

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2014/15 October 16, 2014

FUNCTIONAL ANALYSIS II ASSIGNMENT 2

Problem 5 (Projections I). Let V be a linear space and let P be a projection on V, that is, a linear map $P: V \to V$ such that $P^2 = P$. Prove:

- (i) R(P) = N(I-P).
- (ii) $V = R(P) \oplus N(P)$, where \oplus denotes the direct sum.

Let \mathcal{H} be a Hilbert space. A projection $P: \mathcal{H} \to \mathcal{H}$ is called *orthogonal* if $R(P) \perp N(P)$.

- (iii) Prove that a projection $P: \mathcal{H} \to \mathcal{H}$ is orthogonal iff $P \in \mathcal{B}(\mathcal{H})$ and $P^* = P$.
- (iv) Let A be a linear subspace of \mathcal{H} . Show that there exists a unique orthogonal projection $P_A: \mathcal{H} \to \mathcal{H}$ with $R(P_A) = \overline{A}$. [Hint: Projection Theorem.]

Let $P: \mathcal{H} \to \mathcal{H}$ be an orthogonal projection.

- (v) Calculate $\sigma_p(P)$ and $\sigma(P)$.
- (vi) Find an explicit expression for $R_{\lambda}(P) = (P \lambda I)^{-1}$ whenever $\lambda \in \rho(P)$.

Problem 6. For $w \in \ell^{\infty}(\mathbb{N})$ let $T_w : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be the componentwise multiplication by $w = (w_1, w_2, \dots)$, i.e.

$$T_w x := (w_1 x_1, w_2 x_2, \dots)$$

- (i) Show that T_w is bounded and calculate its norm.
- (ii) Find the explicit action of the adjoint T_w^* .
- (iii) Find the subsets of w's in $\ell^{\infty}(\mathbb{N})$ for which $T_w^*T_w = T_wT_w^*$, for which $T_w = T_w^*$, and for which T_w is compact.
- (iv) Determine $\sigma_p(T_w)$ and prove that $\overline{\sigma_p(T_w)} = \sigma(T_w)$.

Problem 7. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be bijective. Prove:

- $(i) \ \sigma(T^{-1}) = \frac{1}{\sigma(T)} := \{ \lambda^{-1} \in \mathbb{C} \mid \lambda \in \sigma(T) \}.$
- (ii) If $Tx = \lambda x$ for some $\lambda \neq 0$ and $x \in X$, then $T^{-1}x = \lambda^{-1}x$.

Problem 8. Let X be a Banach space, let $T \in \mathcal{B}(X)$, let $\rho(T)$ the resolvent set of T and for $\lambda \in \rho(T)$ let $R_{\lambda}(T) = (T - \lambda I)^{-1}$ be the resolvent of T at λ . Prove the following:

(i)
$$R_{\lambda}(T) - R_{\mu}(T) = (\lambda - \mu) R_{\lambda}(T) R_{\mu}(T)$$
 for all $\lambda, \mu \in \rho(T)$.

(ii)
$$R_{\lambda}(T) - R_{\lambda}(S) = R_{\lambda}(T)(S - T)R_{\lambda}(S)$$
 for all $S \in \mathcal{B}(X)$ and $\lambda \in \rho(T) \cap \rho(S)$.

(iii) If $\lambda \in \mathbb{C}$ is such that $|\lambda - \lambda_0| < ||R_{\lambda_0}(T)||^{-1}$ for some $\lambda_0 \in \rho(T)$, then $\lambda \in \rho(T)$ and

$$R_{\lambda}(T) = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R_{\lambda_0}(T)^{n+1}.$$

(iv)
$$R_{\lambda}(T) = -\sum_{n=0}^{\infty} \lambda^{-1-n} T^n \text{ for } |\lambda| > ||T||.$$

$$(v) ||R_{\lambda}(T)|| \ge (\operatorname{dist}(\lambda, \sigma(T)))^{-1} \text{ for all } \lambda \in \rho(T).$$

- (vi) The map $\rho(T) \to \mathcal{B}(X), \lambda \mapsto R_{\lambda}(T)$ is continuous.
- (vii) The map in (vi) has a derivative, in the sense that

$$\frac{d}{d\lambda}R_{\lambda}(T) := \lim_{h \to 0} \frac{1}{h} \left(R_{\lambda+h}(T) - R_{\lambda}(T) \right)$$

exists in $\mathcal{B}(X)$. In fact, $\frac{d}{d\lambda}R_{\lambda}(T)=R_{\lambda}(T)^{2}$.