

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald

Winter term 2015/16 November 6, 2015

FUNCTIONAL ANALYSIS II ASSIGNMENT 4

Problem 13 (Spectrum of the product). Let X be a Banach space and $S, T \in \mathcal{B}(X)$.

- (i) Prove that $\sigma(TS) \cup \{0\} = \sigma(ST) \cup \{0\}$.
- (ii) Show that $\sigma(TS) = \sigma(ST)$ is not true in general.

Problem 14 (Spectrum of self-adjoint operators). Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H} , i.e. $A^* = A$. Prove the following:

(i)
$$\sigma(A) \subset \left[\inf_{x \in \mathcal{H}, ||x|| = 1} \langle x, Ax \rangle, \sup_{x \in \mathcal{H}, ||x|| = 1} \langle x, Ax \rangle \right] \subset \mathbb{R}.$$

- (ii) $\sigma_r(A) = \emptyset$.
- (iii) If $x, y \in \mathcal{H}$ and $\lambda \neq \mu$ are such that $Ax = \lambda x$ and $Ay = \mu y$ then $\langle x, y \rangle = 0$.
- (iv) If $\sigma(A) = \{0\}$ then $A = \mathbb{O}$.

Problem 15 (Weyl sequences). Let X be a Banach space and $T \in \mathcal{B}(X)$. A sequence $(x_n)_{n \in \mathbb{N}}$ in X is called a Weyl sequence of T at $\lambda \in \mathbb{C}$, if $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $||Tx_n - \lambda x_n|| \to 0$ as $n \to \infty$. Prove:

- (i) If T has a Weyl sequence at $\lambda \in \mathbb{C}$ then $\lambda \in \sigma(T)$.
- (ii) If $\lambda \in \partial \sigma(T)$ then T has a Weyl sequence at $\lambda \in \mathbb{C}$.

Now, let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be self-adjoint.

(iii) Prove that T has a Weyl sequence at λ iff $\lambda \in \sigma(T)$.

Problem 16 (Multiplication operators II). Let (X, μ) be a σ -finite measure space, let $1 \leq p < \infty$, and for a measurable function $h: X \to \mathbb{C}$ let

$$\Omega_h := \{ f \in L^p(X, \mu) : hf \in L^p(X, \mu) \}.$$

Let $M_h: \Omega_h \to L^p(X,\mu), f \mapsto hf$.

(i) Prove that $M_h \in \mathcal{B}(L^p(X,\mu))$ iff $h \in L^{\infty}(X,\mu)$.

Assuming $h \in L^{\infty}(X, \mu)$ prove the following:

(ii)
$$\sigma_p(M_h) = \{\lambda \in \mathbb{C} : \mu(\{x \in X : h(x) = \lambda\}) > 0\}.$$

(iii)
$$\rho(M_h) = \{ \lambda \in \mathbb{C} : \exists c > 0 \text{ such that } |\lambda - h(x)| \ge c \text{ a.e.} \}.$$

For more details please visit http://www.math.lmu.de/~gottwald/15FA2/