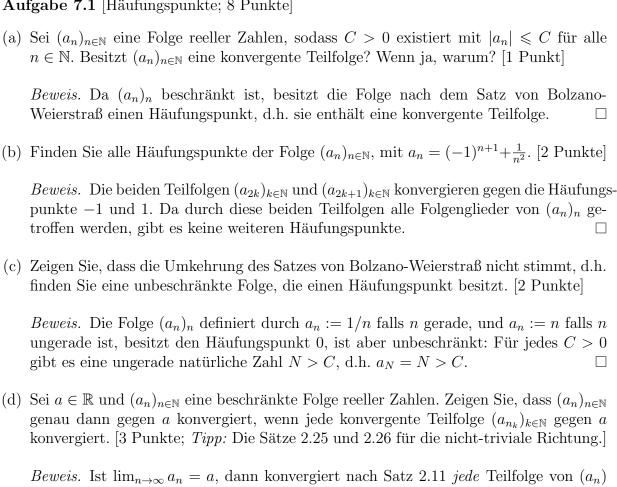
Übungen zur Analysis 1 für Informatiker und Statistiker

Lösung zu Blatt 7

Aufgabe 7.1 [Hä	ufungspunkte:	-8	\cdot Punkt ϵ	ڊ
-----------------	---------------	----	--------------------------	---



Aufgabe 7.2 [8 Punkte] Sei $x \in \mathbb{R}$.

(a) Zeigen Sie, dass
$$\lim_{n\to\infty} \left[n \left(x + \frac{1}{n} \right)^2 - nx^2 \right] = 2x$$
. [2 Punkte]
Beweis. Es ist $\lim_{n\to\infty} \left[n \left(x + \frac{1}{n} \right)^2 - nx^2 \right] = 2x + \lim_{n\to\infty} \frac{1}{n} = 2x$.

damit ist $(a_n)_n$ nach Satz 2.26 konvergent mit Grenzwert a.

auch gegen a. Nehmen wir nun an, dass jede konvergente Teilfolge von $(a_n)_n$ gegen a konvergiert. Da $(a_n)_n$ beschränkt ist, gibt es mindestens eine solche Teilfolge, d.h. a ist (der einzige) Häufungspunkt von $(a_n)_n$. Es folgt $a = \liminf_n a_n = \limsup_n a_n$ und (b) Sei nun k eine natürliche Zahl. Berechnen Sie

$$\lim_{n \to \infty} \left[n \left(x + \frac{1}{n} \right)^k - n x^k \right]. \tag{*}$$

[6 Punkte; Tipp: Induktion oder Binomischer Satz]

Beweis. Wir beweisen, dass der gesuchte Grenzwert gleich kx^{k-1} ist (woran erinnert Sie dieser Ausdruck?): Für k=1 gilt $n(x+\frac{1}{n})-nx=1=1\cdot x^{1-1}$. Für den Induktionsschritt nehmen wir an, (*) konvergiere für ein $k\in\mathbb{N}$ gegen kx^{k-1} und folgern:

$$n\left(x+\frac{1}{n}\right)^{k+1} - nx^{k+1} = \left(x+\frac{1}{n}\right)\left[n\left(x+\frac{1}{n}\right)^k - nx^k\right] + x^k$$

Da die rechte Seite nach den Regeln für Grenzwerte von Produkten und der Induktionsannahme gegen $x \cdot kx^{k-1} + x^k = (k+1)x^k$ konvergiert, folgt die Aussage.

Aufgabe 7.3 (!) [Konvergenzkriterien für Reihen; 8 Punkte]

(a) Zeigen Sie: $\sum_{n=1}^{\infty} 2^{-n} = 1.$ [2 Punkte]

Beweis. Nach Satz 2.31 über die geometrische Reihe gilt $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{1-\frac{1}{2}} - \frac{1}{2^0} = 1$. \square

(b) Zeigen Sie, dass die Reihe $\sum_{n=1}^{\infty} \frac{n}{2^n}$ konvergiert. [2 Punkte; *Tipp:* Quotientenkriterium]

Beweis. Mit $a_n = \frac{n}{2^n}$ gilt $\frac{a_{n+1}}{a_n} = \frac{n+1}{2n} \xrightarrow{n \to \infty} \frac{1}{2}$, also $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2} < 1$, we shalb die Reihe nach dem Quotientenkriterium konvergiert.

(c) Warum ist es nicht hinreichend für die Konvergenz der Reihe $\sum_{n=1}^{\infty} a_n$, dass $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge ist? [1 Punkt; *Tipp:* Nennen Sie eine Nullfolge, deren zugehörige Reihe nicht konvergiert.]

Beweis. Standardbeispiel ist die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$.

(d) Finden Sie alle $k \in \mathbb{N}$, für die die Reihe $\sum_{n=1}^{\infty} n^{-k}$ konvergiert, und beweisen Sie Ihre Aussage. [3 Punkte; *Tipp:* Majorantenkriterium und Aufgabe 6.4(iii)]

Beweis. Die Reihe konvergiert für $k \geqslant 2$, denn wegen $n(n+1) \leqslant 2n^2$ gilt $\frac{1}{n^2} \leqslant \frac{2}{n(n+1)}$ und da $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ konvergiert (Aufgabe 6.4), folgt die Konvergenz von $\sum_{n=1}^{\infty} n^{-2}$ nach dem Majorantenkriterium. Weiter gilt $n^{-k} \leqslant n^{-2}$ für alle $n \in \mathbb{N}$ und $k \geqslant 2$, d.h. es konvergieren alle Reihen der Form $\sum_{n=1}^{\infty} n^{-k}$ für $k \geqslant 2$.

Aufgabe 7.4 (!) [Majorantenkriterium; 8 Punkte] Seien $x \in \mathbb{R}$ mit x > 1 und $k \in \mathbb{N}$. Wir zeigen in dieser Aufgabe *ohne das Quotientenkriterium* die Konvergenz der Reihe

$$\sum_{n=1}^{\infty} \frac{n^k}{x^n} \,. \tag{*}$$

Hinweis: Verwechseln Sie den Summations-Index n nicht mit dem festen $k \in \mathbb{N}$. Beachten Sie außerdem, dass die Konstanten N_1, N_2, C_1 und C_2 , die in den folgenden Teilaufgaben auftreten, zwar von k aber nicht von n abhängen dürfen.

(i) Zeigen Sie, dass es positive Konstanten N_1 und C_1 gibt, sodass für $n > N_1$

$$x^n > C_1 n(n-1) \cdots (n-k+1)(n-k)(n-k-1).$$

Beweis. [2 Punkte] Wir schreiben $x=1+\epsilon$ (mit ϵ größer Null) und erhalten aus dem binomischen Lehrsatz

$$x^{n} = (1 + \epsilon)^{n} = \sum_{l=0}^{n} {n \choose l} \epsilon^{l}.$$

Alle Summanden sind positiv, somit ist jeder eine untere Schranke für die Summe. Daher gilt

$$x^n > \binom{n}{k+2} \epsilon^{k+2}$$

für alle $n > N_1 := k + 2$. Da

$$\binom{n}{k+2} = \frac{n!}{(k+2)!(n-k-2)!} = \frac{(n)(n-1)\dots(n-k-1)}{(k+2)!}$$

gilt die zu zeigende Ungleichung mit $C_1 = \frac{\epsilon^{k+2}}{(k+2)!}$.

(ii) Zeigen Sie, dass es positive Konstanten \mathcal{N}_2 und \mathcal{C}_2 gibt, sodass für $n>\mathcal{N}_2$

$$\frac{n^k}{n(n-1)\dots(n-k+1)} < C_2.$$

[3 Punkte; Tipp: Zeigen Sie zunächst, dass $\lim_{n\to\infty}\frac{n^k}{n(n-1)\cdots(n-k+1)}=1$.]

Beweis. Wie im Tipp berechnen wir zunächst

$$\lim_{n \to \infty} \frac{n^k}{n(n-1)\dots(n-k+1)} = \lim_{n \to \infty} \frac{1}{(n/n)((n-1)/n)\dots((n-k+1)/n)}$$

$$= \lim_{n \to \infty} \frac{1}{(1)(1-1/n)\dots(1-(k-1)/n)}$$

$$= \frac{1}{1 \times 1 \times \dots \times 1} = 1.$$

Hierbei folgt die erste Gleichheit, da im Nenner genau k Faktoren vorkommen, auf die wir die Faktoren n aus dem Zähler "verteilen". Die restlichen Schritte sind Anwendungen der Grenzwertsätze.

Folglich gibt es ein N_2 so dass für alle $n > N_2$ folgendes gilt:

$$\left| \frac{n^k}{n(n-1)\dots(n-k+1)} - 1 \right| < 1$$

(Anwendung der Definition von Grenzwert mit $\epsilon=1$.) Somit folgt die zu zeigende Ungleichung, mit $C_2=2$, aus der Dreiecksungleichung.

(iii) Schließen Sie den Beweis ab, indem Sie (*) mit der Reihe $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ vergleichen, deren Konvergenz in Aufgabe 6.4(iii) gezeigt wurde. [3 Punkte]

Beweis. Seien $N = \max(N_1, N_2)$ und $D = \sum_{n=1}^{N} \frac{n^k}{x^n}$. Dann gilt für alle m > N

$$\sum_{n=1}^{m} \frac{n^k}{x^n} = \sum_{n=1}^{N} \frac{n^k}{x^n} + \sum_{n=N+1}^{m} \frac{n^k}{x^n}$$

$$\leq D + \frac{1}{C_1} \sum_{n=N+1}^{m} \frac{n^k}{n(n-1)\dots(n-k+1)(n-k)(n-k-1)}$$

$$\leq D + \frac{C_2}{C_1} \sum_{n=N+1}^{m} \frac{1}{(n-k)(n-k-1)}$$

$$\leq D + \frac{C_2}{C_1} \sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

Die letzte Abschätzung auf der rechten Seite ist eine Konstante (unabhängig von m). Folglich ist die monoton wachsende Partialsummenfolge (auf der linken Seite) beschränkt und somit konvergent.