
Numerische Vektoren in STL (valarray)

▶ Datentyp valarray<𝑇> für stark eingeschränktes 𝑇 :
eingebaute Zahlentypen (float, double, …), Zeiger, complex (STL)

▶ Verschachtelte valarrays ebenfalls möglich
▶ Standardkonstruktor für Länge 0, Konstruktor mit Länge, Konstruktor mit Wert und

Länge (umgekehrte Reihenfolge wie bei vector), Initialisierungsliste mit Elementen
(wie bei vector)

▶ Arithmetische operatoren für valarrays selber Größe und mit Skalar, Überladungen
für exp, log, pow, sqrt, sin, cos, …
Jeweils punktweise

▶ Methode apply wendet Parameter-Funktion (Zeiger, nicht Funktionsobjekt)
punktweise an, liefert neues valarray

▶ Methoden sum, min, max, und cshift (zirkulärer shift)
▶ Methoden begin und end für range-based for loops; keine ordentlichen Iteratoren

Beispiel: Skalarprodukt mit valarray

valarray_scalar.cpp

#include <iostream>
#include <valarray>

using namespace std;

int main() {
valarray<double> a(5), b{1.0, 2.0, 3.0, 4.0, 5.0};

cout << ”a: ”;
for (double& x: a) cin >> x;

cout << ”skalar(a, b) = ” << (a*b).sum() << endl;
}

a: 5 4 3 2 1
skalar(a, b) = 35

Für Numerik optimierte Vektoren Programmieren II für Studierende der Mathematik — WiSe 2023/24

Seite 1 von 8

Indexmengen

▶ valarray ist selbst kein Matrixtyp, effiziente Implementierung von Matrixtyp damit
jedoch möglich

▶ Hierfür: Klassen slice, gslice und valarray<bool>, valarray<size_t>
beschreiben Indexmengen

▶ Jeweils subscript-Operator [] überladen mit Indexmenge als Parameter, liefert
Teilvektor mit Referenz-Semantik

▶ valarray hat Konvertier-Konstruktoren für Teilvektoren, jedoch performance
Auswirkungen wegen Kopie

▶ valarray<bool> ist bitmaske, valarray<size_t> ist Vektor von Indizes

slice

slice(𝑖0, 𝑛, ℎ) liefert (𝑖0 + 𝑘ℎ)𝑘=0,...,𝑛−1
Für Matrix (𝑎𝑖 𝑗)𝑖=0,...,𝑚−1

𝑗=0,...,𝑛−1
gespeichert als a[𝑖 · 𝑛 + 𝑗]:

𝑖 -te Zeile Index-Folge (𝑖 · 𝑛 + 𝑗) 𝑗=0,...,𝑛−1 entspricht slice(𝑖 · 𝑛, 𝑛, 1)
𝑗 -te Spalte Index-Folge (𝑖 · 𝑛 + 𝑗)𝑖=0,...,𝑛−1 entspricht slice(𝑗, 𝑚, 𝑛)

Für Numerik optimierte Vektoren Programmieren II für Studierende der Mathematik — WiSe 2023/24

Seite 2 von 8

Beispiel: slice
slice.cpp

#include <iostream>
#include <iomanip>
#include <valarray>

using namespace std;

slice zeile(size_t i, size_t m, size_t n)
{ return slice(i * n, n, 1); }

slice spalte(size_t j, size_t m, size_t n)
{ return slice(j, m, n); }

void ausgabe_vektor(const valarray<double>& a) {
for (double x: a)
cout << setw(3) << x;

}
void ausgabe_matrix(const valarray<double>& a, size_t n) {

for (size_t k = 0; k < a.size(); k++) {
cout << setw(3) << a[k];
if ((k+1) % n == 0)
cout << endl;

}
}

int main() {
size_t i, j, l, m, n;
cout << ”m n: ”; cin >> m >> n;
cout << ”i j l: ”; cin >> i >> j >> l;

valarray<double> a(m*n);

for (size_t k = 0; k < a.size(); k++) a[k] = k;

cout << ”Zeile ” << i << ”: ”;
ausgabe_vektor(a[zeile(i, m, n)]); cout << endl;
cout << ”Spalte ” << j << ”: ”;
ausgabe_vektor(a[spalte(j, m, n)]); cout << endl;

a[zeile(i, m, n)] += a[zeile(l, m, n)];

cout << ”a:” << endl;
ausgabe_matrix(a, n); cout << endl;

}

m n: 3 4
i j l: 1 2 0
Zeile 1: 4 5 6 7
Spalte 2: 2 6 10
a:
0 1 2 3
4 6 8 10
8 9 10 11

gslice

Mehrdimensionale Verallgemeinerung von slice
start gleich, aber zwei beliebig (aber gleich) lange valarrays für size und stride

gslice(𝑖0, {𝑛}, {ℎ}) liefert: slice(𝑖0, 𝑛, ℎ)
gslice(𝑖0, {𝑛0, 𝑛1, . . .}, {ℎ0, ℎ1, . . .}) liefert:
gslice(𝑖0 + 0 · ℎ0, {𝑛1, . . .}, {ℎ1, . . .}), gslice(𝑖0 + 1 · ℎ0, {𝑛1, . . .}, {ℎ1, . . .}),
. . ., gslice(𝑖0 + (𝑛0 − 1) · ℎ0, {𝑛1, . . .}, {ℎ1, . . .})

Für Numerik optimierte Vektoren Programmieren II für Studierende der Mathematik — WiSe 2023/24

Seite 3 von 8

Beispiel: gslice
gslice.cpp

#include <iostream>
#include <iomanip>
#include <valarray>

using namespace std;

gslice submatrix(size_t mp, size_t np, size_t n)
{ return gslice(0, {mp, np}, {n, 1}); }

void ausgabe_matrix(const valarray<double>& a, size_t n) {
for (size_t k = 0; k < a.size(); k++) {
cout << setw(3) << a[k];
if ((k+1) % n == 0)
cout << endl;

}
}

int main() {
size_t m, n, mp, np;
cout << ”m n: ”; cin >> m >> n;
cout << ”mp np: ”; cin >> mp >> np;

valarray<double> a(m*n);
for (size_t k = 0; k < a.size(); k++) a[k] = k;

cout << ”a:” << endl;
ausgabe_matrix(a, n); cout << endl;

cout << ”sub a:” << endl;

ausgabe_matrix(a[submatrix(mp, np, n)], np); cout << endl;
}

m n: 3 4
mp np: 2 3
a:
0 1 2 3
4 5 6 7
8 9 10 11

sub a:
0 1 2
4 5 6

Beispiel: Weitere Indexmengen
misc_slices.cpp

#include <iostream>
#include <iomanip>
#include <valarray>
#include <algorithm>

using namespace std;

void ausgabe_vektor(const valarray<double>& a) {
for (double x: a)
cout << setw(3) << x;

}
void ausgabe_matrix(const valarray<double>& a, size_t n) {

for (size_t k = 0; k < a.size(); k++) {
cout << setw(3) << a[k];
if ((k+1) % n == 0)
cout << endl;

}
}

int main() {
size_t m, n;
cout << ”m n: ”; cin >> m >> n;

valarray<double> a(m*n);

for (size_t k = 0; k < a.size(); k++) a[k] = k;

valarray<bool> bv(m*n);
bv = false;

bv[0] = bv[n - 1] = bv[n * (m-1)] = bv[m*n - 1] = true;
a[bv] = 0;
cout << ”a:” << endl;
ausgabe_matrix(a, n); cout << endl;

valarray<size_t> iv(min(m, n));
for (size_t i = 0; i < min(m, n); i++)
iv[i] = i*(n + 1);

cout << ”diag(a):”;
ausgabe_vektor(a[iv]); cout << endl;

}

m n: 4 3
a:
0 1 0
3 4 5
6 7 8
0 10 0

diag(a): 0 4 8

Für Numerik optimierte Vektoren Programmieren II für Studierende der Mathematik — WiSe 2023/24

Seite 4 von 8

Beispiel: Matrix-Datentyp, Deklarationen
matrix.h

#pragma once

#include <valarray>

template<class T> class matrix {
private:
std::valarray<T> v;
std::size_t m, n;

public:
matrix(std::valarray<T>&&, std::size_t, std::size_t);
matrix(std::size_t m_ = 0, std::size_t n_ = 0, T val_ = T());

size_t rows() const; size_t columns() const;

class matrix_slice : public std::slice {
friend class matrix;
private:
std::valarray<T>& v;

matrix_slice(std::valarray<T>& v_, std::size_t start,
std::size_t size, std::size_t stride);↩→

public:
T& operator[](std::size_t i);
T operator[](std::size_t i) const;
operator std::valarray<T>() const;

};

matrix_slice operator[](std::size_t i);
matrix_slice row(std::size_t i);
matrix_slice column(std::size_t j);

operator std::valarray<T>() const;

T* begin();
T* end();

};

Beispiel: Matrix-Datentyp, Implementierung
matrix.cpp

#include <valarray>
#include <stdexcept>

#include ”matrix.h”

using namespace std;

template<class T>
matrix<T>::matrix(std::valarray<T>&& v_, std::size_t m_,

std::size_t n_)↩→
: v(v_), m(m_), n(n_) {
if (v.size() != m * n)
throw invalid_argument(”valarray of wrong size”);

}
template<class T>

matrix<T>::matrix(size_t m_, size_t n_, T val_)
: v(val_, m_ * n_),m(m_),n(n_) {}

template<class T>
size_t matrix<T>::rows() const { return m; }

template<class T>
size_t matrix<T>::columns() const { return n; }

template<class T>
matrix<T>::matrix_slice::matrix_slice
(valarray<T>& v_, size_t start, size_t size, size_t stride)
: slice(start, size, stride), v(v_) {}

template<class T>

T& matrix<T>::matrix_slice::operator[](size_t i)
{ return v[start() + i*stride()]; }

template<class T>
T matrix<T>::matrix_slice::operator[](size_t i) const
{ return v[start() + i*stride()]; }

template<class T>
matrix<T>::matrix_slice::operator valarray<T>() const {
valarray<T> v(size());
for (size_t i = 0; i < size(); i++)
v[i] = (*this)[i];

return v;
}

template<class T>
typename matrix<T>::matrix_slice
matrix<T>::operator[](size_t i) { return row(i); }

template<class T>
typename matrix<T>::matrix_slice matrix<T>::row(size_t i)
{ return matrix<T>::matrix_slice{v, i*n, n, 1}; }

template<class T>
typename matrix<T>::matrix_slice matrix<T>::column(size_t j)
{ return matrix<T>::matrix_slice{v, j, m, n}; }

template<class T>
matrix<T>::operator valarray<T>() const {
return v;

}

template<class T>
T* matrix<T>::begin()
{ return std::begin(v); }

template<class T>
T* matrix<T>::end()
{ return std::end(v); }

template class matrix<double>;

Für Numerik optimierte Vektoren Programmieren II für Studierende der Mathematik — WiSe 2023/24

Seite 5 von 8

Beispiel: Matrix-Datentyp, Demonstration

matrix_basic.cpp

#include <iostream>

#include ”matrix.h”

using namespace std;

int main() {
size_t m, n, i, j;
cout << ”m n: ”; cin >> m >> n;
cout << ”i j: ”; cin >> i >> j;
matrix<double> a{m, n};
cout << ”Matrix a: ” << endl;
for (double& x: a) cin >> x;
cout << (a[i][j] = 13) << endl;

}

m n: 3 4
i j: 1 2
Matrix a:
1 2 3 4
5 6 7 8
9 10 11 12

13

Beispiel: Matrix-Multiplikation
matrixmul.cpp

#include <iostream>
#include <iomanip>

#include ”matrix.h”

using namespace std;

int main() {
size_t m, n;
cout << ”m n: ”; cin >> m >> n;
matrix<double> a{m, n};
cout << ”Matrix a: ” << endl;
for (double& x: a) cin >> x;
cout << endl;

size_t k, l;
cout << ”k l: ”; cin >> k >> l;
matrix<double> b{k, l};
cout << ”Matrix b: ” << endl;
for (double& x: b) cin >> x;
cout << endl;

matrix<double> c{m, l};
for (size_t i = 0; i < m; i++)
for (size_t j = 0; j < l; j++) {
valarray<double> as = a.row(i), bs = b.column(j);
c[i][j] = (as * bs).sum();

}

for (size_t i = 0; i < m; i++) {
for (size_t j = 0; j < l; j++)
cout << setw(3) << c[i][j];

cout << endl;
}

}

m n: 4 4
Matrix a:
3 2 1 4
1 0 2 3
3 2 1 2
3 2 1 4

k l: 4 4
Matrix b:
1 2 1 4
0 1 0 3
4 0 4 2
1 2 1 4

11 16 11 36
12 8 12 20
9 12 9 28
11 16 11 36

Für Numerik optimierte Vektoren Programmieren II für Studierende der Mathematik — WiSe 2023/24

Seite 6 von 8

Beispiel: Strassen Algorithmus
strassen.cpp

#include <valarray>
#include <stdexcept>

#include ”matrix.h”

using namespace std;

template<class T>
valarray<T>& matmul_v(valarray<T>& a, const valarray<T>& b,

size_t n) {↩→
if (n == 1)
return a = a * b;

gslice
s11(0, {n / 2, n / 2}, {n, 1}),
s12(n / 2, {n / 2, n / 2}, {n, 1}),
s21(n * n / 2, {n / 2, n / 2}, {n, 1}),
s22(n * n / 2 + n / 2, {n / 2, n / 2}, {n, 1});

valarray<T> h = b[s11]; h += b[s22];
valarray<T> m1 = a[s11]; m1 += a[s22];
m1 = matmul_v(m1, h, n / 2);
h = b[s11];
valarray<T> m2 = a[s21]; m2 += a[s22];
m2 = matmul_v(m2, h, n / 2);
h = b[s12]; h -= b[s22];
valarray<T> m3 = a[s11];
m3 = matmul_v(m3, h, n / 2);
h = b[s21]; h -= b[s11];

valarray<T> m4 = a[s22];
m4 = matmul_v(m4, h, n / 2);
h = b[s22];
valarray<T> m5 = a[s11]; m5 += a[s12];
m5 = matmul_v(m5, h, n / 2);
h = b[s11]; h += b[s12];
valarray<T> m6 = a[s21]; m6 -= a[s11];
m6 = matmul_v(m6, h, n / 2);
h = b[s21]; h += b[s22];
valarray<T> m7 = a[s12]; m7 -= a[s22];
m7 = matmul_v(m7, h, n / 2);

a[s11] = m1 + m4 - m5 + m7;
a[s12] = m3 + m5;
a[s21] = m2 + m4;
a[s22] = m1 - m2 + m3 + m6;
return a;

}

matmul strassen

Beispiel: Strassen Algorithmus (Forts.)

matmul strassen

bool power_of_two(size_t i)
{ return i && !(i & (i - 1)); }

template<class T>
matrix<T> matmul(matrix<T> a, matrix<T> b) {
if (a.rows() != a.columns() || a.rows() != b.rows() ||

a.rows() != b.columns())↩→
throw invalid_argument(”matrices not square or not of same

dimension”);↩→
if (!power_of_two(a.columns()))
throw invalid_argument(”matrix dimension not power of

two”);↩→

valarray<T> av = a;
av = matmul_v<T>(av, b, a.rows());
return matrix<T>{valarray<T>(av), a.rows(), a.columns()};

}

template matrix<double> matmul<double>(matrix<double>,
matrix<double>);↩→

strassen.h

#pragma once

#include ”matrix.h”

template<class T>
matrix<T> matmul(matrix<T> a, matrix<T> b);

Für Numerik optimierte Vektoren Programmieren II für Studierende der Mathematik — WiSe 2023/24

Seite 7 von 8

Beispiel: Strassen Algorithmus (Forts.)
matrixmul_strassen.cpp

#include <iostream>
#include <iomanip>

#include ”strassen.h”
#include ”matrix.h”

using namespace std;

int main() {
size_t m, n;
cout << ”m n: ”; cin >> m >> n;
matrix<double> a{m, n};
cout << ”Matrix a: ” << endl;
for (double& x: a) cin >> x;
cout << endl;

size_t k, l;
cout << ”k l: ”; cin >> k >> l;
matrix<double> b{k, l};
cout << ”Matrix b: ” << endl;
for (double& x: b) cin >> x;
cout << endl;

matrix<double> c = matmul(a, b);
for (size_t i = 0; i < m; i++) {
for (size_t j = 0; j < l; j++)
cout << setw(3) << c[i][j];

cout << endl;
}

}

m n: 4 4
Matrix a: 3 2 1 4
1 0 2 3
3 2 1 2
3 2 1 4

k l: 4 4
Matrix b:
1 2 1 4
0 1 0 3
4 0 4 2
1 2 1 4

11 16 11 36
12 8 12 20
9 12 9 28
11 16 11 36

Für Numerik optimierte Vektoren Programmieren II für Studierende der Mathematik — WiSe 2023/24

Seite 8 von 8

