

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2014/15 November 20, 2014

FUNCTIONAL ANALYSIS II ASSIGNMENT 7

Problem 25. Let \mathcal{H} be a *complex* Hilbert space and $T \in \mathcal{B}(\mathcal{H})$. Prove:

- $(i) \ \frac{1}{2} ||T|| \leqslant \sup_{||x||=1} |\langle x, Tx \rangle| \leqslant ||T||.$
- (ii) If T is self-adjoint, then $\sup_{\|x\|=1}|\langle x,Tx\rangle|=\|T\|.$

Problem 26 (Weyl sequences – II). Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$. Prove:

- (i) If $\lambda \in \sigma(T)$ then there exists a Weyl sequence for T at λ or for T^* at $\overline{\lambda}$.
- (ii) If T is normal $(T^*T = TT^*)$, then $\lambda \in \sigma(T)$ iff T has a Weyl sequence at λ .
- (iii) If T is self-adjoint and λ is an isolated point in $\sigma(T)$ then λ is an eigenvalue of T.

Problem 27. Let A be a compact self-adjoint operator on a Hilbert space \mathcal{H} . For $n \in \mathbb{Z}$ let λ_n denote its eigenvalues labeled such that they may be repeated due to multiplicity and

$$\lambda_{-1} \leqslant \lambda_{-2} \leqslant \cdots < 0 < \cdots \leqslant \lambda_2 \leqslant \lambda_1$$
.

Prove that for each $n \in \mathbb{N}$

$$\lambda_{n} = \inf_{\mathcal{H}_{n-1}} \sup_{\substack{x \perp \mathcal{H}_{n-1} \\ \|x\| = 1}} \langle x, Ax \rangle , \quad \lambda_{-n} = \sup_{\mathcal{H}_{n-1}} \inf_{\substack{x \perp \mathcal{H}_{n-1} \\ \|x\| = 1}} \langle x, Ax \rangle ,$$

where $\inf_{\mathcal{H}_{n-1}}$ and $\sup_{\mathcal{H}_{n-1}}$ are over all possible (n-1)-dimensional subspaces \mathcal{H}_{n-1} of \mathcal{H} .

Problem 28 (Volterra integral operator – II). Let $V: L^2[0,1] \to L^2[0,1]$ be the Volterra integral operator introduced in Problem 20, i.e. $Vf(x) = \int_0^x f(y) dy$.

- (i) Show that if $f \in L^2[0,1]$ is an eigenfunction of the operator V^*V with eigenvalue λ , then $\lambda > 0$, f is twice differentiable a.e., and $\lambda f'' + f = 0$ a.e. in [0,1]. [Hint: You may use without proof that if f is integrable then $x \mapsto \int_0^x f(y) dy$ is a.e. differentiable with derivative f (Lebesgue differentiation theorem).]
- (ii) Find the collection $\{\lambda_n\}_{n=1}^{\infty}$ of all eigenvalues of V^*V , and check that the corresponding family of eigenfunctions $\{f_n\}_{n=1}^{\infty}$ is (up to normalization) an ONB in $L^2[0,1]$. [Note: This exercise is intended to be done without using the spectral theorem for normal compact operators.]
- (iii) Deduce from (ii) that $||V|| = \frac{2}{\pi}$.

For more details please visit http://www.math.lmu.de/~gottwald/14FA2/