
Ludwig-Maximilians-Universität München
Mathematisches Institut

Gregor Kleen

WiSe 2023/24

Programmieren II für Studierende der Mathematik
Blatt 11 – Lösungsvorschlag

Aufgabe 12 Ziel ist es die Lösung der vorhergegangenenÜbungsaufgabe von derÄquivalenz von 𝑝-Normen
in eine bessere Code-Struktur zu bringen und mit unittests zu versehen. Falls Sie das entsprechende Übungs-
blatt nicht (vollständig) bearbeitet haben, können Sie auch den bereitgestellten Lösungsvorschlag verwenden.
Bei der Umstrukturierung von bestehendem Code ohne (wesentliche) Änderung der Funktionalität spricht
man von refactoring.

Legen Sie ein Verzeichnis für Ihr Projekt an. Verschieben Sie Ihre Lösung in eine Quellcodedatei (z.B. und
im Folgenden pnorms.cpp) unterhalb des von Ihnen erstellten Verzeichnisses. Formulieren Sie eine Datei
meson.build um die Übersetzungseinheit pnorms.cpp zu einer ausführbaren Binärdatei zu übersetzen und
legen Sie diese ebenfalls in dem Verzeichnis ab.

project('pnorms', 'cpp')

executable('pnorms', 'pnorms.cpp')

Sie sollten nun in der Lage sein mit einem geeigneten meson-Befehl das builddir anlegen zu lassen, ihre Lösung
mit ninja zu übersetzen und Sie danach interaktiv auszuführen.

Erstellen Sie eine Datei pnorms.hmit Deklarationen für die in pnorms.cpp definierten templates. Inkludieren
Sie pnorms.h auch in pnorms.cpp.

Hinweis. Sie werden die Definitionen, die Teil der Klasse complex_norm sind, in pnorms.cpp ändern müssen.
Sie dürfen die Klasse complex_norm nicht erneut vereinbaren und müssen stattdessen ihre Komponenten
außerhalb einer Klassen-Deklaration definieren.

pnorms_unittests/pnorms.h

#pragma once

#include <complex>

template<class T = double, unsigned int p = 2>
T pNorm(const std::complex<T>& z);

template<class T = double, T _norm(const std::complex<T>&) = pNorm<T>>
class complex_norm : public std::complex<T> {

public:
complex_norm(T real_, T imag_);
T norm() const;

};

template<class T = double, unsigned int p = 2>
using complex_pnorm = complex_norm<T, pNorm<T, p>>;

Deklaration pnorm bound

Seite 1 von 6

Aufgabe 12 Programmieren II für Studierende der Mathematik — WiSe 2023/24

Definition complex norm

template<class T, T _norm(const complex<T>&)>
complex_norm<T, _norm>::complex_norm(T real_, T imag_): complex<T>(real_, imag_) {}

template<class T, T _norm(const complex<T>&)>
T complex_norm<T, _norm>::norm() const {

return _norm(*this);
}

An dieser Stelle sollten Sie erneut in der Lage sein ihre Lösung zu übersetzen und interaktiv auszuführen.

Deklarieren Sie in der Header-Datei und definieren Sie in pnorms.cpp eine zusätzliches Funktionstemplate
pnorm_bound. Die Funktionen sollen einen Parameter 𝑧 vom Typ complex<𝑇> akzeptieren und einen Wert
vom Typ𝑇 zurückgeben. Zusätzlich zu𝑇 soll das template zwei weitere Parameter 𝑝1 und 𝑝2 akzeptieren. Der
zurückgegebene Wert soll ∥𝑧 ∥𝑝1

∥𝑧 ∥𝑝2
sein.

Deklaration pnorm bound

template<class T = double, unsigned int p1, unsigned int p2>
T pnorm_bound(std::complex<T> = std::complex<T>{1.0, 1.0});

Definition pnorm bound

template<class T, unsigned int p1, unsigned int p2>
T pnorm_bound(complex<T> z) {

complex_pnorm<T, p1> z1{z.real(), z.imag()};
complex_pnorm<T, p2> z2{z.real(), z.imag()};
return z1.norm() / z2.norm();

}

Passen Sie Ihr Hauptprogramm in pnorms.cpp an, sodass dieses pnorm_bound geeignet verwendet, wo immer
sinnvoll möglich.

Lagern Sie ihr Hautprogramm aus in eine zweite Übersetzungseinheit pnorms_interact.cpp.

Hinweis. Es wird notwendig sein die in pnorms_interact.cpp verwendeten Instanzen der templates aus
pnorms.h in pnorms.cpp explizit zu instanziieren.

Sie werden zudem Ihre meson.build anpassen müssen, sodass pnorms.cpp nun als Programmbibliothek über-
setzt und mit dem Resultat der Übersetzung von pnorms_interact.cpp gelinkt wird.

pnorms_unittests/pnorms.cpp

#include <complex>
#include <cmath>

#include ”pnorms.h”

using namespace std;

template<class T, unsigned int p>
T pNorm(const complex<T>& z) {

return pow(pow(abs(z.real()), p) + pow(abs(z.imag()), p), static_cast<T>(1) / p);
}

Seite 2 von 6

Aufgabe 12 Programmieren II für Studierende der Mathematik — WiSe 2023/24

Definition complex norm

Definition pnorm bound

template double pNorm<double, 2>(const complex<double>&);
template double pNorm<double, 3>(const complex<double>&);
template class complex_norm<double, pNorm<double, 2>>;
template class complex_norm<double, pNorm<double, 3>>;
template double pnorm_bound<double, 2, 3>(complex<double>);

pnorms_unittests/pnorms_interact.cpp

#include <iostream>
#include <iomanip>
#include <limits>

#include ”pnorms.h”

using namespace std;

int main() {
double bound = pnorm_bound<double, 2, 3>();

cout << setprecision(numeric_limits<double>::digits10 + 1) << boolalpha;
cout << bound << endl;

double real_, imag_;
while (true) {

cout << ”real, imag = ”;
if (!(cin >> real_ >> imag_)) break;

double val = pnorm_bound<double, 2, 3>(complex<double>{real_, imag_});
cout << val << ” ” << (val <= bound) << endl;

}

}

pnorms_unittests/meson.build

project('pnorms', 'cpp')

pnorms_lib = library('libpnorms', 'pnorms.cpp')
executable('pnorms', 'pnorms_interact.cpp', link_with : pnorms_lib)

Meson Test

An dieser Stelle sollten Sie erneut in der Lage sein ihre Lösung zu übersetzen und interaktiv auszuführen.

Seite 3 von 6

Aufgabe 12 Programmieren II für Studierende der Mathematik — WiSe 2023/24

Befehle

Befehle subproject setup

meson setup --wipe build
ninja -C build

Befehle Test

Fügen Sie Ihrem meson Projekt das unit testing framework Google Test als subproject hinzu. Lassen Sie es
von meson aus der WrapDB installieren.

Befehle subproject setup

mkdir -p subprojects
meson wrap install gtest

Fügen Sie eine weitere Übersetzungseinheit pnorms_unittests.cpp hinzu. Spezifizieren Sie in meson.build
geeignet, dass das Ergebnis der Übersetzung von pnorms_unittsets.cpp zu einer ausführbaren Binärdatei
mit dem Befehl meson test ausführbar sein soll. Geben Sie hierbei auch an, dass die Binärdatei gelinkt werden
soll mit der in der meson Variable gtest_main_dep im subproject gtest bereitgestellten dependency.

Hinweis. Es ist dann nicht notwendig in pnorms_unittests.cpp ein Hauptprogramm zu implementieren.

Meson Test

gtest = subproject('gtest')
test('gtest',
executable('pnorms_gtest', 'pnorms_unittests.cpp',

link_with : pnorms_lib,
dependencies : gtest.get_variable('gtest_main_dep')

)
)

Selbst mit pnorms_unittests.cpp einer komplett leeren Datei sollten Sie Ihr Projekt weiterhin übersetzen
und interaktiv ausführen können. Es sollte auch möglich sein mit einem geeignete meson test-Befehl die
aus pnorms_unittests.cpp übersetzte ausführbare Binärdatei ausführen zu lassen. Es werden hierbei aber
natürlich noch keinerlei Tests ausgeführt.

Befehle Test

meson test -C build

Implementieren Sie in pnorms_unittests.cpp beliebig viele unit tests, die Ihnen sinnvoll erscheinen.

Es sei im Folgenden 𝐵(𝑧) := ∥𝑧 ∥2
∥𝑧 ∥3 ; Implementieren Sie aber mindestens auch eine Test-Suite PNorms bestehend

aus den folgenden Tests:

• 𝐵(1 + 𝑖) ≈ 1,122 462 048 309

Hinweis. Verwenden Sie das vonGoogle Test bereitgestellte Präprozessor-Makro EXPECT_NEAR(𝑎, 𝑎′, 𝜀),

Seite 4 von 6

Aufgabe 12 Programmieren II für Studierende der Mathematik — WiSe 2023/24

welches prüft, dass gilt: |𝑎 − 𝑎′ | ≤ 𝜀.

𝜀 soll hierbei nicht unnötig groß sein.

• 𝐵(1,5 + 2,0𝑖) ≤ 𝐵(1 + 𝑖)

Hinweis. Verwenden Sie hier und im Folgenden das von Google Test bereitgestellte Präprozessor-Makro
EXPECT_LE (analog zu EXPECT_EQ).

• 𝐵(7,0 + 7,0𝑖) ≤ 𝐵(1 + 𝑖)

• 𝐵(3,7 + 42,1𝑖) ≤ 𝐵(1 + 𝑖)

pnorms_unittests/pnorms_unittests.cpp

#include <gtest/gtest.h>
#include <complex>

#include ”pnorms.h”

namespace {
using namespace std;

const double bound = pnorm_bound<double, 2, 3>();

TEST(PNorms, ExpectedBound) {
const double expected_bound = 1.122462048309373;
EXPECT_NEAR(bound, expected_bound, 1e-12);

}
TEST(PNorms, Example1) {

EXPECT_LE((pnorm_bound<double, 2, 3>(complex<double>{1.5, 2.0})), bound);
}
TEST(PNorms, Example2) {

EXPECT_LE((pnorm_bound<double, 2, 3>(complex<double>{7.0, 7.0})), bound);
}
TEST(PNorms, Example3) {

EXPECT_LE((pnorm_bound<double, 2, 3>(complex<double>{3.7, 42.1})), bound);
}

}

The Meson build system
Version: 1.1.0
Source dir: …/pnorms_unittests
Build dir: …/pnorms_unittests/build
Build type: native build
Project name: pnorms
Project version: undefined
C++ compiler for the host machine: g++ (gcc 12.2.0 ”g++ (GCC) 12.2.0”)
C++ linker for the host machine: g++ ld.bfd 2.40
Host machine cpu family: x86_64
Host machine cpu: x86_64

Executing subproject gtest

Seite 5 von 6

Aufgabe 12 Programmieren II für Studierende der Mathematik — WiSe 2023/24

gtest| Project name: gtest
gtest| Project version: 1.14.0
gtest| C++ compiler for the host machine: g++ (gcc 12.2.0 ”g++ (GCC) 12.2.0”)
gtest| C++ linker for the host machine: g++ ld.bfd 2.40
gtest| Run-time dependency threads found: YES
gtest| Dependency threads found: YES unknown (cached)
gtest| Dependency threads found: YES unknown (cached)
gtest| Dependency threads found: YES unknown (cached)
gtest| Build targets in project: 2
gtest| Subproject gtest finished.

Build targets in project: 3

pnorms undefined

Subprojects
gtest: YES

Found ninja-1.11.1 at …/bin/ninja
ninja: Entering directory `build'
[1/9] Compiling C++ object liblibpnorms.so.p/pnorms.cpp.o
[2/9] Compiling C++ object pnorms.p/pnorms_interact.cpp.o
[3/9] Linking target liblibpnorms.so
[4/9] Generating symbol file liblibpnorms.so.p/liblibpnorms.so.symbols
[5/9] Linking target pnorms
[6/9] Compiling C++ object

pnorms_gtest.p/subprojects_googletest-1.14.0_googletest_src_gtest_main.cc.o↩→

[7/9] Compiling C++ object …/pnorms_unittests.cpp.o
[8/9] Compiling C++ object

pnorms_gtest.p/subprojects_googletest-1.14.0_googletest_src_gtest-all.cc.o↩→

[9/9] Linking target pnorms_gtest
ninja: no work to do.
ninja: Entering directory …/pnorms_unittests/build'
ninja: no work to do.
1/1 gtest OK 0.01s

Ok: 1
Expected Fail: 0
Fail: 0
Unexpected Pass: 0
Skipped: 0
Timeout: 0

Full log written to …/pnorms_unittests/build/meson-logs/testlog.txt

Seite 6 von 6

