Ludwig-Maximilians-Universitat Miinchen WiSe 2023/24
Mathematisches Institut
Gregor Kleen

Programmieren II fiir Studierende der Mathematik
Blatt 11 — Losungsvorschlag

Aufgabe 12 Ziel ist es die Losung der vorhergegangenen Ubungsaufgabe von der Aquivalenz von p-Normen
in eine bessere Code-Struktur zu bringen und mit unittests zu versehen. Falls Sie das entsprechende Ubungs-
blatt nicht (vollstindig) bearbeitet haben, kénnen Sie auch den bereitgestellten Losungsvorschlag verwenden.
Bei der Umstrukturierung von bestehendem Code ohne (wesentliche) Anderung der Funktionalitit spricht
man von refactoring.

Legen Sie ein Verzeichnis fir Ihr Projekt an. Verschieben Sie Thre Losung in eine Quellcodedatei (z.B. und
im Folgenden pnorms.cpp) unterhalb des von Thnen erstellten Verzeichnisses. Formulieren Sie eine Datei
meson.build um die Ubersetzungseinheit pnorms.cpp zu einer ausfithrbaren Binirdatei zu tibersetzen und
legen Sie diese ebenfalls in dem Verzeichnis ab.

project('pnorms', 'cpp')

executable('pnorms', 'pnorms.cpp')

Sie sollten nun in der Lage sein mit einem geeigneten meson-Befehl das builddir anlegen zu lassen, ihre Losung
mit ninja zu uiibersetzen und Sie danach interaktiv auszufithren.

Erstellen Sie eine Datei pnorms . h mit Deklarationen fiir die in pnorms. cpp definierten templates. Inkludieren
Sie pnorms.h auch in pnorms. cpp.

Hinweis. Sie werden die Definitionen, die Teil der Klasse complex_norm sind, in pnorms.cpp dndern miissen.
Sie diirfen die Klasse complex_norm nicht erneut vereinbaren und miissen stattdessen ihre Komponenten
auflerhalb einer Klassen-Deklaration definieren.

pnorms_unittests/pnorms.h

#pragma once
#include <complex>

template<class T = double, unsigned int p = 2>
T pNorm(const std::complex<T>& z);

template<class T = double, T _norm(const std::complex<T>&) = pNorm<T>>
class complex_norm : public std::complex<T> {
public:
complex_norm(T real_, T imag_);
T norm() const;

iE

template<class T = double, unsigned int p = 2>
using complex_pnorm = complex_norm<T, pNorm<T, p>>;

Deklaration pnorm bound

Seite 1 von 6

Aufgabe 12 Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Definition complex norm

template<class T, T _norm(const complex<T>&)>
complex_norm<T, _norm>::complex_norm(T real_, T imag_): complex<T>(real_, imag_) {}

template<class T, T _norm(const complex<T>&)>
T complex_norm<T, _norm>::norm() const {
return _norm(+this);

An dieser Stelle sollten Sie erneut in der Lage sein ihre Losung zu iibersetzen und interaktiv auszufithren.

Deklarieren Sie in der Header-Datei und definieren Sie in pnorms.cpp eine zusitzliches Funktionstemplate
pnorm_bound. Die Funktionen sollen einen Parameter z vom Typ complex<T> akzeptieren und einen Wert
vom Typ T zuriickgeben. Zusétzlich zu T soll das template zwei weitere Parameter p; und p, akzeptieren. Der
lIzllp,
[ELPS

sein.

zuriickgegebene Wert soll

Deklaration pnorm bound

template<class T = double, unsigned int pi1, unsigned int p2>
T pnorm_bound(std::complex<T> = std::complex<T>{1.0, 1.0});

Definition pnorm bound

template<class T, unsigned int pi, unsigned int p2>
T pnorm_bound(complex<T> z) {
complex_pnorm<T, p1> zi{z.real(), z.imag()};
complex_pnorm<T, p2> z2{z.real(), z.imag()};
return zi.norm() / z2.norm();

Passen Sie Thr Hauptprogramm in pnorms.cpp an, sodass dieses pnorm_bound geeignet verwendet, wo immer
sinnvoll moglich.

Lagern Sie ihr Hautprogramm aus in eine zweite Ubersetzungseinheit pnorms_interact.cpp.

Hinweis. Es wird notwendig sein die in pnorms_interact.cpp verwendeten Instanzen der templates aus
pnorms.h in pnorms.cpp explizit zu instanziieren.

Sie werden zudem Thre meson.build anpassen miissen, sodass pnorms.cpp nun als Programmbibliothek iiber-
setzt und mit dem Resultat der Ubersetzung von pnorms_interact.cpp gelinkt wird.

pnorms_unittests/pnorms.cpp

#include <complex>
#include <cmath>

#include "pnorms.h”
using namespace std;
template<class T, unsigned int p>

T pNorm(const complex<T>& z) {
return pow(pow(abs(z.real()), p) + pow(abs(z.imag()), p), static_cast<T>(1) / p);

Seite 2 von 6

Aufgabe 12 Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Definition complex norm

Definition pnorm bound

template double pNorm<double, 2>(const complex<double>&);
template double pNorm<double, 3>(const complex<double>&);
template class complex_norm<double, pNorm<double, 2>>;
template class complex_norm<double, pNorm<double, 3>>;
template double pnorm_bound<double, 2, 3>(complex<double>);

pnorms_unittests/pnorms_interact.cpp

#include <iostream>
#include <iomanip>
#include <limits>

#include "pnorms.h”
using namespace std;

int main() {
double bound = pnorm_bound<double, 2, 3>();

cout << setprecision(numeric_limits<double>::digitsie + 1) << boolalpha;
cout << bound << endl;

double real_, imag_;
while (true) {
cout << "real, imag = ";
if (!(cin >> real_ >> imag_)) break;

double val = pnorm_bound<double, 2, 3>(complex<double>{real_, imag_});
cout << val << ” ” << (val <= bound) << endl;

}

pnorms_unittests/meson.build

project('pnorms', 'cpp')

pnorms_lib = library('libpnorms', 'pnorms.cpp')

executable('pnorms', 'pnorms_interact.cpp', link_with : pnorms_lib)
Meson Test

An dieser Stelle sollten Sie erneut in der Lage sein ihre Losung zu ibersetzen und interaktiv auszufithren.

Seite 3 von 6

Aufgabe 12 Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Befehle

Befehle subproject setup

meson setup --wipe build
ninja -C build

Befehle Test

Figen Sie Threm meson Projekt das unit testing framework Google Test als subproject hinzu. Lassen Sie es
von meson aus der WrapDB installieren.

Befehle subproject setup

mkdir -p subprojects
meson wrap install gtest

Fiigen Sie eine weitere Ubersetzungseinheit pnorms_unittests.cpp hinzu. Spezifizieren Sie in meson.build
geeignet, dass das Ergebnis der Ubersetzung von pnorms_unittsets.cpp zu einer ausfithrbaren Bindrdatei
mit dem Befehl meson test ausfithrbar sein soll. Geben Sie hierbei auch an, dass die Binardatei gelinkt werden
soll mit der in der meson Variable gtest_main_dep im subproject gtest bereitgestellten dependency.

Hinweis. Es ist dann nicht notwendig in pnorms_unittests.cpp ein Hauptprogramm zu implementieren.

Meson Test

gtest = subproject('gtest')
test('gtest',
executable('pnorms_gtest', 'pnorms_unittests.cpp',
link_with : pnorms_lib,
dependencies : gtest.get_variable('gtest_main_dep')
)
)

Selbst mit pnorms_unittests.cpp einer komplett leeren Datei sollten Sie Ihr Projekt weiterhin tibersetzen
und interaktiv ausfithren konnen. Es sollte auch méglich sein mit einem geeignete meson test-Befehl die
aus pnorms_unittests.cpp uibersetzte ausfithrbare Binardatei ausfithren zu lassen. Es werden hierbei aber
natiirlich noch keinerlei Tests ausgefiihrt.

Befehle Test

meson test -C build

Implementieren Sie in pnorms_unittests.cpp beliebig viele unit tests, die IThnen sinnvoll erscheinen.

lizll2

Es sei im Folgenden B(z) := 2

aus den folgenden Tests:

; Implementieren Sie aber mindestens auch eine Test-Suite PNorms bestehend

« B(1+i) ~ 1,122 462 048 309

Hinweis. Verwenden Sie das von Google Test bereitgestellte Praprozessor-Makro EXPECT_NEAR(a, d’, &),

Seite 4 von 6

Aufgabe 12

Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

welches priift, dass gilt: |a — d’| < e.
¢ soll hierbei nicht unnétig grof} sein.

B(1,5+2,0i) < B(1+1)

Hinweis. Verwenden Sie hier und im Folgenden das von Google Test bereitgestellte Praprozessor-Makro

EXPECT_LE (analog zu EXPECT_EQ).
B(7,0 +7,0i) < B(1+1)

B(3,7 +42,1i) < B(1+1)

pnorms_unittests/pnorms_unittests.cpp

}

#include <gtest/gtest.h>
#include <complex>

#include "pnorms.h”

namespace {

using namespace std;
const double bound = pnorm_bound<double, 2, 3>();

TEST(PNorms, ExpectedBound) {
const double expected_bound = 1.122462048309373;
EXPECT_NEAR(bound, expected_bound, 1e-12);

}

TEST(PNorms, Example1) {

EXPECT_LE((pnorm_bound<double, 2, 3>(complex<double>{1.5, 2.0})), bound);

}
TEST(PNorms, Example2) {

EXPECT_LE((pnorm_bound<double, 2, 3>(complex<double>{7.0, 7.0})), bound);

}
TEST(PNorms, Example3) {

EXPECT_LE((pnorm_bound<double, 2, 3>(complex<double>{3.7, 42.1})), bound);

}

The Meson build system

Version: 1.1.0

Source dir: ../pnorms_unittests
Build dir: ../pnorms_unittests/build
Build type: native build

Project name: pnorms

Project version: undefined

C++ compiler for the host machine: g++ (gcc 12.2.0 "g++ (GCC) 12.2.0")
C++ linker for the host machine: g++ 1d.bfd 2.40
Host machine cpu family: x86_64

Host machine cpu: x86_64

Executing subproject gtest

Seite 5 von 6

Aufgabe 12 Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

gtest| Project name: gtest

gtest| Project version: 1.14.0

gtest| C++ compiler for the host machine: g++ (gcc 12.2.0 "g++ (GCC) 12.2.0")
gtest| C++ linker for the host machine: g++ 1d.bfd 2.40

gtest| Run-time dependency threads found: YES

gtest| Dependency threads found: YES unknown (cached)

gtest| Dependency threads found: YES unknown (cached)

gtest| Dependency threads found: YES unknown (cached)

gtest| Build targets in project: 2

gtest| Subproject gtest finished.

Build targets in project: 3
pnorms undefined

Subprojects
gtest: YES

Found ninja-1.11.1 at ../bin/ninja

ninja: Entering directory “build'

[1/9] Compiling C++ object liblibpnorms.so.p/pnorms.cpp.o

[2/9] Compiling C++ object pnorms.p/pnorms_interact.cpp.o

[3/9] Linking target liblibpnorms.so

[4/9] Generating symbol file liblibpnorms.so.p/liblibpnorms.so.symbols

[5/9] Linking target pnorms

[6/9] Compiling C++ object

— pnorms_gtest.p/subprojects_googletest-1.14.0_googletest_src_gtest_main.cc.o
[7/9] Compiling C++ object ../pnorms_unittests.cpp.o

[8/9] Compiling C++ object

— pnorms_gtest.p/subprojects_googletest-1.14.0_googletest_src_gtest-all.cc.o
[9/9] Linking target pnorms_gtest

ninja: no work to do.

ninja: Entering directory ../pnorms_unittests/build’

ninja: no work to do.

1/1 gtest OK 0.01S

Ok:

Expected Fail:
Fail:

Unexpected Pass:
Skipped:
Timeout:

© © 06 06 O r

Full log written to ../pnorms_unittests/build/meson-logs/testlog.txt

Seite 6 von 6

