Definition der primitiven Polynome

Definition (13.4)

Sei R ein faktorieller Ring und $f = \sum_{k=0}^{n} a_k x^k \in R[x]$. Wir nennen das Polynom f primitiv, wenn $f \neq 0$ ist und die Koeffizienten $a_0, ..., a_n$ keinen gemeinsamen Primteiler besitzen.

Das Gauß'sche Lemma

Satz (13.8)

Sei R ein faktorieller Ring, und seien $f,g \in R[x]$ primitive Polynome. Dann ist auch fg primitiv.

Dieser Satz ist unter dem Namen "Lemma von Gauß" bekannt.

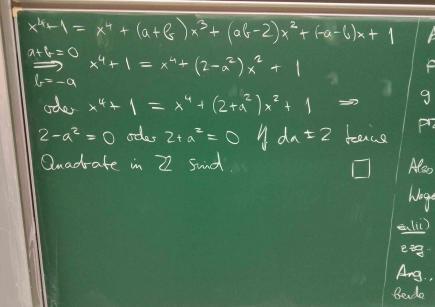
Satz (13.9)

Sei R ein faktorieller Ring, K sein Quotientenkörper und $f \in R[x]$ ein Polynom mit $grad(f) \ge 1$.

- (i) Ist $g \in R[x]$ ein primitives Polynom mit der Eigenschaft, dass g ein Teiler von f in K[x] ist, so ist g bereits ein Teiler von f in R[x].
- (ii) Ist f irreduzibel in R[x], dann auch in K[x].

Beispiel on Prop. 139, Fel (11) Nochweis der Irreduzitälität von f=x4+1 in Q/x] Aul Brund der Rop genigt es zu zeigen dass f in Z[x] irreduzibel ist Seron also g, he Z[x] mit f=gh. 252 Eves de Polynome g, h liegt in (ZX) = Zx = (±1) Ang. g und h sund beider kais Einheiten 11 Fall: Errier des Faltoren (O.Bd A.) g ist wom Grand O gt 1:17 g = Z - g hat and Romfaltor P

f=gh => p/f => ptalfalle Koeff con f h da fromiot 2 tall: Factor om Grad 1, E grad g = 1 Dann hatte of und som to auch fin @ ene Willstelle y da f(r) ≥ 1 ∀r∈ Q g und h breide I ode beide -1 = Nich erff Ersetzung ion g durch -g, h duch -h körhen wit annehmen, dass g und h beide normiert sind ansodem konstante Form was first 1 - konstante Tome von g und h sind beide I oder beide - I damit ingesamt Es gold a, b ∈ Z mit x4+1 = (x2+ax+1)(x2+bx+1) ode x4+1=(x2+ax-1)x2+6x-1) =>x+1=x++(a+6)x3+(a-6)x++ (a+6)x+1 ode



Barris Ion Poposition 13.9 gg R foldersell, K Onot kep f, g ∈ R(x), grad (1) ≥ 1 Zali) Vor. 91 f in K[x], 9 Printer 229 918 MR[x] Va -> The KAT with P= gh well bekannt: Es gult ein de Kx, so dass h= x h = in R[x] high and princher ist Schrabe N = a mut a, b & R, a, b teilofrend h=xh => h=x1h => f= dgh

long, a boilted even Hambalo peR plat => plogh => plgh gh is milk primitive above gh sind bisympter Townson dy bismites N Also if a ∈ R1 - x-1 ∈ R => h = x-1 h ∈ R[x] 1 Wogen f=ghid & also Tele lon f in R(x) Edil) Vor & it irreducibel in RIXT 229. fist irreduzibel in KIXT Ang, fist in KK] reduzibel = 7g, he Klx] Beide night konstant, mit f = g h.

Sei X & K so gewählt, dass g = Mg in RIXI hogt also . g primer and Toiler up f in K(x) g ist kilo ton & in RIX] -> This RIX] mit f=gh, -> gh=f=gh, Formar-h=h, eR(x) P=gh, fixed in RXI -> ge Rx oder he Rx

Polynomringe über faktoriellen Ringen

Satz (13.10)

Ist R ein faktorieller Ring, dann ist auch R[x] faktoriell.

Beweis con Satz 13.10 (no die Eindentry beit des Zolegny in impolizible Faktoren) Ang, fe R(x) mit f & Rx u hof hat die berden Zerlegungen gr. ... gr = h, ... hs, (*) 3., hi medizibel in RAJ to, j Sei CER das Roduzet du bonstanten gi, gERIX] das Produkt der restlichen Faktoren. Definice de R und he RIX] unalog eg = f = dh Die nicht - konstanten gi, hij sind i weduribel sound primiter. Lemma in Gains - 9 h primiter - c ist got der Koeff ion f, chenso d => c ~ d Ec=d -> köhnen c,d aus du Gleiding beirzen und annehmen, dassalle Da R fastorall ist, ist du Zologny von c=d in R enidentig tris and Einheiter und Rechenfolge

Das Eisenstein-Kriterium

Satz (13.11)

Sei R ein faktorieller Ring, $p \in R$ ein Primelement und $f \in R[x]$ ein primitives Polynom vom Grad n > 0. Es sei $f = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ mit $a_0, ..., a_n \in R$, und wir setzen voraus, dass die Koeffizienten von f folgende Bedingungen erfüllen.

- (i) $p|a_i$ für $0 \le i < n$
- (ii) $p \nmid a_n$
- (iii) $p^2 \nmid a_0$

Dann ist f in R[x] irreduzibel.

Anwendingsbeispiele für das Eigenstein-Kortorium \circ x²-5 of irreduzibel in $\mathbb{Z}[\times]$ (a₀=-5, a₁=0, a₂=1 => Kriterum it ofalls fin p=5) · x3+2x+6 ist inved in Z[x] (a0=6, a1=2, a2=0, a3=1 => Kostesium ist obsill fix p=2) Barris des Eisenstein-Kriteriums, que R lottorill, ferky primiter, &= anx" + .. + anx + ao, per prim mil plan for 0 = k < n, ptan, p2 + ao Ang., f=gh ist are Zerlagung in RIXI in Nicht-Einh I primiter - 9, h with bordant Schrabe

7 = \(\frac{1}{100} \text{ (x} \text{ (x} \frac{1}{100} \text{ (x} \fr => u= N => grad g Ptillpur = N = grad (f) =>

Das Reduktionskriterium

Satz (13.12)

Sei R ein faktorieller Ring, $p \in R$ ein Primelement und $\bar{R} = R/(p)$. Es sei $f = \sum_{i=0}^n a_i x^i \in R[x]$ ein primitives Polynom mit $a_n \notin (p)$ und \bar{f} das Bild von f in $\bar{R}[x]$. Ist \bar{f} in $\bar{R}[x]$ irreduzibel, dann auch das Polynom f in R[x].

§ 14. Kongruenzrechnung und Chinesischer Restsatz

Erinnerung: Seien $a, b \in \mathbb{Z}$ und $n \in \mathbb{N}$. $a \equiv b \mod n$ bedeutet: $n \mid (b - a)$

Proposition (14.1)

Seien $m, n \in \mathbb{N}$, außerdem $a, b, c, d \in \mathbb{Z}$ und p eine Primzahl.

- (i) Aus $a \equiv c \mod n$ und $b \equiv d \mod n$ folgt $a + b \equiv c + d \mod n$ und $ab \equiv cd \mod n$.
- (ii) Gilt $a \equiv b \mod n$ und ist m ein Teiler von n, dann folgt $a \equiv b \mod m$.
- (iii) Es gilt $a \equiv b \mod n$ genau dann, wenn $ma \equiv mb \mod mn$ erfüllt ist.
- (iv) Es gilt $a^p \equiv a \mod p$. Unter der zusätzlichen Voraussetzung $p \nmid a$ gilt darüber hinaus $a^p \equiv 1 \mod p$.

Die Aussage (iv) ist auch als Kleiner Satz von Fermat bekannt.

Bowers for Prop. 14 1 pw (iii), (ir) Zulii) geg a, b & Z, im, n & N Beh a = 6 mod n - ma = mb mod mn ma=mb wod mn - mn (nb-ma) treZ mit mb-ma = + mn Fre 2 mil 6-a = rn = n 16-a a= 6 mod n zuliv) geg. Prinzall p, a E Z (1) pta => ap-1 = 1 mod p

zuliv) geg. Prinzall p, a E Z Zu(1) Frinnorng: Fix alle q, b & Z und n & N ist die Kongraenz a= 6 mod n gleichbedentend mit der Gleichung i = 6 in Z/n Z, wober a = a+nZ und G = B+nZ Ser a = a+p2. pta => a + o in Z/p2 → a = 1 Fp Fp ist-grippe du Ording p-1 = \(\alpha P^{-1} = 7 \) = \(\alpha^{p^{-1}} = 1 \) mod \(\beta\) = \(\alpha^{p-1} \) 1. a mod p - ap = a mod p 2. Fall pla - a = 0 mod p = ap = 0 = 0 = a mod p