

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2014/15 October 23, 2014

FUNCTIONAL ANALYSIS II Assignment 3

Problem 9 (Projections II).

- (i) Show that for every linear subspace $W \subset V$ of a linear space V there exists a projection $P: V \to V$ with R(P) = W. [Hint: Zorn.]
- (*ii*) Find a normed space X and a projection $P: X \to X$ that is not continuous.

Now let X be a Banach space and assume that $X = X_0 \oplus X_1$ for some closed subspaces X_0 and X_1 of X. Prove the following:

- (*iii*) There exists a bounded projection $P: X \to X$ with $N(P) = X_0$ and $R(P) = X_1$.
- (*iv*) If dim $X_1 < \infty$ and \tilde{X}_1 is another subspace of X such that $X_0 \cap \tilde{X}_1 = \{0\}$ then dim $\tilde{X}_1 \leq \dim X_1$, and if $X_0 \oplus \tilde{X}_1 = X$ then dim $\tilde{X}_1 = \dim X_1$.

[*Remark:* Part (iv) shows that the codimension of a closed subspace of X is well-defined.]

Problem 10.

- (i) Show that a compact operator $T: X \to X$ on an infinite-dimensional Banach space X is never surjective (compare with P2 (*iv*) and P4 (*ii*)).
- (*ii*) Let $1 \leq p < \infty$ and $T : \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N}), x \mapsto (x_1, \frac{x_2}{2}, \frac{x_3}{3}, \dots)$. Find $y \in \ell^p(\mathbb{N})$ such that Tx = y has no solution $x \in \ell^p(\mathbb{N})$. Why does such a y exist?

Problem 11. Let X and Y be Banach spaces and let $T : X \to Y$ be bounded.

(i) Assume that $||Tx||_Y \ge c ||x||_X$ for all $x \in X$ and some c > 0 and show that in this case T can be compact only if dim $X < \infty$.

Now let $T: X \to Y$ be compact and dim $X = \infty$.

- (*ii*) Prove that $0 \in \overline{T(S)}$, where $S := \{x \in X : ||x|| = 1\}$.
- (iii) Construct a non-injective compact operator arbitrarily close in norm to T.

Problem 12 (Shift operator). Let $T : \ell^1(\mathbb{N}) \to \ell^1(\mathbb{N}), x \mapsto (x_2, x_3, x_4, \dots)$.

- (i) Prove that $T \in \mathcal{B}(\ell^1(\mathbb{N}))$ and determine ||T||.
- (*ii*) Find the adjoint T' (domain and action).
- (iii) Determine the spectra, point spectra and the residual spectra of T and T'.

For more details please visit http://www.math.lmu.de/~gottwald/14FA2/