Das Cauchy-Kriterium

Satz (4.9)

Eine Reihe $\sum_{n=1}^{\infty} a_n = (s_n)_{n \in \mathbb{N}}$ in \mathbb{K} konvergiert genau dann, wenn für jedes $\varepsilon \in \mathbb{R}^+$ ein $N \in \mathbb{N}$ existiert, so dass

$$\left|\sum_{k=m+1}^n a_k\right| = |s_n - s_m| < \varepsilon$$

für alle $m, n \in \mathbb{N}$ mit $n \geq m \geq N$ gilt.

Folgerung (4.10)

Sei $\sum_{n=1}^{\infty} a_n$ eine konvergente Reihe in \mathbb{R} . Dann gilt $\lim_{n\to\infty} a_n = 0$.

Absolut konvergente Reihen

Definition (4.14)

Eine Reihe $\sum_{n=1}^{\infty} a_n$ in \mathbb{K} wird absolut konvergent genannt, wenn die Reihe $\sum_{n=1}^{\infty} |a_n|$ der Absolutbeträge konvergiert.

Proposition (4.15)

Jede absolut konvergente Reihe konvergiert im Sinne von Definition 4.4.

Majoranten- und Minorantenkriterium

Satz (4.16)

Sei $\sum_{n=1}^{\infty} c_n$ eine konvergente Reihe in \mathbb{R}_+ und $\sum_{n=1}^{\infty} a_n$ eine Reihe in \mathbb{K} mit $|a_n| \leq c_n$ für fast alle (d.h. alle bis auf endlich viele) $n \in \mathbb{N}$. Dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.

Folgerung (4.17)

Sei $\sum_{n=1}^{\infty}c_n$ eine divergente Reihe in \mathbb{R}_+ und $\sum_{n=1}^{\infty}a_n$ eine Reihe in \mathbb{R} mit $a_n\geq c_n$ für fast alle $n\in\mathbb{N}$. Dann ist auch $\sum_{n=1}^{\infty}a_n$ divergent.

Anwendung des Minoraytenkriteriums
seek: $\sum_{n=1}^{\infty} \frac{1}{2n+7}$ is divergent
Follow K SO dass
Eurosatut = 5 yau 124 Euroland
a CRI Durrague lon 2 3n (denu.
1 1 the bourgeraper = 3 3 = 4 h
1 A Single All Mosphones
1
Fix alle ne N gers son 1 = 1 = 1 fix last 2n+7 = 3n fix last

alle ne IN. Mit dem Minor antentersterium blot aus der Devergenz von \$\frac{5}{3}\frac{1}{3h}\ also the Divergenz von \$\frac{50}{2n+7}\frac{1}{2n+7}.

Quotientenkriterium

Satz (4.18)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} mit $a_n\neq 0$ für fast alle $n\in\mathbb{N}$. Ferner existiere ein $\theta\in\mathbb{R}$, $0<\theta<1$, so dass die Ungleichung

$$\left| \frac{a_{n+1}}{a_n} \right| \leq \theta$$
 für fast alle $n \in \mathbb{N}$

erfüllt ist. Dann ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.

- Achtung: Es genügt nicht zu überprüfen, dass $\left|\frac{a_{n+1}}{a_n}\right| < 1$ für fast alle $n \in \mathbb{N}$ erfüllt ist.
- Gilt $|\frac{a_{n+1}}{a_n}| \ge 1$ für alle bis auf endlich viele $n \in \mathbb{N}$, dann folgt daraus die Divergenz der Reihe

Beweis des Quotientententoin us (Satz 418) Vor (an) NEN Folge in K, DER mit 0<8<1. FNEW mit and SO MIN = lantil S & lan | Yn > N Eineuitacher Ind. - benvers zeigh, dass dovans lant & On-Many Ynz N Fix fast alle n EN geld also lanl & O lan on Ores ist bis al ene konstante des n-fe Ghied der geometristen Rele Z A", die Ge-

sampled sonvergiot. Also folgt du alsolute konvergenz un \(\sum_{n=1} \) ans dem Majorantente referen m Anwerdingsbeispool: Korregus von 2 2n Satze an = n Vn E M. => anin = $a_{n+1} \cdot \frac{1}{a_n} = \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{b} = \frac{1}{2} \left(n + \frac{1}{n} \right)$ $\left|\frac{\alpha_{N+1}}{\alpha_N}\right| = \frac{1}{2}(1+\frac{1}{N}) \leq \frac{1}{2}(1+\frac{1}{2}) = \frac{3}{2} = 0$ Das Quotzententeritarium ist also anwendling

Umformulierung des Quotientenkriteriums

Folgerung (4.19)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} und $n_0\in\mathbb{N}$, so dass $a_n\neq 0$ für $n\geq n_0$ gilt und die Folge $(|\frac{a_{n+1}}{a_n}|)_{n\geq n_0}$ konvergiert, mit $\alpha=\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|$.

- (i) Gilt $\alpha < 1$, dann konvergiert die Reihe $\sum_{n=1}^{\infty} a_n$ absolut.
- (ii) Gilt $\alpha > 1$, dann divergiert sie.

Im Fall $\alpha=1$ ist keine Aussage möglich, d.h. es gibt Reihen mit dieser Eigenschaft, die konvergieren, und andere, die divergieren.

Wurzelkriterium

Satz (4.20)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} mit der Eigenschaft, dass ein $\theta\in\mathbb{R}$, $0<\theta<1$ existiert, so dass $\sqrt[n]{|a_n|}\leq \theta$ für fast alle $n\in\mathbb{N}$ erfüllt ist. Dann konvergiert die Reihe $\sum_{n=1}^\infty a_n$ absolut.

Umformulierung des Wurzelkriteriums

Folgerung (4.21)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge mit der Eigenschaft, dass die Folge $(\sqrt[n]{|a_n|})_{n\in\mathbb{N}}$ konvergiert, mit $\alpha = \lim_{n\to\infty}\sqrt[n]{|a_n|}$.

- (i) Gilt $\alpha < 1$, dann konvergiert die Reihe $\sum_{n=1}^{\infty} a_n$ absolut.
- (ii) Gilt $\alpha > 1$, dann divergiert sie.

Wiederum ist im Fall $\alpha = 1$ ist keine Aussage möglich.

Verdichtungskriterium

Satz (4.22)

Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge nichtnegativer reeller Zahlen, und sei die Folge $(b_k)_{k\in\mathbb{N}_0}$ definiert durch $b_k=2^ka_{2^k}$ für alle $k\in\mathbb{N}_0$. Dann gilt die Äquivalenz

$$\sum_{n=1}^{\infty} a_n \text{ ist konvergent} \qquad \Leftrightarrow \qquad \sum_{k=0}^{\infty} b_k \text{ ist konvergent.}$$

Beispiel: Für jedes $\alpha > 1$ ist die Reihe $\sum_{n=1}^{\infty} n^{-\alpha}$ konvergent.

Awerdingsbeispiel frie das Vodichtungs traterium. Konvergenz von \(\frac{1}{n^2} \) fin bel a R mit a > 1 Salze an = Ing Yne M und bx = 2k azk $= 2^k \cdot \frac{1}{(2^k)^{\alpha}} = 2^k \cdot 2^{-\alpha k} = 2^{k(1-k)}$ $=\theta^{k}$ mh $\theta=2^{k-1}<1$. Dec geometische Reihe 5 Bz = 20 K tonveger! Nach den Kodichtungstorferium bonvergner also anch 50 an

Umordnungssatz

Satz (4.23)

Sei $\sum_{n=1}^{\infty} a_n$ eine absolut konvergente Reihe in \mathbb{K} . Ist $\tau: \mathbb{N} \to \mathbb{N}$ eine bijektive Abbildung, dann ist auch die Reihe $\sum_{n=1}^{\infty} a_{\tau(n)}$ absolut konvergent, und es gilt

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\tau(n)}.$$

Annerteng: It I an not in her teinmhichen Since konvergent, after mucht absolut ("bedingt konvergent") donn kann sich der Wert der Reihe duch Umordring ander Bsp: \(\frac{1}{2k-1} - \frac{1}{2k} \) Betrachte nu dre Rehentolge $= \sum_{k=1}^{\infty} \left(\frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k} \right) = \sum_{k=1}^{\infty} \left(\frac{2-1}{4k-2} - \frac{1}{4k} \right)$

$$= \sum_{k=1}^{\infty} \left(\frac{1}{4k-2} - \frac{1}{4k}\right) = \sum_{k=1}^{\infty} \frac{1}{2\left(\frac{1}{2k-1} - \frac{1}{2k}\right)}$$
Die Summe hat sell dusch die Unrordning halbiert

Das Cauchy-Produkt

Definition (4.24)

Das Cauchy-Produkt zweier Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ im Körper $\mathbb K$ ist die Reihe $\sum_{n=0}^{\infty} c_n$ mit den Termen c_n gegeben durch

$$c_n = \sum_{k=0}^n a_{n-k}b_k$$
 für alle $n \in \mathbb{N}_0$.

Die ersten Terme des Cauchy-Produkts 2 du Reihen San, Son sind grag duch $c_0 = 0_0 \ell_0$

Produkte von Reihen

Satz (4.25)

Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei konvergente Reihen in $\mathbb K$ mit Grenzwerten a und b, wobei wir bei mindestens einer der beiden Reihen absolute Konvergenz voraussetzen. Sei $\sum_{n=0}^{\infty} c_n$ das Cauchy-Produkt der beiden Reihen. Dann gilt

$$\sum_{n=0}^{\infty} c_n = ab = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) ,$$

das Cauchy-Produkt konvergiert also gegen den Wert *ab*. Konvergieren beide Reihen absolut, dann gilt dasselbe auch für das Cauchy-Produkt.

Definition der b-adischen Brüche

Definition (4.26)

Sei $b \in \mathbb{N}$ mit b > 1. Ein b-adischer Bruch ist eine Reihe der Form

$$\sum_{n=-r}^{\infty} a_n b^{-n}$$

wobei $r \in \mathbb{Z}$ sowie $0 \le a_n < b$ und $a_n \in \mathbb{Z}$ für alle $n \in \mathbb{Z}$ mit $n \ge -r$ gilt. Dabei bezeichnet man a_n als die n-te Stelle des b-adischen Bruchs.

Symbolisch stellt man b-adische Brüche in der Form

$$a_{-r}...a_{-1}a_0$$
, $a_1a_2...$

dar. Für b = 10 erhält man so die bekannte Dezimaldarstellung reeller Zahlen.

Perspielo fix Dezialmaldorstellurgen.

(i)
$$x = -1$$
, $a_n = 3$ fix alla $n \ge 1$
 $0.3 = 0.3333 = \sum_{n=1}^{\infty} 3.10^n = 3\sum_{n=1}^{\infty} (\frac{1}{10})^n$

(x) $3\sum_{n=0}^{\infty} (\frac{1}{10})^{n+1} = \frac{3}{10}\sum_{n=0}^{\infty} (\frac{1}{10})^n = \frac{3}{10}\frac{1}{10}$
 $= \frac{3}{10}\frac{1}{10} = \frac{3}{10}\frac{10}{9} = \frac{3}{9} = \frac{1}{3}$

(ii) $0.9 = 0.939 = \sum_{n=1}^{\infty} 9.10^n = \dots = \frac{3}{10}\frac{1}{10}$

Hotzgring fix die Unparametrzsiering (ti (*):
$\sum_{k=0}^{N-0} \left(\frac{10}{7}\right)_{N+1}$
K+0

Darstellbarkeit der reellen Zahlen als b-adische Brche

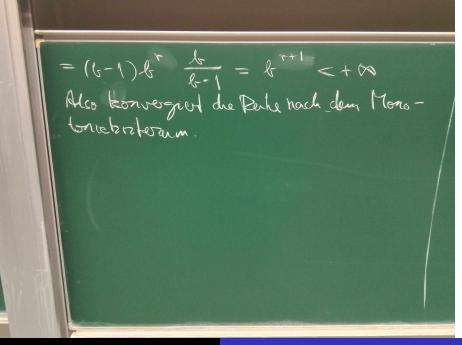
Satz (4.27)

Jeder b-adische Bruch konvergiert gegen eine reelle Zahl.

Satz (4.28)

Jedes $a \in \mathbb{R}$ lässt sich in der Form $\pm s$ darstellen, wobei s den Wert eines b-adischen Bruchs $\sum_{n=-r}^{\infty} a_n b^{-n}$ bezeichnet.

Bowers on Satz 4.27 Beh. Jede Reihe du Form 5 an 6-n mit b = N, b > 1 on = Z but 0 = a = b-1 Fre IN konvegical Fin yedes ne M wit nz-r great = akl = = (6-1) 6- == $\sum_{k=-r}^{k+r} (k-1) \ell_r = (k-1) \ell_r = (k-1) \ell_r$ $(6-1)6^{-1} \sum_{k=0}^{\infty} {1 \choose k}^{k} = (6-1)6^{-1} \frac{1}{1-1}$



Zur Eindeutigkeit der Darstellung als b-adischer Bruch

Lemma (4.29)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $a_n\in\mathbb{Z}$, $a_n\leq b-1$ für alle $n\in\mathbb{N}$. Dann gilt im Falle der Konvergenz die Abschätzung $\sum_{n=1}^\infty a_n b^{-n}\leq 1$, und Gleichheit genau dann, wenn $a_n=b-1$ für alle $n\in\mathbb{N}$ ist.

Satz (4.30)

Seien $c,d\in\mathbb{R}$, $c,d\geq 0$ und $c=\sum_{n=-r}^{\infty}c_nb^{-n}$, $d=\sum_{n=-r}^{\infty}d_nb^{-n}$ Darstellungen dieser Zahlen als b-adische Brüche. Genau dann gilt c=d, wenn einer der folgenden drei Bedingungen für die b-adischen Brüche zutrifft:

- (i) Es gilt $c_n = d_n$ für alle $n \in \mathbb{Z}$, $n \ge -r$
- (ii) Es gibt ein $N \in \mathbb{Z}$, $N \ge -r$, so dass $c_n = d_n$ für alle n < N, $d_N = c_N + 1$ und $c_n = b 1$, $d_n = 0$ für alle n > N.
- (iii) Es gibt ein $N \in \mathbb{Z}$, $N \ge -r$, so dass $c_n = d_n$ für alle n < N, $c_N = d_N + 1$ und $c_n = 0$, $d_n = b 1$ für alle n > N.