lecture notes “Algebra” for further details. We will freely use these notions in what follows.

B.13. Corollary Let R be a commutative ring and M an R-module. Then the functor
HomR(M,−) : Mod(R)→ Mod(R) admits a left adjoint M ⊗R − : Mod(R)→ Mod(R).

Proof. The bilinear map M × N → M ⊗R N part of the tensor product corresponds to a
unique linear map N → HomR(M,M ⊗R N). Consider the composite

Hom(M⊗RN,L) −→ HomR(HomR(M,M⊗RN),HomR(M,L)) −→ HomR(N,HomR(M,L)).

Postcomposing the final term with the canonical bijection to HomR,R(M × N,L) from Re-
mark B.5, the composite becomes restriction along the bilinear map M ×N →M ⊗R N and
is therefore a bijection by the universal property of the tensor product. Consequently, the
above composite is also a bijection, and natural in L by inspection. This precisely says that
sending N to M ⊗R N assembles into a left adjoint of HomR(M,−). □

B.14. Remark Given a map f : N → N ′, the resulting map id × f : M × N → M × N ′ →
M ⊗RN is R-bilinear and therefore extends uniquely to an R-linear map id⊗ f : M ⊗RN →
M ⊗R N

′. Unravelling the definitions, this map is indeed the effect of the functor M ⊗R −
on the morphism f .

B.15. Corollary Let R be a commutative ring and M an R-module. Then the functor
M ⊗R − : Mod(R) → Mod(R) preserves colimits, and the functor HomR(M,−) : Mod(R) →
Mod(R) preserves limits.

Exercise. The functor HomR(−,M) : Mod(R)op → Mod(R) also preserves limits.

B.16. Remark One says that a symmetric monoidal category is closed if for all objects M ,
the tensor product functor M ⊗− admits a right adjoint. Consequently, (Mod(R),⊗R, R) is
a closed symmetric monoidal category.
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B.17. Lemma Let f : R → S be a morphism in CAlg25 and M an R-module. Then the R-
modules S⊗RM and HomR(S,M) are canonically the restriction of S-modules with the same
name.

Proof. We need to construct S-module structures on S⊗RM and HomR(S,M) giving rise to
the canonical R-module structures via the map f . We first, consider S ⊗R M . For this we
consider the following composite:

S × (S ⊗R M) −→ S ⊗R (S ⊗R M) ∼= (S ⊗R S)⊗R M −→ S ⊗R M

where the last map is given by the multiplication map of S (note that it is R-bilinear). On
elementary tensors, this map sends (s, s′ ⊗m) to ss′ ⊗m. One then checks that this indeed
defines an S-module structure on S⊗RM whose restricted R-module structure is the canonical
one since r · (s⊗m) = rs⊗m by definition of the tensor product. Likewise, we define a map
S×HomR(S,M)→ HomR(S,M) by sending (s, f) to the map sf defined by (sf)(s′) = f(ss′).
Again, one checks that this is well-defined and gives an S-module structure on HomR(S,M).
The restricted R-module structure is then the canonical one, since (rf)(s) = f(rs) = r · f(s)
by R-linearity of f . □

B.18. Proposition Let R→ S be a map of commutative rings. Then the restriction of scalars
functor Mod(S)→ Mod(R) admits left and right adjoint, given by S ⊗R − and HomR(S,−).

Proof. It remains to verify natural (in S-modules N and R-modules M) bijections

HomS(S ⊗R M,N) ∼= HomR(M,N) and HomR(N,M) ∼= HomS(N,HomR(S,M)).

The first bijection is induced by sending a map f : S ⊗R M → N to its restriction along

M
ι(1,−)→ S ⊗R M . An inverse is given as follows: Let g : M → N be R-linear. Then the map

S ×M → N , (s,m) 7→ s · g(m) is R-bilinear, and therefore descends to a map S ⊗RM → N ,
which, on elementary tensors sends s ⊗m to s · g(m). This map is evidently S-linear. The
second bijection for instance is given by sending f : N → M to the map N → HomR(S,M),
n 7→ (s 7→ f(sn)). Its inverse is given by postcomposing with the evaluation at 1 map
HomR(S,M)→M (sending g to g(1)). It is a direct check to see that these maps are natural
in N and M . □

Exercise. Let M be an R-module and a an ideal of R. There is a canonical isomorphism
R/a⊗R M →M/aM of R/a-modules.

The terms appearing in the statement of the following lemma will be explained in the proof.

B.19. Lemma Let f : R → S be a map of commutative rings. Then the extension of scalars
functor Mod(R)→ Mod(S) canonically admits the structure of a symmetric monoidal functor.
In particular, given a commutative R-algebra A, the tensor product S ⊗R A is a commutative
S-algebra.

Proof. Giving the functor S ⊗R − a symmetric monoidal structure amounts to specifying
isomorphisms S ⊗R R ∼= S and ρM,N : (S ⊗RM)⊗S (S ⊗RN)→ S ⊗R (M ⊗RN) compatible
with the associativity and symmetry isomorphisms in Mod(R) and Mod(S), respectively, see
again the Wikipedia page for the exact compatibilities that are required. For the first, we use
the multiplication map S ×R→ S, (s, r) 7→ sf(r), note that it is R-bilinear and satisfies the

25The category of commutative rings and ring homomorphisms.
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universal property of the tensor product. The isomorphism ρM,N is given by the composite
The isomorphism is given as follows:

(S ⊗R M)⊗S (S ⊗R N) ∼= (M ⊗R S)⊗S (S ⊗R M)

∼=M ⊗R (S ⊗S S)⊗R M
∼=M ⊗R S ⊗R M

∼= S ⊗R (M ⊗R N).

where all isomorphisms are associativity isomorphisms and symmetry isomorphisms (and the
unitality isomorphism S ⊗S S ∼= S we have also seen earlier). It then follows that (S ⊗R A)
is a commutative ring with multiplication given by

(S ⊗R A)⊗S (S ⊗R A) ∼= S ⊗R (A⊗R A)→ S ⊗R A

where the first is the isomorphism just discussed and the second is the multiplication map
of A: Note that the multiplication map A × A → A is R-bilinear since A is an R-algebra.
Moreover, the R-algebra structure map R → A induces a ring map S ∼= S ⊗R R → S ⊗R A,
making the latter an S-algebra. □

Exercise. The category of commutative R-algebras CAlgR admits pushouts. A pushout of
B ← A→ C is given by B ⊗A C.

B.20. Definition Let R be a commutative ring and M an R-module. Then M is called

(1) flat, if..
(2) projective, if..
(3) free, if...

Moreover, free modules are projective and projective modules are flat. See Exercise 4 Sheet
12.

B.21. Definition Let R be a commutative ring and M an R-module. A resolution of M
is a non-negatively graded chain complex R• together with a quasi-isomorphism R• → M .
Equivalently, if the chain complex

· · · → Rn → · · · → R1 → R0 →M

is exact. Such a resolution is called flat, projective, or free if all modules Rn are flat, projective,
or free, respectively. It is called of finite length if there exists N ≥ 0 such that Rn = 0 for all
n ≥ N and finite if it is of finite length and all terms Rn are finitely generated R-modules.

B.2. Abelian categories. We will now single out several properties the categories Mod(R)
enjoy:

B.22. Definition An category is called pointed if it has an initial object ∅ and a terminal
object ∗ and the canonical map ∅ → ∗ is an isomorphism. It is called semiadditive if it
is pointed, has finite coproducts and products, and for all finite sets I and objects {Xi}i∈I
the canonical map

∐
i∈I Xi →

∏
i∈I Xi

26 is an isomorphism. We then write
⊕

i∈I for the
formation of finite (co)products. It is called additive if it is semiadditive and all objects are
grouplike, that is the canonical map (pr1,∇) : X ⊕X → X ⊕X is an isomorphism.

26Exercise: Think about what this canonical map is, and that its existence uses the fact that the category
is pointed.
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B.23. Definition Let f : M → N be a morphism in an additive category. Then ker(f) :=
Eq(f, 0), coker(f) := Coeq(f, 0), Im(f) := ker(N → coker(f)), Coim(f) := coker(ker(f) →
M).

B.24. Definition A category is called abelian if it is additive and satisfyies the following
further properties:

(1) every morphism has a kernel and cokernel, and
(2) the evident map Coim(f)→ Im(f) is an isomorphism.

B.25. Remark Standard definitions say that (2) above is replaced by the following condition.
Let f : M → N be a morphism. If f is a monomorphism, the canonical mapM → Im(f) is an
isomorphism, and if f is an epimorphism, the canonical map Coim(f)→ N is an isomorphims.

That our definition implies this condition follows easily from the observation that coker(f) =
0 if f is an epimorphism and ker(f) = 0 if f is a monomorphism. The converse is left as an
exercise, but see e.g. [Pro, §12.5].

B.26. Example Let R be a ring. Then Mod(R) is an abelian category. Indeed, Mod(R) is
additive and bicomplete, and property (2) in Definition B.24 is a consequence of the homo-
morphism theorems (perhaps it is called the 2nd isomorphism theorem?!).

B.27. Example Let A be an abelian category and K a small category. Then the category
Fun(K,A) is an abelian category.

B.28. Definition An object X of an abelian category is called projective, if HomA(X,−) is
an exact functor, or equivalently, if for all maps f : K → L with coker(f) = 0 and maps
X → L, there exists a lift X → K along f .

B.29. Definition Let A be an abelian category. Then Ch(A) is the category of chain com-
plexes in A. Homology is defined as we are used to: Hn(C•) = ker(dn)/Im(dn+1). This is
indeed an object of A by the axioms of abelian categories.

B.30. Remark For A an abelian category, we have that Ch(A) is again abelian. In particular,
one may formally form Ch(Ch(A)). Objects therein are also called double complexes.

B.31. Definition The notion of quasi-isomorphisms, chain homotopies extend from Ch(R) to
Ch(A) verbatim.27 The notion of projective resolutions/projective chain complexes extends
verbatim.

The following are two important lemmata whose proofs go under the name of diagram
chasing. Both apply to a general abelian category A, but it turns out that it is sufficient to
prove them in the case A = Mod(R).

27Note that in any abelian category, HomA(X,Y ) is an abelian group, so there is a well-defined notion of
sum and difference of maps f, g : X → Y .
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B.32. Lemma (Snake Lemma) Let A be an abelian category and

(0 )M ′ M M ′′ 0

0 N ′ N N ′′( 0)

f ′ f f ′′

a commutative diagram. Then there exists a natural map ∂ ker(f ′′) → coker(f ′) making the
sequence

(0→) ker(f ′)→ ker(f)→ ker(f ′′)
∂−→ coker(f ′)→ coker(f)→ coker(f ′′)(→ 0)

exact.

B.33. Lemma (5 Lemma) Let A be an abelian category and let

A B C D E

A′ B′ C ′ D′ E′

a b c d e

be a commutative diagram.

(1) If b and e are surjective and e is injective, then c is surjective.
(2) if b and e are injective and a is surjective, then c is injective.
(3) If b and e are isomorphisms, a is surjective and e is injective, then c is an isomorphism.
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