Fiir Numerik optimierte Vektoren Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Numerische Vektoren in STL (valarray)

» Datentyp valarray<T> fur stark eingeschrinktes T:
eingebaute Zahlentypen (float, double, ...), Zeiger, complex (STL)

» Verschachtelte valarrays ebenfalls moglich

» Standardkonstruktor fiir Lainge 0, Konstruktor mit Lange, Konstruktor mit Wert und
Lange (umgekehrte Reihenfolge wie bei vector), Initialisierungsliste mit Elementen
(wie bei vector)

» Arithmetische operatoren fir valarrays selber Grofle und mit Skalar, Uberladungen
fur exp, log, pow, sqrt, sin, cos, ...
Jeweils punktweise

» Methode apply wendet Parameter-Funktion (Zeiger, nicht Funktionsobjekt)
punktweise an, liefert neues valarray

» Methoden sum, min, max, und cshift (zirkularer shift)

» Methoden begin und end fiir range-based for loops; keine ordentlichen Iteratoren

Beispiel: Skalarprodukt mit valarray

valarray_scalar.cpp a: 54 32 1
skalar(a, b) = 35

#include <iostream>

#include <valarray>
using namespace std;

int main() {
valarray<double> a(s), b{i.0, 2.0, 3.0, 4.0, 5.0};

cout << "a: ";
for (doubles x: a) cin >> x;

cout << "skalar(a, b) = " << (a*b).sum() << endl;

}

Seite 1 von 8

Fiir Numerik optimierte Vektoren Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Indexmengen

» valarray ist selbst kein Matrixtyp, effiziente Implementierung von Matrixtyp damit
jedoch moglich

» Hierfiir: Klassen slice, gslice und valarray<bool>, valarray<size_t>
beschreiben Indexmengen

» Jeweils subscript-Operator [] iiberladen mit Indexmenge als Parameter, liefert
Teilvektor mit Referenz-Semantik

» valarray hat Konvertier-Konstruktoren fiir Teilvektoren, jedoch performance
Auswirkungen wegen Kopie

» valarray<bool> ist bitmaske, valarray<size_t> ist Vektor von Indizes

slice

slice(ip, n, h) liefert (ip +kh)k=o,. n-1

.....

j=0,...n—1

.....

Jj-te Spalte Index-Folge (i - n+ j)i=o,. n-1 entspricht stice(j, m, n)

Seite 2 von 8

Fiir Numerik optimierte Vektoren

Programmieren II fiir Studierende der Mathematik — WiSe

2023/24

Beispiel: slice

slice.cpp

#include <iostream>
#include <iomanip>
#include <valarray>

using namespace std;

slice zeile(size_t i, size_t m, size_t n)
{ return slice(i » n, n, 1); }

slice spalte(size_t j, size_t m, size_t n)
{ return slice(j, m, n); }

void ausgabe_vektor(const valarray<double>& a) {
for (double x: a)
cout << setw(3) << x;
}
void ausgabe_matrix(const valarray<double>& a, size_t n) {
for (size_t k = 0; k < a.size(); k++) {
cout << setw(3) << alk];
if ((k+#1) % n == o)
cout << endl;
}
}

int main() {
size_t i, j, 1, m, n;
cout << "m n: ”; cin >> m >> n;
cout << "i j 1: ”; cin >> 1 >> j >> 1;

valarray<double> a(m+n);

gslice

for (size_t k = 0; k < a.size(); k++) alk] = k;

" n,om

cout << "Zeile << i< "y
ausgabe_vektor(alzeile(i, m, n)]); cout << endl;
cout << "Spalte " << j << ": "5
ausgabe_vektor(a[spalte(j, m, n)]); cout << endl;

a[zeile(i, m, n)] += al[zeile(l, m, n)I;

cout << "a:" << endl;
ausgabe_matrix(a, n); cout << endl;

© B~ e
° o R

mn: 34
ijl:120
Zeile 1:
Spalte 2:

N
o v
N

o o
~

2 3
8 10
10 11

Mehrdimensionale Verallgemeinerung von slice
start gleich, aber zwei beliebig (aber gleich) lange valarrays fir size und stride

gslice(ip, {n}, {h}) liefert: slice(iy, n, h)

gslice(ip, {ng, ni,
gslice(ig+0-hy, {ni,
.., gslice(ig+ (ng—1)

. }] { }10] }11 ’

~}] {}111

'hOr {nlr

...}) liefert:

...}),g51ice(io+-1-h0, {nl,
~}] {}111

b

~}r {hlr

1,

Seite 3 von 8

Fiir Numerik optimierte Vektoren Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Beispiel: gslice

gslice.cpp ausgabe_matrix(a[submatrix(mp, np, n)l, np); cout << endl;
}
#include <iostream>
#include <iomanip>
#include <valarray> mn: 34
mp np: 2 3
using namespace std; a:
e 1 2 3
gslice submatrix(size_t mp, size_t np, size_t n) 4 5 6 7
{ return gslice(o, {mp, np}, {n, 1}); } 8 9 10 11
void ausgabe_matrix(const valarray<double>& a, size_t n) { sub a:
for (size_t k = 0; k < a.size(); k++) { o 1 2
cout << setw(3) << a[kl; 4 5 6
if ((k+1) % n == o)
cout << endl;
}
}
int main() {
size_t m, n, mp, np;
cout << "m n: "; cin >> m >> n;
cout << "mp np: "; cin >> mp >> np;
valarray<double> a(m+n);
for (size_t k = o; k < a.size(); k++) a[k] = k;
cout << "a:” << endl;
ausgabe_matrix(a, n); cout << endl;
cout << "sub a:" << endl;
Beispiel: Weitere Indexmengen
misc_slices.cpp bv[e] = bv[n - 1] = bv[n * (m-1)] = bv[m*n - 1] = true;
afbv] = o;
#include <iostream> cout << "a:” << endl;
#include <iomanip> ausgabe_matrix(a, n); cout << endl;
#include <valarray>
#include <algorithm> valarray<size_t> iv(min(m, n));
for (size_t i = 0; 1 < min(m, n); i++)
using namespace std; iv[il = ix(n + 1);
cout << "diag(a):”;
void ausgabe_vektor(const valarray<double>& a) { ausgabe_vektor(a[iv]); cout << endl;
for (double x: a) }
cout << setw(3) << x;
}
void ausgabe_matrix(const valarray<double>& a, size_t n) { mon: 43
for (size_t k = 0; k < a.size(); k++) { a:
cout << setw(3) << al[k]; e 1 0
if ((k+1) % n == 0) 3 4 5
cout << endl; 6 7 8
} 010 ©
}

diag(a): o &4 8

int main() {
size_t m, n;

cout << "m n: "

; cin >>m >> n;
valarray<double> a(m=n);
for (size_t k = 0; k < a.size(); k++) alk] = k;

valarray<bool> bv(m+n);
bv = false;

Seite 4 von 8

Fiir Numerik optimierte Vektoren Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Beispiel: Matrix-Datentyp, Deklarationen

matrix.h matrix_slice operator[](std::size_t i);
matrix_slice row(std::size_t i);
#pragma once matrix_slice column(std::size_t j);
#include <valarray> operator std::valarray<T>() const;
template<class T> class matrix { T+ begin();
private: T+ end();
std::valarray<T> v; };
std::size_t m, n;

public:
matrix(std::valarray<T>&5, std::size_t, std::size_t);
matrix(std::size_t m_ = o, std::size_t n_ = 0, T val_ = T());

size_t rows() const; size_t columns() const;

class matrix_slice : public std::slice {
friend class matrix;
private:
std::valarray<T>& v;

matrix_slice(std::valarray<T>s v_, std::size_t start,
< std::size_t size, std::size_t stride);

public:
T& operator[](std::size_t i);
T operator[](std::size_t i) const;
operator std::valarray<T>() const;

b

Beispiel: Matrix-Datentyp, Implementierung

matrix.cpp T& matrix<T>::matrix_slice::operator[](size_t i)
{ return v[start() + ixstride()]; }
#include <valarray> template<class T>
#include <stdexcept> T matrix<T>::matrix_slice::operator[](size_t i) const
{ return v[start() + isstride()]; }
#include "matrix.h” template<class T>
matrix<T>::matrix_slice::operator valarray<T>() const {
using namespace std; valarray<T> v(size());
for (size_t i = 0; i < size(); i++)
template<class T> v[i] = (+this)[i];
matrix<T>::matrix(std::valarray<T>&& v_, std::size_t m_, return v;
< std::size_t n_) }
:v(v_), m(m_), n(n_) {
if (v.size() !=m = n) template<class T>
throw invalid_argument(”valarray of wrong size”); typename matrix<T>::matrix_slice
} matrix<T>::operator[](size_t i) { return row(i); }
template<class T> template<class T>
matrix<T>::matrix(size_t m_, size_t n_, T val_) typename matrix<T>::matrix_slice matrix<T>::row(size_t i)
cov(val_, m_ = n_),m(m_),n(n_) {} { return matrix<T>::matrix_slice{v, i*n, n, 1}; }
template<class T>
template<class T> typename matrix<T>::matrix_slice matrix<T>::column(size_t j)
size_t matrix<T>::rows() const { return m; } { return matrix<T>::matrix_slice{v, j, m, n}; }
template<class T>
size_t matrix<T>::columns() const { return n; } template<class T>
matrix<T>::operator valarray<T>() const {
template<class T> return v;
matrix<T>::matrix_slice::matrix_slice }
(valarray<T>& v_, size_t start, size_t size, size_t stride)
: slice(start, size, stride), v(v_) {} template<class T>
T+ matrix<T>::begin()
template<class T> { return std::begin(v); }

Seite 5 von 8

Fiir Numerik optimierte Vektoren

Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Beispiel: Matrix-Datentyp, Demonstration

matrix_basic.cpp

#include <iostream>
#include "matrix.h”
using namespace std;

int main() {
size_t m, n, i, j;
cout << "m n: "; cin >> m >> n;
cout << "i j: "; cin >> i >> j;
matrix<double> a{m, n}
cout << "Matrix a: ” << endl;
for (doubles x: a) cin >> x;
cout << (alil[j] = 13) << endl;

mn: 3 4
ij:12
Matrix a:
12 3 4
5 6 7 8
9 10 11 12
13

Beispiel: Matrix-Multiplikation

matrixmul.cpp

#include <iostream>
#include <iomanip>

#include "matrix.h”
using namespace std;

int main() {
size_t m, n;
cout << "m n: "; cin >> m >> n;
matrix<double> a{m, n};
cout << "Matrix a: " << endl;
for (doubles x: a) cin >> x;
cout << endl;

size_t k, 1;

cout << "k 1: "; cin >> k >> 1;
matrix<double> b{k, 1};

cout << "Matrix b: " << endl;
for (doubles x: b) cin >> x;
cout << endl;

matrix<double> c{m, 1};
for (size_t i = 0; 1 < m; i++)
for (size_t j = 0; j < 1; j++) {
valarray<double> as = a.row(i), bs = b.column(j);
c[i1[j] = (as * bs).sum();

for (size_t i = 0; 1 < m; i++) {
for (size_t j = 0; j < 1; j++)
cout << setw(3) << c[il[j];
cout << endl;

}
}
mn: 4 4
Matrix a:
3 2 1 4
10 2 3
3 2 1 2
3 2 1 4
k 1: 4 4
Matrix b:
12 1 4
e 1 0 3
4L O 4 2
12 1 4
11 16 11 36
12 8 12 20
9 12 9 28

11 16 11 36

Seite 6 von 8

Fiir Numerik optimierte Vektoren

Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Beispiel: Strassen Algorithmus

strassen.cpp

#include <valarray>
#include <stdexcept>

#include "matrix.h”
using namespace std;

template<class T>
valarray<T>& matmul_v(valarray<T>& a, const valarray<T>& b,
<— size_t n) {
if (n == 1)
return a = a * b;

gslice
si11(e, {n / 2, n / 2}, {n, 1}),
si2(n / 2, {n / 2, n / 2}, {n, 1}),
s21(n = n /2, {n /2, n/ 2} {n, 1}),
s22(n »n /2 +n /2, {n /2, n/ 2}, {n, 1});

valarray<T> h = b[s11]; h += b[s22];
valarray<T> m1 = a[s11]; m1 += a[s22];
m1 = matmul_v(mi, h, n / 2);

h = b[s11];

valarray<T> m2 = a[s21]; m2 += a[s22];
m2 = matmul_v(m2, h, n / 2);

h = b[s12]; h -= b[s22];

valarray<T> m3 = a[s11];

m3 = matmul_v(m3, h, n / 2);

h = bl[s21]; h -= b[s11];

Beispiel: Strassen Algorithmus (Forts.)

valarray<T> m4 = a[s22];

msg = matmul_v(ma, h, n / 2);

h = b[s22];

valarray<T> m5 = a[s11]; m5 += a[s12];
m5 = matmul_v(ms, h, n / 2);

h = b[s11]; h += b[s12];

valarray<T> mé = a[s21]; mé -= a[s11];
m6 = matmul_v(m6, h, n / 2);

h = b[s21]; h += b[s22];

valarray<T> m7 = al[s12]; m7 -= a[s22];
m7 = matmul_v(m7, h, n / 2);

als11] = m1 + m4 - m5 + m7;
a[s12] = m3 + ms;

als21] = m2 + m4;

als22] = m1 - m2 + m3 + m6;
return a;

}

matmul strassen

matmul strassen

strassen.h

bool power_of_two(size_t i)
{ return i 66 !(i 6§ (i - 1)); }

template<class T>
matrix<T> matmul(matrix<T> a, matrix<T> b) {

if (a.rows() != a.columns() || a.rows() != b.rows() ||

< a.rows() != b.columns())
throw invalid_argument(”matrices not square or not of same
< dimension”);

if (!power_of_two(a.columns()))
throw invalid_argument(”matrix dimension not power of
< two”);

valarray<T> av = a;
av = matmul_v<T>(av, b, a.rows());
return matrix<T>{valarray<T>(av), a.rows(), a.columns()};

}

template matrix<double> matmul<double>(matrix<double>,
<> matrix<double>);

#pragma once
#include "matrix.h”

template<class T>
matrix<T> matmul(matrix<T> a, matrix<T> b);

Seite 7 von 8

Fiir Numerik optimierte Vektoren Programmieren II fiir Studierende der Mathematik — WiSe 2023/24

Beispiel: Strassen Algorithmus (Forts.)

matrixmul_strassen.cpp | }
#include <iostream>
#include <iomanip> mn: 4 4
Matrix a: 3 2 1 4
#include "strassen.h” 10 2 3
#include "matrix.h” 3 2 1 2
3 2 1 4

using namespace std;

int main() { k 1: 4 4
size_t m, n; Matrix b:
cout << "m n: ”; cin >>m >> n; 12 1 4
matrix<double> a{m, n}; o 1 0 3
cout << "Matrix a: " << endl; 4 0 4 2
for (double& x: a) cin >> x; 12 1 4
cout << endl;

11 16 11 36
size_t k, 1; 12 8 12 20
cout << "k 1: "; cin >> k >> 1; 9 12 9 28
matrix<double> b{k, 1}; 11 16 11 36

cout << "Matrix b: << endl;
for (double& x: b) cin >> x;
cout << endl;

matrix<double> ¢ = matmul(a, b);
for (size_t i = 0; 1 < m; i++) {
for (size_t j = 0; j < 1; j++)
cout << setw(3) << c[i1[j1;
cout << endl;

}

Seite 8 von 8

