
Chronologische Sortierung

Es fehlen noch die Lösungen zu den Prüfungsterminen Frühjahr 2023 (größtenteils), Herbst 2023,

Frühjahr 2024 und Frühjahr 2025.

Frühjahr 2020

F20T1A1 F20T1A2 F20T1A3 F20T1A4 F20T1A5

F20T2A1 F20T2A2 F20T2A3 F20T2A4 F20T2A5

F20T3A1 F20T3A2 F20T3A3 F20T3A4 F20T3A5

Herbst 2020

H20T1A1 H20T1A2 H20T1A3 H20T1A4 H20T1A5

H20T2A1 H20T2A2 H20T2A3 H20T2A4 H20T2A5

H20T3A1 H20T3A2 H20T3A3 H20T3A4 H20T3A5

Frühjahr 2021

F21T1A1 F21T1A2 F21T1A3 F21T1A4 F21T1A5

F21T2A1 F21T2A2 F21T2A3 F21T2A4 F21T2A5

F21T3A1 F21T3A2 F21T3A3 F21T3A4 F21T3A5

Herbst 2021

H21T1A1 H21T1A2 H21T1A3 H21T1A4 H21T1A5

H21T2A1 H21T2A2 H21T2A3 H21T2A4 H21T2A5

H21T3A1 H21T3A2 H21T3A3 H21T3A4 H21T3A5

Frühjahr 2022

F22T1A1 F22T1A2 F22T1A3 F22T1A4 F22T1A5

F22T2A1 F22T2A2 F22T2A3 F22T2A4 F22T2A5

F22T3A1 F22T3A2 F22T3A3 F22T3A4 F22T3A5

Herbst 2022

H22T1A1 H22T1A2 H22T1A3 H22T1A4 H22T1A5

H22T2A1 H22T2A2 H22T2A3 H22T2A4 H22T2A5

H22T3A1 H22T3A2 H22T3A3 H22T3A4 H22T3A5



Frühjahr 2023

F23T1A1 F23T1A2 F23T1A3 F23T1A4 F23T1A5

F23T2A1 F23T2A2 F23T2A3 F23T2A4 F23T2A5

F23T3A1 F23T3A2 F23T3A3 F23T3A4 F23T3A5

Herbst 2023

H23T1A1 H23T1A2 H23T1A3 H23T1A4 H23T1A5

H23T2A1 H23T2A2 H23T2A3 H23T2A4 H23T2A5

H23T3A1 H23T3A2 H23T3A3 H23T3A4 H23T3A5

Frühjahr 2024

F24T1A1 F24T1A2 F24T1A3 F24T1A4 F24T1A5

F24T2A1 F24T2A2 F24T2A3 F24T2A4 F24T2A5

F24T3A1 F24T3A2 F24T3A3 F24T3A4 F24T3A5

Herbst 2024

H24T1A1 H24T1A2 H24T1A3 H24T1A4 H24T1A5

H24T2A1 H24T2A2 H24T2A3 H24T2A4 H24T2A5

H24T3A1 H24T3A2 H24T3A3 H24T3A4 H24T3A5

Frühjahr 2025

F25T1A1 F25T1A2 F25T1A3 F25T1A4 F25T1A5

F25T2A1 F25T2A2 F25T2A3 F25T2A4 F25T2A5

F25T3A1 F25T3A2 F25T3A3 F25T3A4 F25T3A5



Sortierung nach Einzelthemen

0. Lineare Algebra

• Grundlagen

H20T1A3, F21T2A2, H22T3A1, H22T3A4, F23T1A4, F23T1A5, F23T3A2, H23T2A4

• Lineare Gleichungssysteme

H22T2A1, F23T2A1

• Ordnung linearer Gruppen

F20T2A3, H21T3A2, F25T1A1, F25T2A5

• Berechnung von Determinanten

F24T1A1

• Dimensionssätze

F24T3A1

• Endomorphismen, charakteristisches Polynom, Eigenräume und Diagonalisierung

F20T1A1, F21T1A2, F21T2A5, F23T2A1, F25T1A3

• Minimalpolynome und Satz von Cayley-Hamilton

H21T3A3, F22T1A1, F25T3A1

• Jordansche Normalform

F20T2A1

• euklidische Vektorräume H21T1A2

I. Gruppentheorie

• Elementare Gruppentheorie

F20T2A4, F20T3A1, H22T1A1, H22T2A5, F23T1A1, H23T2A3, F24T1A2, F24T2A3, F24T3A3,

H24T1A1, H24T3A1

• Elementordnungen und zyklische Gruppen

H20T1A4, H21T2A1, F22T2A1, F24T2A4, F24T2A3

• abelsche Gruppen

F23T3A3, F24T2A3, H24T3A1, F25T3A2

• symmetrische Gruppen

H21T3A1, F22T1A3, H23T1A2

• Homomorphie- Isomorphie- und Korrespondenzsatz

H22T1A1, H22T2A5, F23T1A1, F23T2A2, H23T3A1

• Gruppenoperationen

F20T1A2, F20T3A3, H20T2A2, H22T1A1, F23T1A4, F23T3A1, H23T1A3, F25T1A4



• Satz von Cayley

H20T3A2, H21T2A5, F22T1A3, F22T3A1

• Normalteiler und einfache Gruppen

H24T2A3

• Auflösbarkeit

F21T3A3, H22T2A5, H23T2A2, F24T3A3

• semidirekte Produkte

F20T1A3, H21T1A4

• Sylowsätze

F20T1A3, F20T2A3, F21T1A4, F22T2A2, F22T3A1, H22T3A3, F23T2A2, F23T3A3, H24T1A2,

H24T2A3, F25T2A4

II. Ringtheorie

• Elementare Ringtheorie

H20T1A2, H20T3A3, F21T2A3, H21T1A1, H22T2A2, F23T1A2, F23T1A4, F23T3A5, F24T2A4,

F24T3A3, H24T1A3, F25T1A1

• Elementare Zahlentheorie

H22T2A3

• Ideale und Faktorringe

H20T3A4, F21T3A4, F22T1A4, F22T2A3, H22T3A4, H22T3A5, H23T1A4, H23T2A5, H23T3A5,

F24T1A3, H24T1A4, H24T2A4

• Homomorphie- Isomorphie- und Korrespondenzsatz

H20T2A4, F22T1A4, H22T3A4, F23T1A2, H23T1A1

• Kongruenzrechnung und Restklassenringe

F20T1A5, F20T3A2, H20T1A1, H20T2A1, F22T1A2, F22T1A4, F22T3A2, H22T2A3, F23T2A1,

H23T1A1, H23T3A4, F24T2A1, F24T2A2, H24T2A1, H24T2A2, H24T3A3, F25T2A1

• Chinesischer Restsatz

H20T3A1, H22T1A2, H22T2A3, H23T1A1, H23T3A4, F24T3A2, H24T3A2

• Euklidische Ringe und Euklidischer Algorithmus

H23T3A5, F24T3A1, H24T2A4, F25T3A5

• Hauptidealringe und faktorielle Ringe

H22T3A2, F25T3A3

• Quadratische Zahlringe und Zerlegbarkeit von Elementen

F21T1A1, F22T3A3, F23T2A3, F24T2A1, F24T3A1, F24T3A4, H24T1A3, H24T2A4

• Irreduzibilität von Polynomen

F20T3A5, F21T3A1, H21T1A3, H22T2A4



III. Körpertheorie

• Teilkörper und Homomorphismen

H24T1A4

• Algebraische Erweiterungen

F21T1A3, F22T1A5, H22T1A4, H24T3A4

• Bestimmung von Minimalpolynomen

F23T3A4, H23T3A2, H23T3A3, F24T1A5

• Erweiterungsgrade

F21T2A1, F22T1A5, F22T2A5, F22T3A5, H22T1A4, H23T2A1, H23T3A3, F24T2A1, F24T2A5,

F24T3A4, H24T2A5, F25T2A3

• Körperhomomorphismen und Fortsetzungssatz

F22T3A5

• Zerfällungskörper

F23T1A3, F23T2A4

• separable Körpererweiterungen

H21T2A3

• endliche Körper

H20T2A3, F21T3A5, H21T2A2, H21T3A4, F22T2A4, H22T3A4, F23T2A5, H23T1A5, F24T2A1

IV. Galoistheorie

• Nachweis von Galois-Erweiterungen

F22T2A5, F22T3A5, H22T1A3, H22T2A4, H22T3A4, F23T1A3, H23T2A1, F24T1A5, H24T1A5,

H24T2A5, H24T3A4

• Hauptsatz der Galoistheorie

F20T3A4, H20T2A5, F21T2A4, H21T1A5, F22T2A5, F22T3A4, H22T1A3, F23T1A3, H24T2A5,

F25T2A2

• Rechnen in Galoisgruppen und Bestimmung des Isomorphietyps

H20T1A5, H20T3A5, F21T1A5, F21T3A2, H21T2A4, H22T1A4, H22T2A4, F23T1A3, F24T1A5,

H24T2A5, H24T3A4, F25T1A5, F25T3A4

• Kreisteilungspolynome und Kreisteilungskörper

F20T1A4, F20T2A2, F20T2A5, H21T3A5, F22T1A1, H22T1A5, H22T2A4, F23T3A4, H23T1A5,

F24T1A4, F24T3A5, H24T3A5,

• Konstruktion mit Zirkel und Lineal

F24T3A5



Aufgabe F20T1A1

Sei K ein Körper und V = K2×2 der K-Vektorraum der 2 × 2-Matrizen über K. Für A,B ∈ K2×2

betrachten wir die Abbildung Φ : V → V , X 7→ AXB. Zeigen Sie:

(a) Φ ist ein Endomorphismus von V .

(b) Spur(Φ) = Spur(A)Spur(B)

Lösung:

zu (a) Wir müssen überprüfen, dass durch Φ eine lineare Abbildung V → V gegeben ist, dass also

Φ(X1 +X2) = Φ(X1) + Φ(X2) und Φ(λX1) = λΦ(X1) für alle X1, X2 ∈ V und λ ∈ K gegeben ist. Beide

Gleichungen ergeben sich unmittelbar aus den bekannten Rechenregeln für Matrizen. Es gilt

Φ(X1 +X2) = A(X1 +X2)B = A(X1B +X2B) = AX1B +AX2B = Φ(X1) + Φ(X2)

und Φ(λX1) = A(λX1)B = A(λ(X1B)) = λ(AX1B) = λΦ(X1).

zu (b) Für 1 ≤ i, j ≤ 2 sei Bij ∈ K2×2 jeweils die Basismatrix mit dem Eintrag 1 an der Stelle (i, j)

(bei der alle übrigen Einträge gleich null sind), also

B11 =

(
1 0

0 0

)
, B12 =

(
0 1

0 0

)
, B21 =

(
0 0

1 0

)
, B22 =

(
0 0

0 1

)
.

Wir berechnen die Spur von Φ, indem wir die Darstellungsmatrix von Φ bezüglich der geordneten Basis

(B11, B12, B21, B22) des K-Vektorraums V bestimmen. Es gilt

Φ(B11) = AB11B =

(
a11 a12

a21 a22

)(
1 0

0 0

)(
b11 b12

b21 b22

)
=

(
a11 a12

a21 a22

)(
b11 b12

0 0

)
=

(
a11b11 a11b12

a21b11 a21b12

)

Φ(B12) = AB12B =

(
a11 a12

a21 a22

)(
0 1

0 0

)(
b11 b12

b21 b22

)
=

(
a11 a12

a21 a22

)(
b21 b22

0 0

)
=

(
a11b21 a11b22

a21b21 a21b22

)

Φ(B21) = AB21B =

(
a11 a12

a21 a22

)(
0 0

1 0

)(
b11 b12

b21 b22

)
=

(
a11 a12

a21 a22

)(
0 0

b11 b12

)
=

(
a12b11 a12b12

a22b11 a22b12

)

Φ(B22) = AB22B =

(
a11 a12

a21 a22

)(
0 0

0 1

)(
b11 b12

b21 b22

)
=

(
a11 a12

a21 a22

)(
0 0

b21 b22

)
=

(
a12b21 a12b22

a22b21 a22b22

)

Jede dieser Gleichungen liefert eine Spalte der Darstellungsmatrix; insgesamt ist die Darstellungsmatrix

gegeben durch 
a11b11 a11b12 a12b11 a12b21

a11b12 a11b22 a12b12 a12b22

a21b11 a21b21 a22b11 a22b21

a21b12 a21b22 a22b12 a22b22


Es gilt Spur(A) = a11 + a22 und Spur(B) = b11 + b22. Die Spur von Φ ist nach Definition gleich der Spur

der Darstellungsmatrix, und für diese erhalten wir den Wert

a11b11 + a11b22 + a22b11 + a22b22 = (a11 + a22)(b11 + b22) = Spur(A)Spur(B).



Aufgabe F20T1A2

Seien R = Z/15Z und f : R→ R, x 7→ 7x.

(a) Zeigen Sie, dass f bijektiv und damit eine Permutation von R ist.

(b) Bestimmen Sie die Fixpunkte von f .

(c) Bestimmen Sie die Anzahl der Bahnen der Operation von 〈f〉 auf R. Hier steht 〈f〉 für die von f

erzeugte Untergruppe der Permutationen von R.

Lösung:

zu (a) Ist ist 7̄ ∈ R×, und 13 ist das multiplikative Inverse von 7̄. Daraus folgt, dass g : R→ R, x 7→ 13x

die Umkehrabbildung von f ist, denn für alle x ∈ R gilt (g ◦ f)(x) = g(f(x)) = g(7̄x) = 13(7̄x) = 91x =

1̄x = x und ebenso (f ◦ g)(x) = f(g(x)) = f(13x) = 7̄(13x) = 91x = 1̄x = x. Die Existenz einer

Umkehrabbildung zeigt, dass f bijektiv ist.

zu (b) Für c ∈ R ist c+15Z genau dann ein Fixpunkt, wenn 7c ≡ c mod 15 gilt, also genau dann, wenn

15 ein Teiler von 7c − c = 6c ist. Dies wiederum ist wegen ggT(3, 5) = 1 genau dann der Fall, wenn 3

und 5 Teiler von 6c sind. Da 3 immer ein Teiler von 6c ist, dies dies wiederum äquivalent zur Teilbarkeit

von 6c durch 5, wegen ggT(6, 5) = 1 also zur Teilbarkeit von c durch 5. Es gilt 5 | c genau dann, wenn

c+ 15Z ∈ {0̄, 5̄, 10} gilt. Also ist {0̄, 5̄, 10} die Fixpunktmenge von f .

zu (c) Jeder Fixpunkt bildet eine einelementige Bahn. Wegen 7̄2 = 49 = 4̄ 6= 1̄ und 7̄4 = (7̄2)2 = 4̄2 =

16 = 1̄ ist 7̄ in der Einheitengruppe R× ein Element der Ordnung 4. Zwei Bahnen der Operation sind

deshalb gegeben durch

〈f〉(1̄) = {fn(1̄) | n ∈ Z} = {7̄n · 1̄ | n ∈ Z} = {7̄n | 0 ≤ n < 4} = {7̄, 4̄, 13, 1̄}

und

〈f〉(2̄) = {fn(2̄) | n ∈ Z} = {7̄n · 2̄ | n ∈ Z} = {7̄n · 2̄ | 0 ≤ n < 4} = {14, 8̄, 11, 2̄} ,

eine weitere durch

〈f〉(3̄) = {fn(3̄) | n ∈ Z} = {7̄n · 3̄ | n ∈ Z} = {7̄n · 3̄ | 0 ≤ n < 4} = {21, 12, 9, 3̄}.

Insgesamt existieren also genau sechs Bahnen.



Aufgabe F20T1A3

(a) Geben Sie die Definition einer auflösbaren Gruppe an.

(b) Zeigen Sie: Jede Gruppe der Ordnung 2020 ist auflösbar.

(c) Geben Sie zwei nicht-isomorphe abelsche und zwei nicht-isomorphe nicht-abelsche Gruppen der

Ordnung 2020 an (mit Begründung).

Lösung:

zu (a) Eine Gruppe G wird auflösbar genannt, wenn G eine abelsche Normalreihe besitzt. Darunter

versteht man eine Kette G = N0 ) N1 ) N2 ⊇ ... ) Nr = {eG} mit der Eigenschaft, dass die

Untergruppe Ni+1 jeweils ein Normalteiler von Ni und die FaktorNi/Ni+1 abelsch ist, für 0 ≤ i < r.

zu (b) Sei G eine Gruppe der Ordnung 2020. Für die Anzahl ν101 der 101-Sylowgruppen gilt auf

Grund der Sylowsätze ν101 | 20, also ν101 ∈ {1, 2, 4, 5, 10, 20}, und außerdem ν101 ≡ 1 mod 101. Wegen

a 6≡ 1 mod 101 für a ∈ {2, 4, 5, 10, 20} folgt ν101 = 1. Sei N die einzige 101-Sylowgruppe von G. Ebenfalls

auf Grund der Sylowsätze handelt es sich um einen Normalteiler von G.

Laut Vorlesung ist G genau dann auflösbar, wenn N und G/N auflösbar sind. Wegen 2020 = 22 ·51 ·1011

gilt |N | = 1011 = 101, und als Gruppe von Primzahlordnung ist N zyklisch, damit auch abelsch und

auflösbar. Wegen |G/N | = 2020
101 = 20 genügt es zu zeigen, dass jede Gruppe der Ordnung 20 auflösbar

ist; daraus ergibt sich auf Grund des soeben genannten Satzes dann die Auflösbarkeit von G.

Sei also H eine Gruppe der Ordnung 20 und µp für jede Primzahl p die Anzahl der p-Sylowgruppen

von H. Es gilt µ5 | 4, also µ5 ∈ {1, 2, 4}, und außerdem µ5 ≡ 1 mod 5. Wegen 2 6≡ 1 mod 5 und

4 6≡ 1 mod 5 folgt µ5 = 1. Sei M die einzige 5-Sylowgruppe von H; dann gilt M �H. Es gilt |H| = 5

und |H/M | = |H|
|M | = 20

5 = 4. Die Zahl 4 ist ein Primzahlquadrat, somit ist H/M eine abelsche und

insbesondere auflösbare Gruppe. Auf Grund der Primzahlordnung ist H zyklisch, damit ebenfalls abelsch

und auflösbar. Aus der Auflösbarkeit von M und H/M folgt die Auflösbarkeit von H.

zu (c) Sei A = Z/2020Z und B = Z/2Z × Z/1010Z. Die Gruppe A besitzt mit 1̄ ein Element der

Ordnung 2020. Für alle (b̄, c̄) ∈ Z/2Z × Z/1010Z gilt dagegen 1010(b̄, c̄) = (1010b̄, 1010c̄) = (0̄, 0̄); dies

zeigt, dass die Ordnung jedes Elements in B ein Teiler von 1010 ist und somit kein Element der Ordnung

2020 in B existiert. Folglich sind A und B zwei nicht zueinander isomorphe abelsche Gruppen.

Eine nicht-abelsche Gruppe der Ordnung 2020 konstruieren wir als äußeres semidirektes Produkt. In der

Gruppe Z/100Z ist 20 ein Element der Ordnung 5, folglich existiert laut Vorlesung ein nichttrivialer Ho-

momorphismus φ : Z/5Z→ Z/100Z gegeben durch φ(1̄) = 20. Außerdem gilt Z/100Z ∼= (Z/101Z)× ∼=
Aut(Z/101Z); sei ι : Z/100Z→ Aut(Z/101Z) ein beliebig gewählter Isomorphismus und ψ = ι ◦ φ. Das

äußere semidirekte Produkt C1 = Z/101Z oψ Z/5Z ist dann eine nicht-abelsche Gruppe der Ordnung

101 · 5 = 505, und C = Z/4Z× C1 ist eine nicht-abelsche Gruppe der Ordnung 4 · 505 = 2020.

Eine weitere nicht-abelsche Gruppe der Ordnung 2020 ist Diedergruppe D1010, die Symmetriegruppe

des regelmäßigen 1010-Ecks. Diese ist laut Vorlesung ebenfalls nicht abelsch. Desweiteren sind C und

D1010 nicht zueinander isomorph. Denn bekanntlich enthält die Diedergruppe Dn für alle n ∈ N nur

Elemente der Ordnung 2 und solche, deren Ordnung ein Teiler von n ist. Anhand der Primfaktorzerlegung

1010 = 2 · 5 · 101 können wir die Teiler von 1010 aufzählen. Die Gruppe D1010 enthält demnach nur

Elemente der Ordnungen 1, 2, 5, 10, 101, 202, 505 und 1010, aber kein Element der Ordnung 4. Dagegen

ist (1̄, eC1) offenbar ein Element der Ordnung 4 in C. Dies zeigt, dass C und D1010 nicht zueinander

isomorph sind.



Aufgabe F20T1A4

Sei ζ ∈ C eine primitive elfte Einheitswurzel und K = Q(ζ).

(a) Zeigen Sie: K ist der Zerfällungskörper von x11 − 1 über Q. Geben Sie den Isomorphietyp der

Galois-Gruppe von Gal(K|Q) an.

(b) Zeigen Sie: Es gibt eine galoissche Körpererweiterung Q ⊆ L mit [L : Q] = 5.

Lösung:

zu (a) Die Nullstellenmenge des Polynoms f = x11 − 1 ist gegeben durch N = {ζk | 0 ≤ k < 11}.
Denn wegen f(ζ) = (ζk)11 − 1 = (ζ11)k − 1 = 1− 1 = 0 ist jedes Element dieser Menge tatsächlich eine

Nullstelle von f , und weil ζ eine primitive elfte Einheitswurzel ist, in der multiplikativen Gruppe C×

also die Ordnung 11 besitzt, enthält N elf verschiedene Elemente. Weil ein Polynom vom Grad 11 über

einem Körper nicht mehr als elf Nullstellen haben kann, muss N die genaue Nullstellenmenge von f sein.

Um nun zu zeigen, dass K = Q(ζ) der Zerfällungskörper von f über Q ist, müssen wir die Gleichung

Q(ζ) = Q(N) beweisen. Wegen ζ ∈ N gilt einerseits ζ ∈ Q(N). Aus ζ ∈ Q(ζ) folgt auf Grund der

Teilkörper-Eigenschaft von Q(ζ) andererseits ζk ∈ Q(ζ) für 0 ≤ k < 11, also N ⊆ Q(ζ). Aus N ⊆ Q(ζ)

und ζ ∈ Q(N) folgt laut Vorlesung die behauptete Gleichheit.

Bezeichnet Kn den n-ten Kreisteilungskörper (mit n ∈ N, n ≥ 2), so ist die Erweiterung Kn|Q laut

Vorlesung galoissch, und es gilt Gal(Kn|Q) ∼= (Z/nZ)×. Somit gilt Gal(K|Q) ∼= (Z/11Z)×, und weil 11

eine Primzahl ist, gilt außerdem (Z/11Z)× ∼= Z/10Z. Die Galois-Gruppe Gal(K|Q) ist also zyklisch von

Ordnung 10.

zu (b) Weil die Gruppe G = Gal(K|Q) zyklisch von Ordnung 10 ist, gibt es für jeden Teiler d ∈ N
von 10 eine eindeutig bestimmte Untergruppe Ud von G von Ordnung d. Sei L = KU2 der Fixkörper der

Untergruppe U2. Nach den Ergänzungen zum Hauptsatz der Galoistheorie gilt dann [L : Q] = (G : U2) =
|G|
|U2| = 10

2 = 5. Weil G als zyklische Gruppe abelsch ist, sind sämliche Untergruppen von G Normalteiler,

insbesondere die Untergruppe U2. Daraus wiederum folgt laut Vorlesung, dass die Erweiterung L|Q eine

Galois-Erweiterung ist.



Aufgabe F20T1A5

Ein n-Tupel (a1, a2, ..., an) von ganzen Zahlen heiße hübsch, wenn aiaj + 2 eine Quadratzahl ist für alle

1 ≤ i < j ≤ n. Zeigen Sie:

(a) Es gibt hübsche Tripel.

(b) Wenn ein Quadrupel hübsch ist, dann ist keine der Zahlen aj (j = 1, ..., 4) durch 4 teilbar.

(c) Es gibt keine hübschen Quadrupel.

Lösung:

zu (a) Das Tripel (a1, a2, a3) = (1, 2, 7) ist hübsch, denn a1a2 + 2 = 4, a1a3 + 2 = 9 und a2a3 + 2 = 16

sind alles Quadratzahlen.

zu (b) Nehmen wir an, (a1, a2, a3, a4) ist ein hübsches Quadrupel mit der Eigenschaft, dass eines der

Elemente ai (mit i ∈ {1, 2, 3, 4}) durch 4 teilbar ist. Betrachten wir zunächst den Fall i = 1. Nach

Voraussetzung ist a1a2 + 2 eine Quadratzahl. Wegen a1 ≡ 0 mod 4 gilt aber a1a2 + 2 ≡ 0 · a2 + 2 ≡
2 mod 4. Bekanntlich ist aber jede Quadratzahl kongruent zu 0 oder 1 modulo 4 (wegen 02 ≡ 0 mod 4,

12 ≡ 1 mod 4, 22 ≡ 0 mod 4 und 32 ≡ 1 mod 4). Der Widerspruch zeigt, dass die Annahme im Fall i = 1

falsch ist. Setzen wir nun i > 1 voraus. In diesem Fall ist a1ai + 2 ≡ a1 · 0 + 2 ≡ 2 mod 4, andererseits

ist auch a1ai + 2 nach Voraussetzung eine Quadratzahl. Also führt die Annahme auch in diesem Fall zu

einem Widerspruch.

zu (c) Angenommen, (a1, a2, a3, a4) ist ein hübsches Quadrupel. Nach (b) ist keine der vier Zahlen

durch 4 teilbar. Da es abgesehen von 0̄ nur drei Restklassen modulo 4 gibt, müssen zwei der Zahlen ai, aj

(mit 1 ≤ i < j ≤ j) in derselben Restklasse modulo 4 liegen. Ist diese Restklasse 2̄, dann sind ai, aj

beide gerade, und folglich gilt aiaj + 2 ≡ 0 + 2 ≡ 2 mod 4. Aber wie wir bereits in Teil (b) gesehen

haben, ist dies unvereinbar mit der Annahme, dass aiaj + 2 eine Quadratzahl ist. Also muss entweder

ai ≡ aj ≡ 1 mod 4 oder ai ≡ aj ≡ 3 mod 4 gelten. In beiden Fällen ist aiaj + 2 ≡ 1 + 2 ≡ 3 mod 4. Aber

auch dies ist unmöglich, wenn aiaj + 2 ein Quadrat ist. Auch hier hat unsere Annahme also zu einem

Widerspruch geführt.



Aufgabe F20T2A1

Für λ1, λ2, λ3 ∈ C seien a0, a1, a2 die Koeffizienten des Polynoms

f(X) := (X − λ1) · (X − λ2) · (X − λ3) = X3 + a2X
2 + a1X + a0 ∈ C[x].

Ferner sei

A :=


0 0 −a0

1 0 −a1

0 1 −a2

 ∈ C3×3

die sogenannte Begleitmatrix zu den gegebenen Zahlen. Zeigen Sie:

(a) Die Eigenwerte von A sind λ1, λ2, λ3.

(b) Die Jordansche Normalform von A hat für jeden Eigenwert λ genau ein Jordan-Kästchen.

Lösung:

zu (a) Wir überprüfen, dass f mit dem charakteristischen Polynom χA von A übereinstimmt. Bezeichnen

wir die Einheitsmatrix in C3×3 mit E, dann gilt

χA = det(xE −A) =


x 0 a0

−1 x a1

0 −1 x+ a2

 =

x2(x+ a2) + 0 + a0 − 0− (−a1x)− 0 = x3 + a2x
2 + a1x+ a0.

Die Eigenwerte von A sind laut Vorlesung genau die Nullstellen von χA = f , und die Zerlegung von f

in Linearfaktoren zeigt, dass dies genau die Werte λ1, λ2, λ3 sind.

zu (b) Wir zeigen zunächst, dass die Matrizen E,A,A2 im C-Vektorraum C3×3 ein linear unabhängiges

System bilden. Die erste Spalte von E, A bzw. A2 ist jeweils der Einheitsvektor e1, e2 bzw. e3. Bei E und

A kann dies direkt abgelesen werden, bei A2 erhält man das Resultat durch Multiplikation der Matrix

A mit ihrer ersten Spalte: 
0 0 −a0

1 0 −a1

0 1 −a2




0

1

0

 =


0

0

1

 = e3.

(Es ist nicht notwendig, die Matrix A2 vollständig zu berechnen.) Seien c0, c1, c2 mit c0E+c1A+c2A
2 = 0

vorgegeben. Durch Vergleich der ersten Spalten auf beiden Seiten erhält man c0e1 + c1e2 + c2e3 = 0, und

daraus folgt c0 = c1 = c2 = 0, weil {e1, e2, e3} ein linear unabhängiges System in C3 ist. Damit ist die

linear Unabhängigkeit von {E,A,A2} nachgewiesen.

Aus der linearen Unabhängigkeit von {E,A,A2} folgt, dass das Minimalpolynom µA von A mindestens

vom Grad 3 ist. Wäre nämlich µA vom Grad 1 oder 2, µA = c2x
2 + c1x + c0 mit c0, c1, c2 ∈ C, dann

würde c2A
2 + c1A + c0 = µA(A) = 0 folgen, im Widerspruch zur linearen Unabhängigkeit. Nach dem

Satz von Cayley-Hamilton gilt χA(A) = 0; wegen grad(µA) ≥ 3 = grad(χA) folgt daraus µA = χA.

Sei nun λ ∈ C ein Eigenwert von A und a ∈ {1, 2, 3} dessen algebraische Vielfachheit. Dann ist a zugleich

die Vielfachheit von λ als Nullstelle von µA. Laut Vorlesung ist die algebraische Vielfachheit von λ die

Summe der Größen sämtlicher Jordanblöcke zum Eigenwert λ in der Jordanschen Normalform. Die

Vielfachheit von a als Nullstelle von µA ist dagegen die Größe des größten Jordanblocks zum Eigenwert

λ. Da beide Werte gleich a sind, folgt daraus, dass nur ein Jordanblock zum Eigenwert λ existiert.



Aufgabe F20T2A2

Zeigen Sie:

(a) Ist n = dm mit ungeradem m ∈ N, so gilt die Teilbarkeitsrelation (xd + 1) | (xn + 1).

(b) Das Polynom xn + 1 ist genau dann über Q irreduzibel, wenn n = 2k für ein k ∈ N0 gilt.

Hinweise:

zu (a) Weisen Sie die Teilbarkeitsrelation anhand der Nullstellen nach. Die komplexen Nullstellen von

x2d − 1 sind genau die 2d-ten Einheitswurzeln. Was bedeutet das für die Nullstellen von xd + 1?

zu (b) Eine Implikationsrichtung kann aus Teil (a) abgeleitet werden. Für die andere Richtung denken

Sie daran, dass Kreisteilungspolynome laut Vorlesung über Q irreduzibel sind.

Lösung:

zu (a) Wir zeigen: Für jedes t ∈ N ist ζ ∈ C× genau dann eine Nullstelle von xt + 1, wenn die

Ordnung von ζ in C× zwar ein Teiler von 2t, aber kein Teiler von t ist.
”
⇐“ Sei ord(ζ) | (2t) und

ord(ζ) - t vorausgesetzt. Wegen (ζt)2 = ζ2t = 1 ist ζt einerseits eine Nullstelle von x2−1, also ζt ∈ {±1},
andererseits ist ζt = 1 ausgeschlossen, da ansonsten ord(ζ) | t gelten würde. Also gilt ζt = −1, und somit

ist ζ eine Nullstelle von xt + 1
”
⇒“ Sei ζ ∈ C eine Nullstelle von xt + 1. Dann gilt ζt = −1 und

ζ2t = (−1)2 = 1, also ζ ∈ C× und ord(ζ) | 2t. Würde auch ord(ζ) | t gelten, dann würde daraus ζt = 1

folgen, im Widerspruch zu ζt = −1.

Seien nun d,m, n ∈ N wie angegeben. Die Polynome xd+1 und xn+1 haben wegen ggT(xd+1, dxd−1) = 1

und ggT(xn + 1, nxn−1) = 1 nur einfache Nullstellen. Für den Nachweis der Teilbarkeitsrelation genügt

es deshalb nachzuweisen, dass jede komplexe Nullstelle von xd+ 1 auch eine Nullstelle von xn+ 1 ist. Sei

also ζ ∈ C eine Nullstelle von xd + 1. Wie im vorherigen Absatz gezeigt, gilt ζ ∈ C×, ord(ζ) | (2d) und

ord(ζ) - d. Weil d ein Teiler von n ist, gilt auch (2d) | (2n) und damit ord(ζ) | (2n). Nehmen wir nun an,

dass auch ord(ζ) | n erfüllt ist. Dann ist ord(ζ) insgesamt ein Teiler von ggT(2d, n) = ggT(2d, dm) = d,

wobei im letzten Schritt verwendet wurde, dass m ungerade ist. Aber ord(ζ) | d steht im Widerspruch

zu unserer Voraussetzung. Es gilt also ord(ζ) | (2n) und ord(ζ) | n. Wie oben gezeigt folgt daraus, dass

ζ eine Nullstelle von xn + 1 ist.

zu (b)
”
⇐“ Ist n = 2k für ein k ∈ N0, dann ist xn + 1 das 2n-te Kreisteilungspolynom und somit

laut Vorlesung über Q irreduzibel. Bezeichnen wir nämlich für jedes m ∈ N mit Φm ∈ Z[x] das m-

te Kreisteilungspolynom, so gilt laut Vorlesung x2n − 1 =
∏
d Φd, wobei d die Teiler von 2n = 2k+1

durchläuft. Die Menge dieser Teiler besteht aus 2n und den Teilern von n, so dass die Gleichung in der

Form x2n − 1 = Φ2n · (xn − 1) geschrieben werden kann. Daraus wiederum folgt

Φ2n =
x2n − 1

xn − 1
= xn + 1.

”
⇒“ Ist n keine Zweierpotenz, so gibt es eine Zerlegung n = dm mit d,m ∈ N, wobei d > 1 und

ungerade ist. Nach Teil (a) wird xn + 1 dann von xd + 1 geteilt, mit 1 < d < n. Daraus folgt, dass xn + 1

in Q[x] reduzibel ist.



Aufgabe F20T2A3

Seien p eine Primzahl und Fp ⊆ Fpk eine Körpererweiterung vom Grad k über dem Körper Fp. Betrachten

Sie die Gruppe G := GL2(Fpk) der invertierbaren 2× 2-Matrizen über Fpk . Zeigen Sie:

(a) Die Teilmenge N := {A ∈ G | det(A) ∈ Fp} ist ein Normalteiler.

(b) Der Index des Normalteilers N ist teilerfremd zu p.

(c) Die p-Sylowgruppen von G sind genau die p-Sylowgruppen von N .

Lösung:

zu (a) Weil die Gruppe G aus den invertierbaren Matrizen über Fpk besteht, gilt det(A) 6= 0̄, also

det(A) ∈ F×
pk

für alle A ∈ G. Die Gruppe F×p ist eine Untergruppe von F×
pk

, denn es gilt 1̄ ∈ F×p , und für

alle ā, b̄ ∈ F×p gilt auch āb̄ ∈ F×p und ā−1 ∈ GFp×. Darüber hinaus ist F×p sogar ein Normalteiler von F×
pk

,

denn die Gruppe F×
pk

ist abelsch, und in einer abelschen Gruppe sind alle Untergruppen Normalteiler. Nun

ist N nach Definition das Urbild des Normalteilers F×p �F
×
pk

unter dem Homomorphismus det : G→ F×
pk

,

und laut Vorlesung ist jedes Urbild eines Normalteilers unter einem Gruppenhomomorphismus ebenfalls

ein Normalteiler. Daraus folgt N �G.

zu (b) Wir betrachten den Abbildung φ : G → F×
pk
/F×p , A 7→ det(A)F×p . Als Komposition der

Determinantenabbildung mit dem kanonischen Epimorphismus α 7→ αF×p handelt es sich um einen

Gruppenhomomorphismus. Der Kern von φ ist gleich N , denn für alle A gilt die Äquivalenz

A ∈ ker(φ) ⇔ φ(A) = eF×
pk
/F×p

⇔ det(A)F×p = F×p ⇔ det(A) ∈ F×p ⇔ A ∈ N.

Außerdem ist φ surjektiv, denn für vorgegebenes αF×p ∈ Fpk/F×p mit α ∈ F×
pk

ist

Cα =

(
1̄ 0̄

0̄ α

)

wegen det(Cα) = α 6= 0̄ eine invertierbare Matrix, also ein Element aus G, und es gilt φ(α) =

det(Cα)F×p = αF×p .

Damit sind alle Voraussetzungen des Homomorphiesatzes erfüllt, und wir erhalten einen Isomorphismus

G/N ∼= F×
pk
/F×p . Es folgt

(G : N) = |G/N | = |F×
pk
/F×p | =

|F×
pk

F×p
=

pk − 1

p− 1
=

k−1∑
i=0

pi.

Wegen pi ≡ 0 mod p für 1 ≤ i ≤ k− 1 folgt (G : N) =
∑k−1
i=0 p

i ≡ 1 mod p, insbesondere gilt p - (G : N).

Weil p eine Primzahl ist, ist dies gleichbedeutend damit, dass p und (G : N) teilerfremd sind.

zu (c) Sei P eine Untergruppe von G. Wir zeigen, dass P genau dann eine p-Sylowgruppe von G

ist, wenn P eine p-Sylowgruppe von N ist. Dabei verwenden wir, dass allgemein eine Untergruppe P

einer endlichen Gruppe G genau dann eine p-Sylowgruppe ist, wenn |P | von p-Potenzordnung ist und

p - (G : P ) gilt.
”
⇐“ Weil P eine p-Sylowgruppe von N ist, gilt p - (N : P ). Es gilt

(G : P ) =
|G|
|P |

=
|G|
|N |
· |N |
|P |

= (G : N) · (N : P ).

Aus p - (G : N) und p - (N : P ) folgt p - (G : P ). Außerdem ist P (als p-Sylowgruppe von N) von

p-Potenzordnung. Also ist P eine p-Sylowgruppe von G.



”
⇒“ Sei P eine p-Sylowgruppe von G. Auf Grund des Ersten Isomorphiesatzes gilt P/(N∩P ) ∼= PN/N .

Weil P von p-Potenzordnung ist, gilt dasselbe für P/(N ∩ P ) und damit auch für PN/N . Es handelt

sich bei PN/N also um eine p-Untergruppe von G/N . Weil aber |G/N | = (G : N) nach Teil (b)

teilerfremd zu p ist, muss PN/N = {eG/N} sein, also PN = N und somit P ⊆ N gelten. Es ist P

also eine p-Untergruppe von N . Wäre p ein Teiler von (N : P ), dann wäre p erst recht ein Teiler von

(G : P ) = (G : N) · (N : P ). Aber dies ist nicht der Fall, weil P eine p-Sylowgruppe von G ist. Insgesamt

ist damit gezeigt, dass P eine p-Sylowgruppe von N ist.



Aufgabe F20T2A4

(a) Sei h : A→ G ein surjektiver Gruppenhomomorphismus einer abelschen Gruppe A in eine Gruppe

G. Zeigen Sie, dass dann auch G abelsch ist.

(b) Sei p eine Primzahl, p 6= 2. Bestimmen Sie die Anzahl der Nullstellen des Polynoms f(X) =

x2 + 2x+ 1 in Fp2 und in Z/p2Z.

(c) Man zeige oder widerlege folgende Aussage: Für alle a, b, c ∈ N gilt ggT(a, b, c)kgV(a, b, c) = abc.

Lösung:

zu (a) Seien u, v ∈ G vorgegeben. Zu zeigen ist uv = vu. Da h surjektiv ist, gibt es a, b ∈ A mit h(a) = u

und h(b) = v. Weil A abelsch ist, gilt ab = ba. Auf Grund der Homomorphismus-Eigenschaft von h folgt

uv = h(a)h(b) = h(ab) = h(ba) = h(b)h(a) = vu.

zu (b) Für alle α ∈ Fp2 gilt die Äquivalenz

f(α) = 0 ⇔ α2 + 2α+ 1̄ = 0̄ ⇔ (α+ 1̄)2 = 0̄ ⇔ α+ 1̄ = 0̄ ⇔ α = −1̄.

Dabei wurde im vorletzten Schritt verwendet, dass in jedem Körper K die Äquivalenz β = 0K ⇔ β2 = 0K

für alle β ∈ K gültig ist. (Im Fall β = 0K ist die Äquivalenz offensichtlich, im Fall β 6= 0K die Implikation

”
⇒“ ebenfalls, und

”
⇐“ erhält man durch β = β−1β2 = β−1 · 0K = 0K .) Das Polynom f besitzt in Fp2

also genau eine Nullstelle.

Im Ring Z/p2Z ist diese Äquivalenz aber falsch, weshalb hier anders vorgegangen werden muss. Sei a ∈ Z
und ā das Bild von a in Z/p2Z. Es gilt die Äquivalenz

f(ā) = 0̄ ⇔ ā2 + 2ā+ 1̄ = 0̄ ⇔ (ā+ 1̄)2 = 0̄ ⇔ p2 | (a+ 1)2 ⇔ p | (a+ 1)

⇔ ∃ k ∈ Z : a+ 1 = kp ⇔ a ∈ −1 + pZ ⇔ ā ∈ {−1̄ + p̄k̄ | k ∈ Z}

⇔ ā ∈ {−1̄ + p̄k̄ | 0 ≤ k < p}.

Im vierten Schritt ist die Implikation
”
⇐“ erfüllt, denn aus a+1 = kp für ein k ∈ Z folgt (a+1)2 = k2p2.

Ebenso gilt
”
⇒“, denn wäre a+ 1 teilerfremd zu p, dann würde dies auch für (a+ 1)2 gelten. Im letzten

Schritt haben wir verwendet, dass für k, ` ∈ Z die Elemente −1̄ + p̄k̄ und −1̄ + p̄¯̀ in Z/p2Z genau

dann übereinstimmen, wenn −1 + pk ≡ −1 + p` mod p2 gilt, was zu pk ≡ p` mod p2 und k ≡ ` mod p

äquivalent ist. Damit −1̄ + p̄k̄ alle Elemente von Z/p2Z durchläuft, genügt es also, für k alle Elemente

aus einem Repräsentantensystem von Z/pZ einzusetzen, zum Beispiel {0, 1, ..., p−1}. Zugleich sind diese

Elemente dann alle verschieden. Das Polynom f hat also in Z/p2Z genau p Nullstellen.

zu (c) Diese Aussage ist im Allgemeinen falsch. Setzt man zum Beispiel a = 5, b = 52, c = 53,

dann gilt ggT(a, b, c) = 5, kgV(a, b, c) = 53 und somit ggT(a, b, c)kgV(a, b, c) = 54, andererseits aber

abc = 5 · 52 · 53 = 56. (Im Gegensatz dazu ist die Gleichung ggT(a, b)kgV(a, b) = ab für beliebige a, b ∈ N
richtig. Man beweist diese Gleichung leicht, indem man die Primfaktorzerlegung von a und b betrachtet

und die Formeln für die Primfaktorzerlegung von ggT und kgV aus der Vorlesung verwendet.)



Aufgabe F20T2A5

Sei L ⊆ C der Zerfällungskörper von x8 − 2. Sei ferner ζ := exp( 2πi
8 ) ∈ C. Zeigen Sie:

(a) Es gilt
√

2 ∈ Q(ζ).

(b) Die Körpererweiterung Q ⊆ L hat den Grad [L : Q] = 16.

(c) Die Galoisgruppe G = Gal(L|Q) ist nicht abelsch und hat einen Normalteiler der Ordnung 4

mit N ∼= Z/4Z.

Lösung:

zu (a) Es gilt ζ = exp(πi4 ) = cos( 1
4π) + i sin( 1

4π),

ζ−1 = exp(−πi4 ) = cos( 1
4π) − i sin( 1

4π), und somit cos( 1
4π) = 1

2 (ζ + ζ−1) ∈ Q(ζ). Auf Grund des

Additionstheorems des Kosinus gilt 0 = cos( 1
2π) = cos( 1

4π)2 − sin( 1
4π)2, also cos( 1

4π)2 = sin( 1
4π)2. Es

folgt 2 cos( 1
4π)2 = cos( 1

4π)2 + sin( 1
4π)2 = 1, cos( 1

4π)2 = 1
2 , und wegen cos(α) > 0 für − 1

2π < α < 1
2π

folgt 1√
2

= cos( 1
4π) ∈ Q(ζ). Damit ist auch der Kehrwert

√
2 in Q(ζ) enthalten.

zu (b) Wir zeigen zunächst, dass L = Q( 8
√

2, i) gilt. Die Menge der komplexen Nullstellen von f = x8−2

ist durch N = {ζk 8
√

2 | 0 ≤ k < 8} gegeben. Denn wegen f(ζk 8
√

2) = (ζk 8
√

2)8 − 2 = (ζ8)k · 2 − 2 =

1k · 2− 2 = 0 sind tatsächlich alle Elemente von N Nullstellen von f . Da es sich bei ζ um eine primitive

achte Einheitswurzel handelt, sind die Elemente ζk mit 0 ≤ k < 8 alle verschieden, und wegen 8
√

2 6= 0

gilt dasselbe für ζk 8
√

2 mit 0 ≤ k < 8. Da andererseits ein Polynom vom Grad 8 über einem Körper

nie mehr als acht Nullstellen besitzt, ist N genau die Menge der komplexen Nullstellen von f . Der

Zerfällungskörper L von f über Q in C ist also durch L = Q(N) gegeben.

Zu zeigen bleibt Q(N) = Q( 8
√

2, i). Wir haben bereits in Teil (a) gesehen, dass cos( 1
4π) = 1√

2
und

sin( 1
4π)2 = cos( 1

4π)2 gilt. Wegen sin(α) > 0 für 0 < α < π ist somit auch sin( 1
4π) = 1√

2
. Es folgt

ζ = cos( 1
4π) + i sin( 1

4π) = 1√
2

+ i√
2
. Aus 8

√
2, i ∈ Q( 8

√
2, i) folgt

√
2 = ( 8

√
2)4 ∈ Q( 8

√
2, i) und ζ =

1√
2

+ i√
2
∈ Q( 8

√
2, i). Wir erhalten weiter ζk 8

√
2 ∈ Q( 8

√
2, i) für 0 ≤ k < 8 und somit N ⊆ Q( 8

√
2, i).

Aus 8
√

2 ∈ N ⊆ Q(N) und ζ 8
√

2 ∈ N ⊆ Q(N) folgt andererseits ζ =
8√2ζ
8√2
∈ Q(N) und i = ζ2 ∈ Q(N).

Insgesamt gilt also { 8
√

2, i} ⊆ Q(N). Aus den beiden Inklusionen { 8
√

2, i} ⊆ Q(N) und N ⊆ Q( 8
√

2, i)

folgt die Gleichung Q(N) = Q( 8
√

2, i). Insgesamt ist der Beweis von L = Q( 8
√

2, i) damit abgeschlossen.

Nun bestimmen wir den Erweiterungsgrad [L : Q]. Das Polynom f = x8 − 2 ist in Q[x] irreduzibel nach

dem Eisenstein-Kriterium, angewendet auf die Primzahl p = 2. Außerdem ist es normiert und hat 8
√

2

als Nullstelle. Insgesamt ist f damit das Minimalpolynom von 8
√

2 über Q, und es folgt [Q( 8
√

2) : Q] =

grad(f) = 2. Das Polynom g = x2+1 ist normiert und hat i als Nullstelle. Wäre es über Q( 8
√

2) reduzibel,

dann müssten wegen grad(g) = 2 die beiden Nullstellen ±i in Q( 8
√

2) liegen. Aber dies ist unmöglich,

denn es gilt Q( 8
√

2) ⊆ R, während die Zahlen ±i nicht reell sind. Also ist g das Minimalpolynom von i

über Q( 8
√

2), und es folgt

[L : Q(
8
√

2)] = [Q(
8
√

2)(i) : Q(
8
√

2)] = grad(f) = 2.

Mit der Gradformel erhalten wir [L : Q] = [L : Q( 8
√

2)] · [Q( 8
√

2) : Q] = 2 · 8 = 16.

zu (c) Wäre G abelsch, dann müsste jede Untergruppe von G Normalteiler sein. Insbesondere wäre

Gal(L|Q( 8
√

2)) ein Normalteiler von G, und nach den Ergänzungen zum Hauptsatz der Galoistheorie

würde sich daraus ergeben, dass Q( 8
√

2)|Q eine Galois-Erweiterung ist, insbesondere eine normale Er-

weiterung. Aber dies ist nicht der Fall. Denn das Polynom f = x8 − 2 ist über Q irreduzibel und hat



in Q( 8
√

2) eine Nullstelle. Wäre die Erweiterung normal, dann müsste f über Q( 8
√

2) bereits in Line-

arfaktoren zerfallen, also alle komplexen Nullstellen bereits in Q( 8
√

2) ⊆ R liegen. Aber f besitzt auch

nicht-reelle Nullstellen in C, beispielsweise ζ 8
√

2. Dies zeigt, dass G nicht-abelsch ist.

Für den Beweis der zweiten Aussage zeigen wir zunächst, dass es in G ein Element σ mit ord(σ) = 8

gibt. Der erste Schritt ist die Konstruktion eines solchen Elements. Nach dem Fortsetzungssatz, ange-

wendet auf das irreduzible Polynom f ∈ Q[x] und die beiden Nullstellen 8
√

2 und ζ 8
√

2, existiert ein

Q-Homomorphismus σ̃ : Q( 8
√

2)→ C mit σ( 8
√

2) = ζ 8
√

2. Nochmalige Anwendung dieses Satzes, diesmal

auf das über Q( 8
√

2) irreduzible Polynom g = x2 + 1, liefert eine Fortsetzung σ : L → C von σ̃ mit

σ(i) = i. Es gilt also σ( 8
√

2) = ζ 8
√

2 und σ(i) = i. Da die Erweiterung L|Q normal ist, handelt es sich bei

σ sogar um einen Q-Automorphismus von L, also um ein Element von G.

Aus σ( 8
√

2) = ζ 8
√

2 folgt σ( 2
√

8) = σ(( 8
√

2)4) = σ( 8
√

2)4 = (ζ 8
√

2)4 = ζ4( 8
√

2)4 = (−1)
√

2 = −
√

2 und

σ(ζ) = σ( 1√
2

+ i√
2
) = 1

σ(
√

2)
+ σ(i)

σ(
√

2)
= − 1√

2
− i√

2
= −ζ.

Wir erhalten weiter

σ2(
8
√

2) = σ(σ(
8
√

2)) = σ(ζ
8
√

2) = σ(ζ)σ(
8
√

2) = (−ζ)(ζ
8
√

2) = −i 8
√

2

σ4(
8
√

2) = σ2(σ2(
8
√

2)) = σ2(−i 8
√

2) = −σ2(i)σ2(
8
√

2) = (−i)(−i) 8
√

2 = − 8
√

2

σ8(
8
√

2) = σ4(σ4(
8
√

2)) = σ4(− 8
√

2) = −σ4(
8
√

2) = −(− 8
√

2) =
8
√

2.

Aus σ8( 8
√

2) = 8
√

2 und σ8(i) = i folgt σ8 = id, denn wegen L = Q( 8
√

2, i) ist jedes Element aus G durch

die Bilder von 8
√

2 und i festgelegt. Aus σ4( 8
√

2) 6= 8
√

2 folgt andererseits σ4 6= id. Damit ist ord(σ) = 8

nachgewiesen.

Sei nun N = Gal(L|Q(ζ)). Als Kreisteilungserweiterung ist Q(ζ)|Q eine normale Erweiterung, und nach

den Ergänzungen zum Hauptsatz der Galoistheorie gilt somit N � G. Darüber hinaus gilt G/N ∼=
Gal(Q(ζ)|Q) ∼= (Z/8Z)×, außerdem |G| = |Gal(L|Q)| = [L : Q] = 16. Es folgt

16

|N |
=

|G|
|N |

= |G/N | = |(Z/8Z)×| = ϕ(8) = 4.

Es folgt |N | = 16
4 = 4. Bekanntlich sind die einzigen Gruppen der Ordnung 4 bis auf Isomorphie durch

Z/4Z und (Z/2Z)2 gegeben.

Nehmen wir an, es ist N ∼= (Z/2Z)2. Weil es in G/N ∼= (Z/2Z)2 nur Elemente der Ordnung 1 und 2 gibt,

gilt für jedes τ ∈ G jeweils τ2N = (τN)2 = eG/N = N und somit τ2 ∈ N . Weil auch in N ∼= (Z/2Z)2

nur Elemente der Ordnung 1 und 2 existieren, folgt daraus weiter τ4 = (τ2)2 = idL. Aus der Annahme

folgt also, dass in G nur Elemente existieren, deren Ordnungen Teiler von 4 sind, im Widerspruch dazu,

dass es in G ein Element der Ordnung 8 gibt. Somit bleibt N ∼= Z/4Z als einzige Möglichkeit.



Aufgabe F20T3A1

Seien G und G′ Gruppen und f : G→ G′ ein Gruppenhomomorphismus.

(a) Definieren Sie den Begriff Normalteiler.

(b) Sei K der Kern von f , und sei H ⊆ G eine Untergruppe. Zeigen Sie, dass

f−1(f(H)) = HK = {hk | h ∈ H, k ∈ K} ist.

(c) Sei G eine Gruppe, und seien H und K Normalteiler in G mit der Eigenschaft H ∩ K = {eG}.
Zeigen Sie, dass kh = hk gilt für alle h ∈ H und k ∈ K.

(d) Geben Sie ein Beispiel (U,G) mit einer Gruppe G und einer Untergruppe U von G, die kein

Normalteiler ist.

Lösung:

zu (a) Ein Normalteiler einer Gruppe G ist eine Untergruppe N mit der Eigenschaft, dass gN = Ng

für alle g ∈ G erfüllt ist.

zu (b)
”
⊆“ Sei g ∈ f−1(f(H)) vorgegeben. Dann ist f(g) ∈ f(H), also f(g) = f(h) für ein h ∈ H.

Es folgt f(h−1g) = f(h−1)f(g) = f(h)−1f(g) = eG′ und somit h−1g ∈ K. Dies wiederum bedeutet

g = h(h−1g) ∈ HK.
”
⊇“ Sei g ∈ HK, also g = hk für ein h ∈ H und ein k ∈ K. Dann folgt

f(g) = f(hk) = f(h)f(k) = f(h) · eG′ = f(h) ∈ f(H) und somit g ∈ f−1(f(H)).

zu (c) Seien h ∈ H und k ∈ K vorgegeben. Die Gleichung kh = hk ist äquivalent zu khk−1h−1 = eG.

Wegen H �G ist khk−1 ∈ H und khk−1h−1 = (khk−1)h−1 ∈ H. Wegen K �G gilt auch hk−1h−1 ∈ K
und khk−1h−1 = k(hk−1h−1) ∈ K. Insgesamt ist damit nachgewiesen, dass khk−1h−1 in H ∩K = {eG}
enthalten ist. Also gilt khk−1h−1 = eG.

zu (d) Sei G die symmetrische Gruppe S3 und U = 〈(1 2)〉 = {id, (1 2)}. Dann gilt einerseits (1 3)U =

{(1 3)◦ id, (1 3)◦(1 2)} = {(1 3), (1 2 3)}, andererseits U(1 3) = {id◦(1 3), (1 2)◦(1 3)} = {(1 3), (1 3 2)}.
Es gilt also (1 3)U 6= U(1 3), was zeigt, dass U kein Normalteiler von S3 ist.



Aufgabe F20T3A2

Berechnen Sie die letzten beiden Ziffern der Zahl

2018(20192020).

Gehen Sie dazu wie folgt vor:

(a) Berechnen Sie die Klasse von 2018(20192020) in Z/25Z.

(b) Zeigen Sie, dass [2018(20192020)] = 0 in Z/4Z gilt.

(c) Schließen Sie die Berechnung mit Hilfe des Chinesischen Restsatzes ab.

Lösung:

zu (a) Laut Vorlesung gilt |Z/25Z×| = ϕ(25) = 20, und in Z/20Z× gilt

[2019]2020 = [19]2020 = [−1]2020 = ([−1]2)1010 = [1]1010 = 1.

Es folgt 20192020 ≡ 1 mod 20; es existiert also ein k ∈ Z mit 20192020 = 1 + 20k. Wegen |Z/25Z×| = 20

gilt c̄20 = 1̄ für alle c̄ ∈ (Z/25Z)×. Wegen 5 - 2018 folgt ggT(2018, 25) = 1, also ist die Klasse [2018] von

2018 in Z/25Z in (Z/25Z)× enthalten. Daraus wiederum folgt

[2018(20192020)] = [20181+20k] = [2018] · ([2018]20)k = [2018] · [1]k = [2018] = [18].

zu (b) Für alle k ≥ 2 gilt 4 | 2k und somit [2]k = [0] in Z/4Z, und es ist 20192020 ≥ 2019 ≥ 2. Wegen

2018 ≡ 2 mod 4 folgt [2018](20192020) = [2](20192020) = [0] in Z/4Z.

zu (c) Laut Chinesischem Restsatz existiert ein (eindeutig bestimmter) Ringhisomorphismus φ :

Z/100Z → Z/4Z × Z/25Z mit φ(c + 100Z) = (c + 4Z, c + 25Z) für alle c ∈ Z. Daraus folgt: Sind

c1, c2 ∈ Z mit c1 ≡ c2 mod 4 und c1 ≡ c2 ≡ c2 mod 25, dann folgt c1 ≡ c2 mod 100. Denn auf Grund

der Voraussetzung gilt

φ(c1 + 100Z) = (c1 + 4Z, c1 + 25Z) = (c2 + 4Z, c2 + 25Z) = φ(c2 + 100Z).

Aus der Injektivität von φ folgt c1 + 100Z = c2 + 100Z, und dies wiederum ist gleichbedeutend mit

c1 ≡ c2 mod 100.

Es gibt gibt genau vier Zahlen c ∈ Z mit 0 ≤ c < 100 mit c ≡ 18 mod 25, nämlich 18, 43, 68 und 93. Nur

eine dieser Zahlen erfüllt auch die Bedingung c ≡ 0 mod 4, nämlich 68. Sei nun c1 = 2018(20192020) und

c2 = 68. Nach Teil (a) gilt c1 ≡ 18 ≡ 68 ≡ c2 mod 25, und nach Teil (b) gilt c1 ≡ 0 ≡ 68 ≡ c2 mod 4.

Wie soeben ausgeführt, folgt daraus c1 ≡ c2 mod 100, also c1 ≡ 68 mod 100. Dies bedeutet, dass die

letzten beiden Ziffern der Zahl c1 durch 6 und 8 gegeben sind.



Aufgabe F20T3A3

Sei p eine Primzahl, Fp der Körper mit p Elementen und V = Fnp für n ∈ N. Weiter sei G ≤ GLn(Fp)

eine Gruppe, deren Ordnung eine Potenz von p ist. Man zeige, dass es einen Vektor 0 6= v ∈ Fnp gibt mit

gv = v für alle g ∈ G.

(Hinweis: |V \ {0}| ist nicht durch p teilbar.)

Lösung:

Bekanntlich ist durch · : GLn(Fp) × V → V , (A, v) 7→ Av eine Gruppenoperation von GLn(Fp) auf V

definiert, und durch Einschränkung der Abbildung auf G× V erhalten wir eine Operation von G auf V .

Es sei F ⊆ V die Fixpunktmenge dieser Operation und R ⊆ V ein Repräsentantensystem der Bahnen

mit mehr als einem Element. Laut Bahngleichung gilt

pn = |V | = |F |+
∑
v∈R

(G : Gv)

mit (G : Gv) > 1 für alle v ∈ R. Nach Voraussetzung gibt es außerdem |G| = pe für ein e ∈ N. Betrachten

wir nun zunächst den Fall e = 0. Dann ist G = {E} mit der Einheitsmatrix E, und für einen beliebig

gewählten Vektor v ∈ V \ {0} gilt Ev = v, also gv = v für alle g ∈ G.

Ist dagegen e > 0, dann ist nicht nur |G|, sondern auch (G : Gv) für jedes v ∈ R eine p-Potenz größer

als 1. Daraus folgt, dass
∑
v∈R durch p teilbar ist. Weil auch pn ein Vielfaches von p ist, ergibt sich aus

der Bahngleichung, dass dasselbe auch für |F |. Außerdem ist |F | positv, denn wegen A · 0 = 0 für alle

A ∈ G ist der Nullvektor auf jeden Fall in G enthalten. Ingesamt gilt damit |F | ≥ p > 1, insbesondere

gibt es ein v ∈ F \ {0}. Wegen v ∈ F ist Av = v für alle A ∈ G erfüllt.



Aufgabe F20T3A4

Seien K ein Körper und L|K eine endliche Galoiserweiterung.

(a) Wir betrachten Zwischenkörper M und M ′ von L|K und ein Element σ in Gal(L|K). Zeigen Sie

die Äquivalenz der folgenden beiden Aussagen.

(i) σ(M) = M ′

(ii) σGal(L|M)σ−1 = Gal(L|M ′)

(b) Seien L der Zerfällungskörper eines irreduziblen Polynoms f in K[x] und α und β Nullstellen von

f in L. Zeigen Sie, dass die Galoisgruppen Gal(L|K(α)) und Gal(L|K(β)) zueinander isomorph

sind.

(c) Zeigen Sie, dass man in (b) die Voraussetzung, dass f irreduzibel ist, nicht weglassen kann.

Lösung:

zu (a)
”
⇒“ Wir zeigen, dass M ′ der Fixkörper der Untergruppe U = σGal(L|M)σ−1 von G = Gal(L|K)

ist; dann folgt Gleichung (ii) aus dem Hauptsatz der Galoistheorie. Sei α ∈ L vorgegeben. Weil σ : L→ L

bijektiv ist, existiert ein β ∈ L mit σ(β) = α. Es gilt nun die Äquivalenz

α ∈ LU ⇔ ∀ τ ∈ U : τ(α) = α ⇔ ∀ τ ∈ Gal(L|M) : (σ ◦ τ ◦ σ−1)(α) = α ⇔

∀ τ ∈ Gal(L|M) : (σ ◦ τ ◦ σ−1)(σ(β)) = σ(β) ⇔ ∀ τ ∈ Gal(L|M) : σ(τ(β)) = σ(β) ⇔

∀ τ ∈ Gal(L|M) : τ(β) = β ⇔ β ∈ LGal(L|M) ⇔ β ∈M ⇔ σ(β) ∈ σ(M) ⇔ α ∈M ′.

Dabei wurde im fünften Schritt erneut die Bijektivität von σ verwendet, und im siebten (drittletzten)

der Hauptsatz der Galoistheorie. Die Äquivalenz zeigt, dass tatsächlich M ′ = LU gilt.

”
⇐“ Sei M ′′ = σ(M). Wie wir unter

”
⇒“ gezeigt haben, ist M ′′ der Fixkörper von σGal(L|M)σ−1, auf

Grund der Voraussetzung also von Gal(L|M ′). Nach dem Hauptsatz der Galoistheorie gilt LGal(L|M ′) =

M ′. Aus Aus M ′′ = LGal(L|M ′) und LGal(L|M ′) = M ′ folgt M ′ = M ′′ = σ(M).

zu (b) Auf Grund des Fortsetzungssatzes, angewendet auf das irreduzible Polynom f , existiert ein Ele-

ment σ ∈ G mit σ(α) = β. Weil σ ein K-Homomorphismus ist, gilt σ(K(α)) = K(σ(α)) = K(β).

Nach Teil (a) folgt daraus Gal(L|K(β)) = σGal(L|K(α))σ−1. Die Untergruppen Gal(L|K(α)) und

Gal(L|K(β)) sind also konjugiert zueinander; daraus folgt, dass sie isomorph sind.

zu (c) Sei f = x(x2 + 1) = x3 + x ∈ Q[x]. Die Nullstellenmenge dieses Polynoms ist N = {0, i,−i},
somit ist L = Q(N) der Zerfällungskörper von f . Aus i ∈ N ⊆ Q(N) und N = {0, i,−i} ⊆ Q(i) folgt

Q(N) = Q(i). Die Erweiterung L|Q ist normal, da L Zerfällungskörper des Polynoms f über Q ist.

Als normale Erweiterung ist L|Q insbesondere algebraisch, und jede algebraische Erweiterung von Q ist

wegen char(Q) = 0 separabel. Insgesamt ist L|Q also eine Galois-Erweiterung.

Wir bestimmen die Ordnung der Galois-Gruppe G = Gal(f |Q) = Gal(L|Q) = Gal(Q(i)|Q). Das Polynom

g = x2 + 1 ist normiert, irreduzibel und hat i als Nullstelle. Es ist g also das Minimalpolynom von i über

Q, und folglich gilt [L : Q] = [Q(i) : Q] = grad(g) = 2. Da L|Q eine Galois-Erweiterung ist, erhalten wi

r |G| = |Gal(L|Q)| = [L : Q] = 2.

Betrachten wir nun die beiden Nullstellen α = 0 und β = i von f . Dann ist Q(α) = Q und Q(β) = L.

Es folgt |Gal(L|Q(α))| = [L : Q(α)] = [L : Q] = 2 und |Gal(L|Q(β))| = [L : Q(β)] = [L : L] = 1. Als

Gruppen unterschiedlicher Ordnung können Gal(L|Q(α)) und Gal(L|Q(β)) nicht isomorph sein.



Aufgabe F20T3A5

Wir betrachten das Polynom f1 := x5 + 10x + 5 in Q[x] und definieren induktiv Polynome fn(x) :=

f1(fn−1(x)) für n ∈ N mit n ≥ 2. Zeigen Sie, dass die Polynome fn für alle n ∈ N irreduzibel sind.

Zeigen Sie dazu folgende Zwischenschritte durch Induktion nach n:

(a) fn liegt in Z[x], und die Klasse von fn in Z/5Z[x] ist durch x5n gegeben.

(b) Zeigen Sie, dass die Klasse von fn(0) in Z/25Z nicht verschwindet.

Lösung:

zu (a) Für alle n ∈ N sei f̄n jeweils das Bild von fn ∈ Z[x] in Z/5Z[x]. Wir beweisen nun die angegebene

Aussage durch vollständige Induktion nach n. Das Polynom f1 ist nach Definition in Z[x] enthalten und

das Bild von f1 in Z/5Z[x] ist gegeben durch f̄1 = x5 + 10x+ 5̄ = x5 = x51

. Damit ist die Aussage für

n = 1 bewiesen. Sei nun n ∈ N, und setzen wir die Aussage für n voraus. Dann gilt also fn ∈ Z[x] und

f̄n = x5n . Allgemein gilt: Setzt man in ein Polynom f ∈ Z[x] ein Polynom g ∈ Z[x] ein, dann ist f(g(x))

wiederum in Z[x] enthalten. Daraus folgt fn+1(x) = f1(fn(x)) ∈ Z[x]. Betrachten wir auf beiden Seiten

dieser Gleichung das Bild in Z/5Z[x], so erhalten wir f̄n+1(x) = f̄1(f̄n(x)) = f̄n(x)5 + 10f̄n(x) + 5̄ =

f̄n(x)5 = (x5n)5 = x5n+1

. Damit ist die Aussage für n+ 1 bewiesen.

zu (b) Hier beweisen wir durch vollständige Induktion über n, dass fn(0) jeweils zwar durch 5, aber

nicht durch 25 teilbar ist. Daraus ergibt sich unmittelbar, dass das Bild von fn(0) in Z/25Z ungleich

null ist. Für n = 1 ist die Aussage wegen f1(0) = 5, 5 | 5 und 25 - 5 offenbar erfült. Sei nun n ∈ N, und

setzen wir die Aussage für n voraus. Dann gilt laut Annahme 5 | fn(0) und 25 - fn(0). Nach Definition

ist fn+1(x) = f1(fn(x)) und somit fn+1(0) = f1(fn(0)) = fn(0)5 + 10fn(0) + 5. Wegen 5 | fn(0) ist

fn(0)5 durch 55 und somit erst recht durch 25 teilbar. Aus 5 | fn(0) und 5 | 10 folgt auch 25 | 10fn(0).

Damit gilt insgesamt fn+1(0) ≡ 5 mod 25. Dies zeigt, dass auch fn+1(0) zwar durch 5, aber nicht durch

25 teilbar ist.

Die Irreduzibilität von fn für alle n ∈ N folgt nun aus dem Eisenstein-Kriterium. Um nachzuweisen, dass

die Voraussetzungen dieses Kriteriums jeweils erfüllt sind, zeigen wir noch durch vollständige Induktion,

dass x5n jeweils der Leitterm von fn, das Polynom also insbesondere normiert ist. Für f1 ist dies offenbar

erfüllt, der Leitterm ist x5. Sei nun n ∈ N, und setzen wir voraus, dass x5n der Leitterm von fn ist.

Es ist fn+1 = f5
n + 10fn + 5. Nach Induktionsvoraussetzung ist fn vom Grad 5n, also ist f5

n vom Grad

5 · 5n = 5n+1 und 10fn vom Grad 5n. Der Leitterm von fn+1 ist also gleich dem Leitterm von f5
n, und

dieser ist durch (x5n)5 = x5n+1

gegeben.

Jedes fn ist also normiert vom Grad 5n, x5n ist der Leitterm und 1 der Leitkoeffizient. Weil das Bild von

fn in Z/5Z[x] nach Teil (a) gleich x5n ist, sind alle übrigen Koeffizienten von fn durch 5 teilbar. Nach Teil

(b) ist der konstante Termn fn(0) aber nicht durch 25 teilbar. Also sind tatsächlich alle Voraussetzungen

des Eisenstein-Kriteriums erfüllt.



Aufgabe H20T1A1

(a) Entscheiden Sie, ob es eine Potenz von 7 gibt, die mit den Ziffern 11 endet, und begründen Sie Ihre

Entscheidung.

(b) Ermitteln Sie die kleinste Potenz von 7, die auf 001 endet.

(c) Bestimmen Sie die letzten vier Ziffern von 72020.

Lösung:

zu (a) Eine Potenz 7n mit n ∈ N endet genau dann auf die Ziffern 11, wenn 7n ≡ 11 mod 100

gilt. Dies wiederum ist genau dann der Fall, wenn in Z/100Z die Gleichung 7̄n = 11 erfüllt ist. Wegen

ggT(7, 100) = 1 ist 7̄ ein Element der primen Restklassengruppe (Z/100Z)×. Wäre 7̄n = 11 für ein

n ∈ N0 erfüllt, dann müsste 11 in der von 7̄ erzeugten Untergruppe 〈7̄〉 von (Z/100Z)× liegen.

Es gilt 7̄2 = 49 6= 1̄ und 7̄4 = (49)2 = 2401 = 1̄. Dies zeigt, dass 7̄ in (Z/100Z)× ein Element der Ordnung

4 ist und folglich 〈7̄〉 = {7̄0, 7̄1, 7̄2, 7̄3} = {1̄, 7̄, 49, 43} gilt. Insbesondere ist 11 nicht in 〈7̄〉 enthalten, und

folglich gibt es keine Potenz von 7, die auf die Ziffern 11 endet.

zu (b) Eine Potenz 7n mit n ∈ N endet genau dann auf die Ziffern 001, wenn 7n ≡ 1 mod 1000

gilt. Dies wiederum ist genau dann der Fall, wenn in Z/1000Z die Gleichung 7̄n = 1̄ erfüllt ist. Wegen

ggT(7, 1000) = 1 ist 7̄ ein Element der Gruppe (Z/1000Z)×, und das kleinste n ∈ N mit 7̄n = 1̄ ist die

Ordnung von 7̄ in dieser Gruppe.

Auf Grund des Chinesischen Restsatzes und wegen ggT(8, 125) = 1 existiert ein Isomorphismus φ :

(Z/1000Z)× → (Z/8Z)× × (Z/125Z)× gegeben durch a + 1000Z 7→ (a + 8Z, a + 125Z). Die Ordnung

von 7̄ in (Z/1000Z)× stimmt also mit der Ordnung von (7̄, 7̄) in (Z/8Z)× × (Z/125Z)× überein.

Es ist (Z/125Z)× eine Gruppe der Ordnung ϕ(125) = 100, wobei ϕ die Eulersche ϕ-Funktion bezeichnet.

Die Ordnung von 7̄ ∈ (Z/125Z)× muss somit ein Teiler von 100 sein. Es gilt 7̄2 = 49, 7̄4 = 49
2

= 26,

7̄8 = 26
2

= 51, 7̄10 = 7̄8 · 7̄2 = 51 · 49 = 124 = −1̄ und 7̄20 = (−1̄)2 = 1̄. Dies zeigt, dass 7̄ in (Z/125Z)×

die Ordnund 20 hat. In (Z/8Z)× gilt 7̄2 = 49 = 1̄ und somit ebenfalls 7̄20 = (7̄2)10 = 1̄10 = 1̄. Insgesamt

ist 20 damit die kleinste natürliche Zahl n mit der Eigenschaft (7̄, 7̄)n = (1̄, 1̄) in (Z/8Z)×× (Z/125Z)×.

Folglich ist 20 auch die Ordnung von 7̄ in (Z/1000Z)×. Die kleinste Potenz von 7, die auf 001 endet, ist

somit 720 = 79.792.266.297.612.001.

(Die Anwendung des Chinesischen Restsatzes ist hier nicht unbedingt notwendig. Es entstehen beim

Rechnen in Z/125Z lediglich nicht ganz so große Zahlen wie in Z/1000Z.)

zu (c) An den letzten vier Stellen der Zahl 720 kann abgelesen werden, dass in Z/10000Z die Gleichung

7̄20 = 2001 gilt, und es ist 7̄100 = (7̄20)5 = 2001
5

= 1̄. Daraus folgt 7̄2020 = 7̄100·20+20 = (7̄100)20 · 7̄20 =

1̄20 · 2001 = 2001. Die letzten vier Ziffern von 72020 sind also 2001.



Aufgabe H20T1A2

(a) Begründen Sie für jeden der folgenden vier Ringe Z/4Z, F2×F2, F2[x]/(x2) und F2[x]/(x2 +x+1̄),

ob er ein Körper ist.

(b) Zeigen Sie, dass die vier Ringe aus Teilaufgabe (a) paarweise nicht isomorph sind.

Lösung:

zu (a) Die Ringe Z/4Z, F2×F2 und F2[x]/(x2) sind keine Körper. Denn Körper sind Integritätsbereiche,

was bedeutet, dass in ihnen kein von Null verschiedener Nullteiler existiert. Die Gleichungen 2̄ · 2̄ = 0̄ =

0Z/4Z in Z/4Z, (1̄, 0̄) · (0̄, 1̄) = (0̄, 0̄) = 0F2×F2
in F2×F2 und (x+ (x2)) · (x+ (x2)) = x2 + (x2) = (x2) =

0F2[x]/(x2) sowie die Ungleichungen 2̄ 6= 0Z/4Z, (1̄, 0̄), (0̄, 1̄) 6= 0F2×F2 und x + (x2) 6= 0F2[x]/(x2) zeigen

aber, dass es in den drei genannten Ringen solche Elemente gibt.

Der Ring F2[x]/(f) mit f = x2 +x+1̄ dagegen ist ein Körper. Denn als Polynomring über einem Körper

ist F2[x] laut Vorlesung ein Hauptidealring. Jedes irreduzible Element in einem Hauptidealring erzeugt

ein maximales Ideal, und der entsprechende Faktorring ist dann ein Körper. Das Element f ist irreduzibel

in F2[x], denn es ist grad(f) = 2, und wegen f(0̄) = 1̄ 6= 0̄ und f(1̄) = 3̄ = 1̄ 6= 0̄ hat f in F2 keine

Nullstellen. Folglich ist (f) in F2[x] ein maximales Ideal, und F2[x]/(f) ist ein Körper.

zu (b) Aus Teil (a) folgt, dass F2[x]/(f) zu keinem der drei anderen Ringe isomorph ist (denn ein Ring,

der isomorph zu einem Körper ist, ist selbst ein Körper).

Der Ring Z/4Z ist weder zu F2×F2 noch zu F2[x]/(x2) isomorph. Denn wegen 4 · 1̄ = 0̄ und 2 · 1̄ = 2̄ 6= 0̄

in Z/4Z ist 1̄ in der Gruppe (Z/4Z,+) ein Element der Ordnung 4, und folglich die Charakteristik von

Z/4Z gleich 4. Andererseits folgt aus 1F2×F2
= (1̄, 1̄) 6= 0F2×F2

und 2 · 1F2×F2
= (2̄, 2̄) = (0̄, 0̄), dass

F2 × F2 von Charakteristik 2 ist. Auch F2[x]/(x2) ist von Charakteristik 2, denn es gilt 1F2[x]/(x2) =

1̄ + (x2) 6= 0F2[x]/(x2) und 2 · 1F2[x]/(x2) = 2̄ + (x2) = (x2) = 0F2[x]/(x2).

Schließlich sind auch F2[x]/(x2) und F2 × F2 nicht zueinander isomorph. Denn der Ring F2[x]/(x2)

enthält wegen x + (x2) 6= 0F2[x]/(x2) und (x + (x2))2 = x2 + (x2) = (x2) = 0F2[x]/(x2) ein von Null

verschiedenes Element, dessen Quadrat gleich Null ist. Wären die beiden Ringe isomorph, dann müsste

es auch in F2 × F2 ein solches Element geben. Aber aus (a, b)2 = (0̄, 0̄) folgt für a, b ∈ F2 jeweils

(a2, b2) = (0̄, 0̄), also a2 = b2 = 0̄, somit a = b = 0̄ und (a, b) = (0̄, 0̄) = 0F2×F2 . Dies zeigt, dass in

F2 × F2 kein Element ungleich Null existiert, dessen Quadrat gleich Null ist.



Aufgabe H20T1A3

Sei V =M2,Q der Q-Vektorraum der 2× 2-Matrizen über Q, und sei φ : V → V die Linksmultiplikation

mit der Matrix

(
0 1

1 0

)
.

(a) Zeigen Sie, dass φ eine Q-lineare Abbildung ist.

(b) Bestimmen Sie das charakteristische Polynom von φ.

(c) Bestimmen Sie das Minimalpolynom von φ.

Lösung:

zu (a) Sei A die in der Aufgabenstellung angegebene Matrix. Nach Definition der Abbildung φ und

auf Grund der bekannten Rechenregeln für Matrizen gilt für alle B,C ∈ M2,Q und alle λ ∈ Q jeweils

φ(B + C) = A(B + C) = AB + AC = φ(B) + φ(C) und φ(λB) = A(λB) = λ(AB) = λφ(B). Damit ist

die Q-Linearität von φ nachgewiesen.

zu (b) Aus der Linearen Algebra ist bekannt, dass durch B = (B11, B12, B21, B22) mit den Matrizen

B11 =

(
1 0

0 0

)
, B12 =

(
0 1

0 0

)
, B21 =

(
0 0

1 0

)
, B22 =

(
0 0

0 1

)

eine geordnete Basis von V = M2,Q gegeben ist. Die Bilder dieser Basiselemente unter φ sind gegeben

durch

φ(B11) = AB11 =

(
0 1

1 0

)(
1 0

0 0

)
=

(
0 0

1 0

)
= 0 ·B11 + 0 ·B12 + 1 ·B21 + 0 ·B22

φ(B12) = AB12 =

(
0 1

1 0

)(
0 1

0 0

)
=

(
0 0

0 1

)
= 0 ·B11 + 0 ·B12 + 0 ·B21 + 1 ·B22

φ(B21) = AB21 =

(
0 1

1 0

)(
0 0

1 0

)
=

(
1 0

0 0

)
= 1 ·B11 + 0 ·B12 + 0 ·B21 + 0 ·B22

φ(B22) = AB22 =

(
0 1

1 0

)(
0 0

0 1

)
=

(
0 1

0 0

)
= 0 ·B11 + 1 ·B12 + 0 ·B21 + 0 ·B22

Jede Gleichung liefert eine Spalte in der Darstellungsmatrix M = MB(φ) des Endomorphismus φ

bezüglich der Basis B. Es ist

M = MB(φ) =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .

Als charakteristisches Polynom von φ erhalten wir (durch Entwicklung der Matrix xE4 −M zur ersten



Spalte)

χφ = χM = det(xE4 −M) = det


x 0 −1 0

0 x 0 −1

−1 0 x 0

0 −1 0 x

 =

xdet


x 0 −1

0 x 0

−1 0 x

+ (−1) det


0 −1 0

x 0 −1

−1 0 x

 =

x · (x3 − x) + (−1) · ((−1)− (−x2)) = x4 − 2x2 + 1 = (x2 − 1)2.

zu (c) Aus der Linearen Algebra ist bekannt, dass das Minimalpolynom µφ stets ein Teiler der charak-

teristischen Polynoms χφ ist. Darüber hinaus ist µφ ein normierter Teiler jedes Polynoms f ∈ Q[x] mit

f(φ) = 0 bzw. f(M) = 0. Die Gleichung

M2 − E4 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

−


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


zeigt, dass µφ ein Teiler von x2 − 1 = (x− 1)(x+ 1) ist. Die einzigen normierten Teiler dieses Polynoms

sind x2 − 1, x− 1 und x+ 1. Wegen M 6= ±E4 ist weder M −E4 = 0 noch M +E4 = 0, also stimmt µφ

weder mit x− 1 noch mit x+ 1 überein. Somit ist µφ = x2 − 1 die einzige verbleibende Möglichkeit.



Aufgabe H20T1A4

Sei G eine Gruppe und sei H die Untergruppe von G, die aus allen Produkten von Elementen der Form

g2 mit g ∈ G besteht.

(a) Bestimmen Sie H im Fall der alternierenden Gruppe G = A4.

(b) Bestimmen Sie H im Fall der symmetrischen Gruppe G = S4.

(c) Zeigen Sie H 6= G, falls G eine Untergruppe von Index 2 besitzt.

Lösung:

zu (a) Jeder 3-Zykel (i j k) ist in H enthalten, denn es gilt (i k j) ∈ A4 somit (i j k) =

(i k j)(i k j) = (i k j)2 ∈ H. Die Gleichungen (1 2 3)(1 2 4) = (1 3)(2 4), (1 3 4)(1 3 2) =

(1 4)(2 3) und (1 3)(2 4) ◦ (1 4)(2 3) = (1 2)(3 4) zeigen, dass auch die drei Doppeltranspositionen

in H enthalten sind. Als Untergruppe von G enthält H auch id, das Neutralelement. Insgesamt ist damit

H = A4 = G nachgewiesen.

zu (b) Für jedes g ∈ G gilt sgn(g) ∈ {±1} und somit sgn(g2) = sgn(g)2 = 1. Da H aus Produkten

von Elementen dieser Form besteht, haben alle Elemente von H positives Signum, es gilt also H ⊆ A4.

Andererseits enthält H insbesondere alle Produkte von Elementen der Form g2 mit g ∈ A4, und diese

Gruppe stimmt nach Teil (a) mit A4 überein. Insgesamt gilt also H = A4 auch in diesem Fall.

zu (c) Sei N eine Untergruppe von G vom Index 2. Laut Vorlesung ist N dann ein Normalteiler von G,

und somit kann die Faktorgruppe G/N gebildet werden. Für alle g ∈ G gilt g2N = (gN)2 = N und somit

g2 ∈ N , wobei im zweiten Schritt verwendet wurde, dass G/N eine Gruppe der Ordnung (G : N) = 2

ist und gN ∈ G/N somit ein Element der Ordnung 1 oder 2 sein muss. Aus g2 ∈ N für alle g ∈ G folgt

H ⊆ N , wegen N ( G also auch H ( G.



Aufgabe H20T1A5

Sei ω = 1
2 (1−

√
−3).

(a) Zeigen Sie, dass ω eine primitive sechste Einheitswurzel ist.

(b) Entscheiden Sie, ob Q(ω, 3
√

5) eine galoissche Körpererweiterung von Q( 3
√

5) ist.

(c) Entscheiden Sie, ob Q(ω, 6
√

2) eine galoissche Körpererweiterung von Q ist.

(d) Finden Sie galoissche Körpererweiterungen L|K und K|Q, so dass L|Q nicht galoissch ist.

Hinweis: Betrachten Sie 4
√

2.

Lösung:

zu (a) Zu zeigen ist, dass es sich bei ω um ein Element der Ordnung 6 in der multiplikativen Gruppe

C× handelt. Dies ist genau dann der Fall, wenn ω2, ω3 6= 1 und ω6 = 1 gilt. Tatsächlich gilt ω2 =
1
4 (1 −

√
−3)2 = 1

4 (1 − 2
√
−3 + (−3)) = − 1

2 −
1
2

√
−3 6= 1, ω3 = ω2 · ω = (− 1

2 −
1
2

√
−3)( 1

2 −
1
2

√
−3) =

− 1
4 −

1
4

√
−3 + 1

4

√
−3− 3

4 = −1 und ω6 = (ω3)2 = (−1)2 = 1.

zu (b) Wir zeigen zunächst, dass [Q(ω, 3
√

5) : Q( 3
√

5)] = 2 gilt. Als primitive sechste Einheitswurzel

ist ω eine Nullstelle des sechsten Kreisteilungspolynoms Φ6 = x2 − x + 1, außerdem ist Φ6 normiert.

Wäre Φ6 über Q( 3
√

5) reduzibel, dann wäre wegen grad(Φ6) = 2 die Nullstelle ω des Polynoms in Q( 3
√

5)

enthalten. Aber dies ist wegen Q( 3
√

5) ⊆ R und ω ∈ C \ R nicht der Fall. Insgesamt ist Φ6 damit das

Minimalpolynom von ω über Q( 3
√

5), und wir erhalten

[Q(ω,
3
√

5) : Q(
3
√

5)] = [Q(
3
√

5)(ω) : Q(
3
√

5)] = grad(Φ6) = 2 ,

wie gewünscht. Laut Vorlesung ist jede Körpererweiterung vom Grad 2 normal, insbesondere algebraisch.

Wegen char(Q( 3
√

5)) = 0 ist jede algebraische Erweiterung von Q( 3
√

5) auch separabel. Insgesamt ist

Q(ω, 3
√

5)|Q( 3
√

5) also tatsächlich eine Galois-Erweiterung.

zu (c) Die Menge der komplexen Nullstellen des Polynoms f = x6 − 2 ist gegeben durch N = {ωk 6
√

2 |
0 ≤ k < 6}. Denn für k ∈ {0, ..., 5} gilt jeweils f(ωk 6

√
2) = (ωk 6

√
2)6−2 = (ω6)k( 6

√
2)6−2 = 1k ·2−2 = 0.

Da ω eine primitive sechste Einheitswurzel ist, sind die Elemente ω0, ω1, ..., ω5 alle verschieden, wegen
6
√

2 6= 0 auch die Produkte ωk 6
√

2 mit 0 ≤ k < 6. Da ein Polynom vom Grad 6 über einem Körper nicht

mehr als sechs Nullstellen besitzen kann, haben wir damit tatsächlich alle komplexen Nullstellen von f

bestimmt.

Somit ist Q(N) der Zerfällungskörper von f in C über Q. Laut Vorlesung folgt daraus, dass die Erweite-

rung Q(N)|Q normal ist. Als algebraische Erweiterung ist sie wegen char(Q) = 0 auch separabel. Insge-

samt handelt es sich also beiQ(N)|Q um eine Galois-Erweiterung. Schließlich gilt nochQ(N) = Q(ω, 6
√

2).

Die Inklusion
”
⊆“ folgt aus der Tatsache, dass mit ω und 6

√
2 auch ωk 6

√
2 für 0 ≤ k < 6 in Q(ω, 6

√
2)

liegt, also N ⊆ Q(ω, 6
√

2) gilt. Für die Inklusion
”
⊇“ bemerken wir, dass mit 6

√
2, ω 6
√

2 ∈ N ⊆ Q(N)

auch ω = ω 6√2
6√2

in Q(N) liegt. Es gilt also {ω, 6
√

2} ⊆ Q(N). Damit ist die Gleichung Q(N) = Q(ω, 6
√

2)

bewiesen, und folglich ist auch Q(ω, 6
√

2)|Q eine Galois-Erweiterung.

zu (d) Sei K = Q( 6
√

) und L = Q( 4
√

2). Zunächst zeigen wir, dass [K : Q] = [L : Q] = 2 gilt. Da laut

Vorlesung Erweiterungen vom Grad 2 immer normal sind, folgt daraus, dassK|Q und L|K normale Erwei-

terungen sind. Als endliche Erweiterungen sind diese auch algebraisch, und wegen char(Q) = char(K) = 0

darüber hinaus separabel. Insgesamt handelt es sich damit also um Galois-Erweiterungen.



Zum Nachweis der angegebenen Erweiterungsgrade sei f = x2 − 2 und g = x4 − 2. Beide Polynome sind

normiert und außerdem irreduzibel über Z, auf Grund des Eisenstein-Kriteriums angewendet auf die

Primzahl p = 2. Nach dem Gauß’schen Lemma sind sie somit auch irreduzibel über Q. Wegen f(
√

2) = 0

ist f insgesamt das Minimalpolynom von
√

2 über Q, und es folgt [K : Q] = [Q(
√

2) : Q] = grad(f) = 2.

Wegen g( 4
√

2) = 0 ist g das Minimalpolynom von 4
√

2 über Q, und es folgt [L : Q] = [Q( 4
√

2) : Q] =

grad(g) = 4. Wegen
√

2 = ( 4
√

2)2 ∈ L ist K = Q(
√

2) ein Zwischenkörper von L|Q. Auf Grund der

Gradformel gilt somit [L : Q] = [L : K] · [K : Q], und wir erhalten [L : K] = [L:Q]
[K:Q] = 4

2 = 2.

Nun zeigen wir noch, dass die Erweiterung L|Q nicht normal ist, und somit erst recht eine galois’sche

Erweiterung. Wäre sie normal, dann müsste jedes Polynom, das über Q irreduzibel ist und in L eine

Nullstelle besitzt, über L bereits in Linearfaktoren zerfallen. Wie oben gezeigt, ist das Polynom g = x4−2

irreduzibel über Q, und es besitzt in L die Nullstelle 4
√

2. Würde es über L in Linearfaktoren zerfallen,

dann müssten sämltliche komplexen Nullstellen von g bereits in L liegen, insbesondere auch die Nullstelle

i 4
√

2. Aber dies ist nicht der Fall, denn einerseits gilt L = Q( 4
√

2) ⊆ R wegen 4
√

2 ∈ R, andererseits aber

i 4
√

2 /∈ R.



Aufgabe H20T2A1

(a) Bestimmen Sie das a ∈ {0, 1, ..., 6} mit 32020 ≡ a mod 7.

Hinweis: Benutzen Sie den kleinen Satz von Fermat.

(b) Zeigen Sie, dass die Diedergruppe D4 = {σkδ` | k ∈ {0, 1}, ` ∈ {0, 1, 2, 3}} mit 8 Elementen (es gilt

σ2 = e = δ4 und σδσ−1 = δ−1) nicht isomorph zur Quaternionengruppe Q = {±1,±i,±j,±k} (es

gilt i2 = j2 = k2 = ijk = −1) ist.

(c) Bestimmen Sie eine zu A =

(
1 2

2 1

)
∈ M2,R ähnliche Diagonalmatrix D sowie eine invertierbare

Matrix S mit D = S−1AS.

(d) Bestimmen Sie alle erzeugenden Elemente der Einheitengruppe (Z/11Z)×.

Lösung:

zu (a) Die Gruppe (Z/7Z)× hat ϕ(7) = 6 Elemente, und 3̄ = 3 + 7Z ist wegen ggT(3, 7) = 1 in dieser

Gruppe enthalten. Auf Grund des kleinen Satzes von Fermat folgt 3̄6 = 1. Wegen 2020 ≡ 220 ≡ 40 ≡
4 mod 6 gibt es ein n ∈ Z mit 2020 = 6n+4. Es gilt also 3̄2020 = 3̄6n+4 = (3̄6)n ·3̄4 = 1̄n ·3̄4 = 81 = 11 = 4̄

in (Z/7Z)×. Daraus wiederum folgt 32020 ≡ 4 mod 7.

zu (b) Wären die beiden Gruppen isomorph, dann müsste es in beiden Gruppen gleich viele Elemente

der Ordnung 2 geben. Für α ∈ {±i,±j,±k} gilt jeweils α2 = −1 6= 1. Diese Elemente sind also nicht

von Ordnung 2. Die einzigen verbleibenden Elemente sind ±1. Das Neutralelement 1 hat die Ordnung

1; wegen −1 6= 1 und (−1)2 = 1 ist −1 also das einzige Element der Ordnung 2 in Q. Andererseits ist

bekannt, dass für jedes n ∈ N mit n ≥ 3 die 2n-elementige Diedergruppe mindestens n Elemente der

Ordnung 2 besitzt (die
”
Spiegelungen“). Daraus folgt, dass in D4 mindestens vier Elemente der Ordnung

2 existieren. Somit kann D4 nicht zu Q isomorph sein. (Tatsächlich gibt es in D4 noch ein fünftes Element

der Ordnung 2, die 180◦-Drehung δ2.)

zu (c) Das charakteristische Polynom von A ist gegeben durch

χA = det(xE −A) = det

(
x− 1 2

2 x− 1

)
= (x− 1)2 − 4

= (x2 − 2x+ 1)− 4 = x2 − 2x− 3.

wobei E ∈ M2,R die Einheitsmatrix bezeichnet. Mit Hilfe der p-q-Formel findet man die Nullstellen −1

und 3. Also sind dies die beiden Eigenwerte von A, und foglich ist

D =

(
−1 0

0 3

)

eine zu A ähnliche Diagonalmatrix. Durch die Rechnung

A+ E =

(
2 2

2 2

)
7→

(
1 1

0 0

)

findet man den Eigenvektor (1,−1) zum Eigenwert −1. Genauso erhält man durch

A− 3E =

(
−2 2

2 −2

)
7→

(
1 −1

0 0

)



den Eigenvektor (1, 1) zum Eigenwert 1. Trägt man die beiden Eigenvektoren als Spalten in eine Matrix

S =

(
1 1

−1 1

)

ein, so erhält man eine Matrix mit D = S−1AS. Tatsächlich gilt

S−1 =

(
1
2 − 1

2
1
2

1
2

)
und S−1AS =

(
1
2 − 1

2
1
2

1
2

)(
1 2

2 1

)(
1 1

−1 1

)
=

(
1
2 − 1

2
1
2

1
2

)(
−1 3

1 3

)
=

(
−1 0

0 3

)
= D.

zu (d) Da p = 11 eine Primzahl ist, handelt es sich laut Vorlesung bei (Z/11Z)× um eine zyklische

Gruppe der Ordnung 11−1 = 10. Die einzigen Primteiler von 10 sind 2 und 5. Nach einem Kriterium aus

der Vorlesung ist 2̄ wegen 2̄10/2 = 2̄5 = 32 = 10 6= 1̄ und 2̄10/5 = 2̄2 = 4̄ 6= 1̄ ein Element der Ordnung 10,

also ein erzeugendes Element der Gruppe. Allgemein gilt: Ist n ∈ N,G eine zyklische Gruppe der Ordnung

n und g ∈ G ein erzeugendes Element, dann besitzt G genau ϕ(n) erzeugende Elemente (wobei ϕ die

Eulersche ϕ-Funktion bezeichnet), und diese sind gegeben durch gk mit 0 ≤ k < n und ggT(k, n) = 1.

Wegen ϕ(10) = ϕ(2)ϕ(5) = 1 · 4 = 4 besitzt (Z/11Z)× also insgesamt vier erzeugende Elemente, und

diese sind gegeben durch 2̄1 = 2̄, 2̄3 = 8̄, 2̄7 = 128 = 7̄ und 2̄9 = 512 = 72 = 6̄ (denn 1, 3, 7 und 9 sind

genau die zu 10 teilerfremden ganzen Zahlen k mit 0 ≤ k < 10).



Aufgabe H20T2A2

Sei G eine Gruppe, die auf einer Menge S operiert. Dann heißt die Operation transitiv, falls es zu jedem

Paar von Elementen s, s′ ∈ S ein g ∈ G mit gs = s′ gibt. Zeigen Sie:

(a) Die übliche Operation von GL2(R) auf R2 \ {0} ist transitiv.

Hinweis: Betrachten Sie die Bahn von v = (1, 0).

(b) Sei G eine endliche Gruppe mit |G| ≥ 3. Dann ist die Operation von G auf G \ {e} nicht transitiv.

Lösung:

zu (a) Laut Vorlesung ist die Operation einer Gruppe G auf einer Menge S genau dann transitiv,

wenn ein Element s ∈ S existiert, dessen Bahn G(s) mit S übereinstimmt. Setzen wir G = GL2(R) und

S = R2 \ {0}, so genügt es also zu zeigen, dass für v = (1, 0) ∈ S die Gleichung G(v) = S erfüllt ist.

Die Inklusion
”
⊆“ ist offensichtlich erfüllt, da jede Bahn einer Operation von G auf S in S enthalten ist.

Zum Beweis der Inklusion
”
⊇“ sei w = (a, b) ∈ S vorgegeben. Wegen w 6= (0, 0) gilt a 6= 0 oder b 6= 0.

Im ersten Fall ist die Matrix

A =

(
a 0

0 1

)
wegen det(A) = a 6= 0 ein Element von G mit

Av =

(
a 0

b 1

)(
1

0

)
=

(
a

b

)
= w.

Im zweiten Fall setzen wir

A =

(
a 1

b 0

)
.

Auch diese Matrix ist wegen det(A) = −b 6= 0 ein Element von G, und es gilt

Av =

(
a 1

b 0

)(
1

0

)
=

(
a

b

)
= w.

In beiden Fällen ist w also in der Bahn G(v) enthalten.

zu (b) Nehmen wir an, dass G auf G \ {e} transitiv operiert, und sei h ∈ G \ {e} ein beliebiges

Element. Auf Grund der Transitivität ist die Bahn von h dann durch G(h) = G\{e} gegeben. Bezeichnet

Gh den Stabilisator von h, dann gilt auf Grund der Beziehung zwischen Bahnlänge und Stabilisator
|G|
|Gh| = (G : Gh) = |G(h)| = |G \ {e}| = |G| − 1. Setzen wir n = |G|, dann zeigt die Gleichung, dass

n − 1 ein Teiler von n ist. Es gibt also ein d ∈ N mit d(n − 1) = n. Aber die Umformung zeigt, dass

dann d = n
n−1 = 1 + 1

n−1 eine ganze Zahl sein müsste, was nur für n = 2 der Fall ist. Dies steht im

Widerspruch zur Voraussetzung n = |G| ≥ 3.



Aufgabe H20T2A3

Sei p eine Primzahl, n ∈ N und f ∈ Fp[x] irreduzibel vom Grad n. Man bestimmen diejenigen m ∈ N,

für die f über Fpm in Linearfaktoren zerfällt.

Lösung:

Sei m ∈ N. Wir zeigen, dass f genau dann über Fpm in Linearfaktoren zerfällt, wenn m ein Vielfaches

von n ist. Mit Falg
p bezeichnen wir einen algebraischen Abschluss von Fpm (der zugleich ein algebraischer

Abschluss des Primkörpers Fp von Fpm ist).

”
⇒“ Wenn f über Fpm in Linearfaktoren zerfällt, dann besitzt f insbesondere eine Nullstelle α ∈ Fpm .

Da f in Fp[x] irreduzibel vom Grad n ist, stimmt f bis auf eine Konstante ungleich null mit dem

Minimalpolynom von α über Fp überein, und es gilt [Fp(α) : Fp] = grad(f) = n. Als n-dimensionaler Fp-

Vektorraum besteht der Körper Fp(α) aus pn Elementen; er stimmt also mit dem eindeutig bestimmten

pn-elementigen Zwischenkörper Fpn von Falg
p |Fp überein. Aus α ∈ Fpm folgt, dass Fpn = Fp(α) ein

Teilkörper von Fpm ist. Dies ist laut Vorlesung genau dann der Fall, wenn m ein Vielfaches von n ist.

”
⇐“ Hier setzen wir voraus, dass m = dn für ein d ∈ N gilt. Zu zeigen ist, dass f über Fpm in

Linearfaktoren zerfällt. Sei α eine Nullstelle von f in Falg
p . Wie im Beweis von

”
⇒“ zeigt man, dass

Fp(α) = Fpn gilt. Insbesondere ist α in Fpn enthalten. Da n ein Teiler von m ist, gilt Fpn ⊆ Fpm ; es gilt

somit auch α ∈ Fpm . Aus der Vorlesung ist bekannt: Ist E|F eine Erweiterung bestehend aus endlichen

Körpern F und E, dann ist E|F normal. Also ist auch Fpm |Fp eine normale Erweiterung. Dies bedeutet,

dass jedes über Fp irreduzible Polynom, das in Fpm eine Nullstelle besitzt, über Fpm in Linearfaktoren

zerfällt. Das Polynom f ist laut Voraussetzung irreduzibel, und α ist eine Nullstelle dieses Polynoms in

Fpm . Also zerfällt f über Fpm in Linearfaktoren.



Aufgabe H20T2A4

Sei k ein Körper und G = 〈g〉 eine von g erzeugte zyklische Gruppe der Ordnung n ≥ 2. Der Gruppenring

kG ist die Menge aller Summen
∑n−1
i=0 αig

i (αi ∈ K). Fakt: Die Menge kG ist bezüglich der Operationen(
n−1∑
i=0

αig
i

)
+

(
n−1∑
i=0

βig
i

)
=

n−1∑
i=0

(αi + βi)g
i

(
n−1∑
i=0

αig
i

)
·

(
n−1∑
i=0

βig
i

)
=

n−1∑
k=0

γkg
k , γk =

∑
i+j≡k mod n

αiβj

ein assoziativer, kommutativer Ring mit Einselement 1kG = 1k · 1G. Zeigen Sie:

(a) Es gibt einen surjektiven Ringhomomorphismus φ : k[x]→ kG.

(b) kG ∼= k[x]/(xn − 1k)

(c) kG ist kein Integritätsbereich

Lösung:

zu (a) Allgemein gilt: Ist φ0 : R → S ein Ringhomomorphismus und s ∈ S, dann gibt es einen

eindeutig bestimmten Ringhomomorphismus φ : R[x] → S mit φ|R = φ0 und φ(x) = s. Die Abbildung

φ0 : k → kG gegeben durch φ0(c) = c · 1G für alle c ∈ k ist ein Ringhomomorphismus, denn es gilt

φ0(1k) = 1k · 1G = 1kG, φ0(c+ d) = (c+ d) · 1G = c · 1G + d · 1G = φ0(c) +φ0(d) und φ0(cd) = (cd) · 1G =

(c · 1G) · (d · 1G) = φ0(c) · φ0(d) für alle c, d ∈ k.

Also existiert ein eindeutig bestimmter Ringhomomorphismus φ : k[x] → kG mit φ|k = φ0 und φ(x) =

1k · g1. Zu zeigen bleibt, dass φ surjektiv ist. Wir zeigen zunächst durch vollständige Induktion, dass

(1k · g1)i = 1k · gi für 0 ≤ i ≤ n − 1 gilt. Für i = 0 ist die Gleichung erfüllt, denn es gilt (1k · g1)0 =

1kG = 1k ·1G = 1k · g0. Setzen wir nun die Gleichung für ein i ∈ {0, ..., n−2} voraus. Es sei αi = β1 = 1k

und αj = 0k für alle j ∈ {0, ..., n − 1} \ {i}, βj = 0 für j = 0 und 2 ≤ j ≤ n − 1. Definieren wir

γ` =
∑
u+v≡` mod n αuβv für 0 ≤ ` ≤ n− 1, dann ist αuβv 6= 0k nur für das Paar (u, v) = (i, 1). Daraus

folgt γi+1 = αiβ1 = 1k und γ` = 0k für ` ∈ {0, ..., n− 1} \ {i+ 1}, und wir erhalten

(1k · g1)i+1 = (1k · g1)i · (1k · g1) =

(
n−1∑
u=0

αug
u

)(
n−1∑
v=0

βvg
v

)
=

n−1∑
`=0

γ`g
` = 1k · gi+1.

Zum Nachweis der Surjektivität von φ sei nun γ =
∑n−1
i=0 αig

i ein beliebig vorgegebenes Element, mit

α0, ..., αn−1 ∈ k. Setzen wir f =
∑n−1
i=0 αix

i, dann gilt

φ(f) = φ

(
n−1∑
i=0

αix
i

)
=

n−1∑
i=0

φ(αi) · φ(x)i =

n−1∑
i=0

φ0(αi) · (1k · g)i =

n−1∑
i=0

(αi · 1G) · (1k · g)i =

n−1∑
i=0

αig
i = γ.

Damit ist die Surjektivität von φ nachgewiesen.

zu (b) In Teil (a) haben wir einen surjektiven Ringhomomorphismus φ : k[x] → kG definiert. Wenn

außerdem ker(φ) = (xn − 1k), dann induziert φ nach dem Homomorphiesatz für Ringe einen Isomor-

phismus k[x]/(xn − 1k) ∼= kG. Zum Nachweis der Inklusion
”
⊇“ beweisen wir zunächst die Gleichung

(1k ·g)n = 1kG. Bereits gezeigt wurde die Gleichung (1k ·g)n−1 = 1k ·gn−1. Wir definieren nun αi = 0k für

0 ≤ i ≤ n−2, αn−1 = 1k, β1 = 1k und βj = 0k für alle j ∈ {0, ..., n−1}\{1}, und γ` =
∑
u+v≡` mod n αuβv



für 0 ≤ ` ≤ n−1. Das einzige Paar (u, v) mit αuβv 6= 0k ist dann (n−1, 1), und es gilt (n−1)+1 ≡ 0 mod n.

Daraus folgt γ0 = αn−1β1 = 1k und γ` = 0k für 1 ≤ ` ≤ n− 1. Wir erhalten

(1k · g1)n = (1k · g1)n−1 · (1k · g1) =

(
n−1∑
u=0

αug
u

)(
n−1∑
v=0

βvg
v

)
=

n−1∑
`=0

γ`g
` =

1k · g0 = 1k · 1G = 1kG.

Wegen φ(xn − 1k) = φ(x)n − φ(1k) = (1k · g)n − 1kG = 1kG − 1kG = 0kG ist xn − 1k im Kern von φ

enthalten, und weil ker(φ) ein Ideal in k[x] ist, gilt (xn − 1k) ⊆ ker(φ). Zum Nachweis der Inklusion
”
⊆“

sei nun umgekehrt f ∈ ker(φ). Durch Division von f durch xn − 1k mit Rest erhalten wir Polynome

q, r ∈ k[x] mit f = q · (xn − 1k) + r, wobei r = 0k oder grad(r) < n gilt. Schreiben wir r =
∑n−1
`=0 a`x

`

mit a0, a1, ..., an−1 ∈ k, dann folgt

0kG = φ(f) = φ(q(xn − 1k) + r) = φ(q) · φ(xn − 1k) + φ(r) =

φ(q) · 0kG + φ

(
n−1∑
`=0

a`x
`

)
=

n−1∑
`=0

a`g
`.

Daraus folgt a` = 0k für 0 ≤ ` < n, was wiederum r = 0k zur Folge hat. Es gilt also f = q · (xn − 1k).

Dies zeigt, dass f im Hauptideal (xn−1k) enthalten ist, womit der Nachweis der Inklusion abgeschlossen

ist.

zu (c) Im Faktorring k[x]/(xn − 1k) sind die Elemente x − 1k + (xn − 1k) und
∑n−1
`=0 x

` + (xn − 1k)

ungleich null, denn die Polynome x− 1k und
∑n−1
`=0 x

` sind auf Grund ihrer Grade keine Vielfachen von

xn − 1k. Andererseits gilt

(x− 1k + (xn − 1k)) ·

(
n−1∑
`=0

x` + (xn − 1k)

)
= (x− 1k)

(
n−1∑
`=0

x`

)
+ (xn − 1k)

= xn − 1k + (xn − 1k) = 0k[x]/(xn−1k).

Dies zeigt, dass k[x]/(xn − 1k) kein Integritätsbereich ist. Wegen k[x]/(xn − 1k) ∼= kG ist auch kG kein

Integritätsbereich.



Aufgabe H20T2A5

Sei K ein Körper der Charakteristik 0 und sei p eine Primzahl. Angenommen, p teilt den Grad jeder

endlichen Körpererweiterung L|K mit K ( L. Zeigen Sie, dass dann der Grad jeder endlichen Körperer-

weiterung von K eine Potenz von p ist.

Hinweis: Zeigen Sie, dass es eine endliche Galoiserweiterung E|K mit K ⊆ L ⊆ E gibt, und verwenden

Sie die Sylowsätze.

Lösung:

Sei L|K eine endliche Körpererweiterung, und nehmen wir an, dass [L : K] keine p-Potenz ist. Dann

existiert eine von p verschiedene Primzahl q, die [L : K] teilt. Wegen char(K) = 0 ist L|K separabel.

Somit kann der Satz vom primitiven Element angewendet werden, und demnach existiert ein Element

γ ∈ L mit L = K(γ). Sei f ∈ K[x] das Minimalpolynom von γ über K, Lalg ein algebraischer Abschluss

von L und M der Zerfällungskörper von f über K, der durch Adjunktion aller Nullstellen von f in Lalg

an K existiert. Weil γ eine Nullstelle von f in L ⊆ Lalg ist, gilt γ ∈M und L = K(γ) ⊆M .

Als Zerfällungskörper eines Polynoms f ∈ K[x] über K ist M |K eine normale Erweiterung. Wegen

char(K) = 0 ist diese Erweiterung auch separabel, insgesamt also eine Galois-Erweiterung. Sei G =

Gal(M |K) die zugehörige Galois-Gruppe. Dann gilt |G| = [M : K]. Da L ein Zwischenkörper von M |K
ist, liefert die Gradformel die Gleichung [M : K] = [M : L] · [L : K]. Da die Primzahl q ein Teiler von

[L : K] ist, ist sie auch ein Teiler von [M : K] und |G|. Schreiben wir |G| = pr ·m mit r ∈ N0, m ∈ N
und p - m, dann ist q ein Teiler von m.

Sei nun P eine p-Sylowgruppe von G und L1 = MP der zugehörige Fixkörper. Auf Grund der Ergänzun-

gen zum Hauptsatz der Galoistheorie gilt dann [L1 : K] = (G : P ) = n
pr = m. Wegen q | m gilt

[L1 : K] > 1; es handelt sich bei L1|K also um eine endliche Körpererweiterung mit L1 ⊇ K. Aber der

Grad [L1 : K] = m wird von p nicht geteilt, im Widerspruch zu den Voraussetzungen. Unsere Annahme,

dass [L : K] keine p-Potenz ist, war also falsch.



Aufgabe H20T3A1

Es sei f = x4 + ax+ 2 ∈ Z[x].

(a) Bestimmen Sie alle a ∈ Z, für die f eine rationale Nullstelle besitzt.

(b) Zeigen Sie, dass f für kein a ∈ Z in zwei quadratische Faktoren aus Z[x] zerfällt.

(c) Beweisen Sie: Der Restklassenring Q[x]/(f) ist, abhängig von a, entweder ein Körper oder isomorph

zu einem direkten Produkt K1 ×K2 von zwei Körpern, die die Grade 1 bzw. 3 über Q haben und

geben Sie an, für welche Werte von a die jeweiligen Fälle eintreten.

Lösung:

zu (a) Da es sich bei f ein um normiertes, ganzzahliges Polynom handelt, ist jede rationale Nullstelle

ganzzahlig und ein Teiler des konstanten Terms. Die einzigen möglichen Nullstellen sind also ±1,±2. Es

gilt f(1) = 3 + a, f(−1) = 3 − a, f(2) = 18 + 2a, f(−2) = 18 − 2a. Außerdem gelten die Äquivalenzen

3 + a = 0⇔ a = −3, 3− a = 0⇔ a = 3, 18 + 2a = 0⇔ a = −9, 18− 2a = 0⇔ a = 9. Das Polynom f

besitzt also genau dann eine rationale Nullstelle, wenn a ∈ {±3,±9} gilt, und diese rationale Nullstelle

ist dann auch ganzzahlig.

zu (b) Nehmen wir an, dass f ein Produkt zweier Faktoren g, h ∈ Z[x] ist. Weil f normiert ist, ist das

Produkt der Leitkoeffizienten von g und h gleich 1. Daraus folgt, dass entweder beide Leitkoeffizienten

gleich 1 oder beide gleich −1 sind. Nach eventueller Ersetzung von g und h durch −g bzw. −h können

wir davon ausgehen, dass g und h beide normiert sind. Es gibt also b, c, r, s ∈ Z mit g = x2 + bx+ r und

h = x2 + cx+ s. Wir erhalten

x4 + ax+ 2 = f = gh = (x2 + bx+ r)(x2 + cx+ s) =

x4 + (b+ c)x3 + (r + s+ bc)x2 + (bs+ cr)x+ rs.

Koeffizientenvergleich liefert b+ c = r+ s+ bc = 0, bs+ cr = a und rs = 2. Einsetzen von c = −b in die

letzten drei Gleichungen liefert r+ s = c2, b(s− r) = a und rs = 2. Auf Grund der Gleichung rs = 2 gibt

es für das Paar (r, s) nur die vier Möglichkeiten (1, 2), (2, 1), (−1,−2) und (−2,−1). Die Summe r+s ist

in diesen vier Fällen entweder 3 oder −3. Da aber beides keine Quadrate in Z sind, kann die Gleichung

r + s = c2 nicht gelten. Dies zeigt, dass keine Zerlegung von f in der angegebenen Form existiert.

zu (c) Betrachten wir zunächst den Fall a /∈ {±3,±9}. Nach Teil (a) besitzt das Polynom f in diesem Fall

keine rationale Nullstelle. Ist f das Polynom dennoch reduzibel in Q[x], dann ist es nach dem Gauß’schen

Lemma auch reduzibel in Z[x]. Es gibt also in Z[x] eine Zerlegung von f in zwei Nicht-Einheiten g, h.

Da f normiert und somit insbesondere primitiv ist, ist keines der Polynome g, h eine Konstante. Da f

keine rationale Nullstelle besitzt, muss es sich bei g und h um Polynome vom Grad 2 handeln. Aber in

Teil (b) wurde gezeigt, dass eine solche Zerlegung nicht existiert.

Also ist f über Q irreduzibel. Als Polynomring über einem Körper ist Q[x] ein Hauptidealring. Daraus

folgt, dass jedes Hauptideal, das von einem irreduziblen Element erzeugt wird, maximal ist. Also ist (f)

ein maximales Ideal in Q[x], und folglich ist Q[x]/(f) ein Körper.

Betrachten wir nun den Fall a ∈ {±3,±9}. Wie in Teil (a) gezeigt, besitzt f dann eine Nullstelle r ∈ Z.

Es gibt also ein Polynom g ∈ Q[x] mit grad(g) = 3 und f = (x−r)g. Nehmen wir an, dass f , eventuell mit

Vielfachheiten, mindestens zwei rationale Nullstellen besitzt. Nach Teil (a) müssten diese Nullstellen r, s

dann beide ganzzahlig sein. Es wäre dann (x−r)(x−s) ein Teiler von f in Z[x]; das Polynom würde also



in zwei Faktoren vom Grad 2 zerfallen. Aber dies wurde in Teil (b) ausgeschlossen. Folglich besitzt f mit

Vielfachheiten genau eine rationale Nullstelle, und g besitzt keine rationale Nullstelle. Wegen grad(g) = 3

folgt daraus, dass g in Q[x] irreduzibel ist. Als Polynom vom Grad 1 ist x− r ebenfalls irreduzibel.

Als voneinander verschiedene, normierte irreduzible Polynome sind x− r und g teilerfremd. Folglich sind

auch die Hauptideale (x− r) und (g) in Q[x] teilerfremd. Durch Anwendung des Chinesischen Restsatzes

erhalten wir einen Isomorphismus Q[x]/(f) ∼= Q[x]/(x−r)×Q[x]/(g). Da x−r und g irreduzibel sind, sind

(wie bereits oben bemerkt) die Hauptideale (x− r) und (g) maximal, und die Faktorringe Q[x]/(x− r)
und Q[x]/(g) sind Körper. Also ist Q[x]/(f) isomorph zu einem direkten Produkt zweier Körper. Aus

der Vorlesung ist bekannt: Ist h ∈ Q[x] irreduzibel und α ∈ C eine Nullstelle von h, dann ist Q(α)

zum Faktorring Q[x]/(h) isomorph. Das Polynom h stimmt bis auf eine Konstante ungleich null mit

dem Minimalpolynom von α über Q überein. Daraus folgt [Q(α) : Q] = grad(h), und folglich ist auch

Q[x]/(h) ein Erweiterungskörper vom Grad grad(h) über Q. Insbesondere sind also Q[x]/(x − r) und

Q[x]/(g) Erweiterungen von Q vom Grad 1 bzw. 3.



Aufgabe H20T3A2

Es sei U eine Untergruppe einer endlichen einfachen Gruppe G vom Index n = (G : U) ≥ 3.

(a) Zeigen Sie, dass G isomorph zu einer Untergruppe der Sn ist.

Hinweis: Betrachten Sie eine geeignete Operation von G.

(b) Zeigen Sie, dass |G| ein Teiler von 1
2n! ist.

(c) Begründen Sie, ob die alternierende Gruppe A5 eine Untergruppe der Ordnung 15 besitzt.

Lösung:

zu (a) Wir betrachten die Operation ∗ von G auf der Menge G/U der Linksnebenklassen von U

gegeben durch g ∗ (hU) = (gh)U für alle g, h ∈ G. Laut Vorlesung existiert ein Homomorphismus

φ : G → Per(G/U) gegeben durch φ(g)(hU) = g ∗ (hU) = (gh)U für alle g, h ∈ G. Als Kern eines

Gruppenhomomorphismus ist N = ker(φ) ein Normalteiler von G. Da G laut Angabe einfach ist, sind

nur die beiden Fälle N = {e} und N = G möglich. Betrachten wir zunächst den Fall N = G. Dann gilt

φ(g) = idG/U für alle g ∈ G. Wegen (G : U) ≥ 3 gibt es in G/U insbesondere zwei verschiedene Elemente

h1U und h2U , mit h1, h2 ∈ G, und es ist (h2h
−1
1 ) ∗ (h1U) = (h2h

−1
1 h1)U = h2U . Aus φ(h2h

−1
1 ) = idG/U

folgt aber andererseits (h2h
−1
1 )∗(h1U) = φ(h2h

−1
1 )(h1U) = idG/U (h1U) = h1U 6= h2U . Der Widerspruch

zeigt, dass die Annahme N = G falsch war.

Also muss ker(φ) = N = {e} gelten, und folglich ist φ injektiv. Durch φ ist somit ein Isomorphismus

zwischen G und φ(G) definiert. Folglich ist G isomorph zur Untergruppe φ(G) von Per(G/U). Wegen

|G/U | = (G : U) = n ist Per(G/U) isomorph zu Sn. Also ist G isomorph zu einer Untergruppe von Sn.

zu (b) Nach Teil (a) existiert ein Isomorphismus zwischen G und einer Untergruppe V von Sn. Durch

Komposition dieses Isomorphismus mit der Inklusionsabbildung V ↪→ Sn erhalten wir einen injektiven

Homomorphismus ψ : G → Sn. Wir zeigen, dass ψ(G) ⊆ An gilt. Daraus folgt, dass G isomorph zur

Untergruppe ψ(G) von An ist, und nach dem Satz von Lagrange ist |G| = |ψ(G)| somit ein Teiler von

|An| = 1
2n!.

Nehmen wir an, dass ψ(G) keine Teilmenge von An ist. Durch Komposition von ψ mit der Signumsabbil-

dung sgn : Sn → {±1} erhalten wir einen Homomorphismus α = sgn◦ψ : G→ {±1}. Wegen ψ(G) 6⊆ An
existiert ein g ∈ G mit α(g) = (sgn ◦ ψ)(g) = −1, außerdem gilt α(e) = (sgn ◦ ψ)(e) = sgn(id) = 1

(wobei e das Neutralelement von G bezeichnet). Der Homomorphismus α ist also surjektiv. Nach dem

Homomorphiesatz für Gruppen induziert α einen Isomorphismus G/ker(α) ∼= {±1}. Dabei ist ker(α) ein

Normalteiler von G, und wegen (G : ker(α)) = |G/ker(α)| = |{±1}| = 2 gilt ker(α) ( G. Da G laut

Angabe einfach ist, muss also ker(α) = {e} gelten. Damit wäre α injektiv, die Gruppe G also isomorph

zu einer Untergruppe von {±1}. Daraus würde |G| ∈ {1, 2} folgen. Aber wegen |G| = (G : U)|U | würde

daraus auch (G : U) ∈ {1, 2} folgen, im Widerspruch zur Voraussetzung (G : U) ≥ 3.

zu (c) Laut Vorlesung ist jede Gruppe der Ordnung 15 zyklisch. (Dies wurde aus den Sylowsätzen

abgeleitet.) Wenn in A5 eine Untergruppe der Ordnung 15 existieren würde, dann auch ein Element

der Ordnung 15. Aber selbst in S5 gibt es kein solches Element. Sei nämlich σ ∈ S5 ein beliebiges

nichttriviales Element, vom Zerlegungstyp (k1, ..., kr) mit r ∈ N, k1 ≥ ... ≥ kr ≥ 2 und k1 + ...+ kr ≤ 5.

Wäre ord(σ) = 15, dann würde daraus kgV(k1, ..., kr) = 15 folgen. Dies würde bedeuten, dass mindestens

eine der Zahlen ki durch 3 und eine der Zahlen kj durch 5 teilbar ist. Aber dies ist wegen k1 + ...+kr ≤ 5

unmöglich, denn im Fall i 6= j wäre k1 + ... + kr ≥ 8, um im Fall i = j wäre ki sogar durch 15 teilbar,

also k1 + ...+ kr ≥ 15. Also gibt es in S5 kein Element der Ordnung 15.



Aufgabe H20T3A3

Sei R ein Ring mit 1, und seien a, b ∈ R. Es gelte ab = 1 und ba 6= 1. Insbesondere ist R also nicht

kommutativ. Ein Element x ∈ R heißt nilpotent, falls es ein n ∈ N gibt mit xn = 0. Ein Element x ∈ R
heißt idempotent, falls x2 = x gilt.

(a) Zeigen Sie, dass das Element 1− ba idempotent ist.

(b) Zeigen Sie, dass das Element bn(1− ba) für n ≥ 1 nilpotent ist.

(c) Zeigen Sie, dass es unendlich viele nilpotente Elemente in R gibt.

Lösung:

zu (a) Es gilt (1−ba)2 = (1−ba)(1−ba) = 1−ba−ba+(ba)(ba) = 1−2ba+b(ab)a = 1−2ba+b ·1 ·a =

1− 2ba+ ba = 1− ba.

zu (b) Sei n ∈ N. Dass das Element bn(1− ba) nilpotent ist, ergibt sich durch die Rechnung

(bn(1− ba))2 = bn(1− ba)bn(1− ba) = (bn − bn+1a)(bn − bn+1a) =

b2n − bn+1abn − b2n+1a+ bn+1abn+1a = b2n − bn+1(ab)bn−1 − b2n+1a+ bn+1(ab)bna =

b2n − bn+1 · 1 · bn−1 − b2n+1a+ bn+1 · 1 · bna = b2n − b2n − b2n+1a+ b2n+1a = 0.

zu (c) Nach Teil (b) ist bn(1−ba) für jedes n ∈ N nilpotent. Es genügt also zu zeigen, dass diese Elemente

voneinander verschieden sind. Nehmen wir an, es gibt m,n ∈ N mit m < n und bm(1− ba) = bn(1− ba).

Ein einfacher Induktionsbeweis zeigt, dass a`b` = 1 gilt. Denn für ` = 1 gilt diese Gleichung laut Angabe,

und setzen wir sie für ein ` ∈ N voraus, dann folgt a`+1b`+1 = a(a`b`)b = a ·1 · b = ab = 1. Multiplizieren

wir die Gleichung von oben auf beiden Seiten von links mit am, dann erhalten wir ambm(1 − ba) =

ambmbn−m(1 − ba). Wie soeben gezeigt, folgt daraus 1 − ba = bn−m(1 − ba). Multiplizieren wir diese

Gleichung ein weiteres Mal von links mit a, dann folgt

a(1− ba) = abn−m(1− ba) ⇒ a− (ab)a = abbn−m−1(1− ba) ⇒

a− a = bn−m−1(1− ba) ⇒ bn−m−1(1− ba) = 0 ⇒ an−m−1bn−m−1(1− ba) = 0

⇒ 1− ba = 0 ⇒ ba = 1

im Widerspruch zur Voraussetzung in der Angabe. Also gilt bm(1 − ba) = bn(1 − ba), und folglich

besteht die Menge {bn(1− ba) | n ∈ N} aus unendlich vielen nilpotenten Elementen.



Aufgabe H20T3A4

Es sei F3 der Körper mit 3 Elementen. Sei I das von x2 + 1 im Polynomring R = F3[x] erzeugte Ideal.

(a) Zeigen Sie, dass K = R/I ein Körper ist, und ermitteln Sie die Anzahl der Elemente von K.

(b) Geben Sie eine Formel an für das multiplikative Inverse des Elements ax+b+I in R/I für a, b ∈ F3,

falls es existiert.

(c) Geben Sie einen Erzeuger an für die multiplikative Gruppe K×.

Lösung:

zu (a) Das Polynom f = x2 + 1̄ ∈ F3[x] besitzt wegen f(0̄) = 1̄ 6= 0̄, f(1̄) = 2̄ 6= 0̄ und f(2̄) = 5̄ = 2̄ 6= 0̄

in F3 keine Nullstelle. Wegen grad(f) = 2 ist es somit irreduzibel in R = F3[x]. Als Polynomring über

einem Körper ist R ein Hauptidealring, und somit ist jedes Hauptideal, das von einem irreduziblen

Element erzeugt wird, ein maximales Ideal. Folglich ist I = (f) ein maximales Ideal in R, und daraus

wiederum folgt, dass K = R/I ein Körper ist. Aus der Vorlesung ist bekannt, dass für jeden Körper k und

jedes Polynom g ∈ k[x] vom Grad n = grad(g) ≥ 1 die Polynome vom Grad ≤ n− 1 zusammen mit dem

Nullpolynom ein Repräsentantensystem von k[x]/(g) bilden. Wenden wir dies auf k = F3 und g = f an, so

kommen wir zu dem Ergebnis, dass die Polynome der Form ax+b mit a, b ∈ F3 ein Repräsentantensystem

von K = R/I bilden. Da es für jeden der Koeffizienten a, b jeweils drei Möglichkeiten gibt, existieren

insgesamt neun solche Polynome, und folglich besteht auch K = R/I aus neun Elementen.

zu (b) Da die Polynome der Form ax + b mit a, b ∈ F3 ein Repräsentantensystem von K = R/I

bilden, sind durch ax+ b+ I mit a, b ∈ F3 die neun verschiedenen Elemente von K gegeben. Da es sich

bei K um einen Körper handelt, ist das Nullelement 0̄ · x + 0̄ + I = 0̄ + I das einzige Element in K,

das kein multiplikatives Inverses besitzt. Seien nun a, b ∈ F3 mit (a, b) 6= (0̄, 0̄). Wegen x2 + 1̄ ∈ I gilt

x2 + 1̄ + I = 0̄ + I, was zu x2 + I = −1̄ + I umgeformt werden kann. Für alle c, d ∈ F3 gilt

(ax+ b+ I)(cx+ d+ I) = acx2 + bcx+ adx+ bd+ I =

(ac+ I)(x2 + I) + ((ad+ bc)x+ bd+ I) = (ac+ I)(−1̄ + I) + ((ad+ bc)x+ bd+ I) =

(−ac+ I) + ((ad+ bc)x+ bd+ I) = (bd− ac) + (ad+ bc)x+ I.

Das Einselement von K ist 1̄ + I, und es gilt (bd − ac) + (ad + bc)x + I = 1̄ + I genau dann, wenn die

Gleichungen bd− ac = 1̄ und ad+ bc = 0̄ erfüllt sind. Betrachten wir zunächst den Fall, dass a 6= 0̄ ist.

Dann kann ad+ bc = 0̄ umgestellt werden zu d = −a−1bc. Durch Einsetzen in die Gleichung bd− ac = 1̄

erhält man c = (−a)
a2+b2 , d = b

a2+b2 . Das multiplikative Inverse von ax+b+I ist also in diesem Fall gegeben

durch
(−a)

a2 + b2
x+

b

a2 + b2
+ I.

Betrachten wir nun den Fall a = 0̄. Wegen (a, b) 6= (0̄, 0̄) ist dann b 6= 0̄, und die beiden Gleichungen von

oben vereinfachen sich zu bd = 1̄ und bc = 0̄. Wir erhalten in diesem Fall d = b−1 und c = 0̄, somit ist

(ax+ b+ I)−1 = cx+ d+ I = b−1 + I. Dies zeigt, dass die Gleichung

(ax+ b+ I)−1 =
(−a)

a2 + b2
x+

b

a2 + b2
+ I

für das multiplikative Inverse auch in dieser Situation gültig ist.

zu (c) Da K ein Körper bestehend aus neun Elementen ist, gilt |K×| = |K \{0̄}| = |K|−1 = 9−1 = 8.

Sei α = x + 1̄ + I. Dann gilt α2 = (x + 1̄)2 + I = x2 + 2̄x + 1̄ + I = (−1̄) + 2̄x + 1̄ + I = 2̄x + I,

α4 = (α2)2 = (2̄x+ I)2 = 4̄x2 + I = −1̄ + I und α8 = (α4)2 = (−1̄)2 + I = 1̄ + I = 1K . Wegen α4 6= 1K

und α8 = 1K ist α ein Element der Ordnung 8.



Aufgabe H20T3A5

Gegeben ist das Polynom f = x3 − 3x2 + 3x− 6 ∈ Q[x]. Weiter sei ζ = e2πi/3 ∈ C eine primitive dritte

Einheitswurzel.

(a) Zeigen Sie, dass f irreduzibel über Q ist.

(b) Zeigen Sie, dass ak = 1 + ζk 3
√

5 für k = 0, 1, 2 die drei verschiedenen komplexen Nullstellen von f

sind.

(c) Zeigen Sie, dass L = Q( 3
√

5, ζ) ⊆ C ein Zerfällungskörper von f ist.

(d) Zeigen Sie, dass die Galoisgruppe Gal(L|Q) isomorph zur symmetrischen Gruppe S3 ist.

Lösung:

zu (a) Es gilt 3 - 1, 3 | (−3), 3 | 3, 3 | (−6), aber 32 - (−6). Das Eisenstein-Kriterium, angewendet

auf die Primzahl 3, zeigt somit, dass f in Z[x] irreduzibel ist. Auf Grund des Gauß’schen Lemmas ist f

damit auch irreduzibel über Q.

zu (b) Sei g = f(x+1) = (x+1)3−3(x+1)2+3(x+1)−6 = (x3+3x2+3x+1)−(3x2+6x+3)+(3x+3)−6 =

x3 − 5. Dann ist ζk 3
√

5 für k = 0, 1, 2

eine Nullstelle von g, denn es gilt jeweils g(ζk 3
√

5) = (ζk 3
√

5)3 − 5 = (ζ3)k · 5 − 5 = 1k · 5 − 5 = 0. Da

ζ eine primitive Einheitswurzel ist, sind die Elemente 1, ζ, ζ2 verschieden, wegen 3
√

5 6= 0 also auch die

Elemente ζk 3
√

5, k = 0, 1, 2. Da g als Polynom dritten Grades nicht mehr als drei komplexe Nullstellen

hat, ist {ζk 3
√

5 | k = 0, 1, 2} somit die genaue Nullstellenmenge von g. Da für jedes α ∈ C die Äquivalenz

g(α) = 0 ⇔ f(1 + α) = 0 gilt, ist N = {1 + ζk 3
√

5 | k = 0, 1, 2} = {ak | k = 0, 1, 2} die dreielementige

Nullstellenmenge von f .

zu (c) Da N = {ak | k = 0, 1, 2} die Menge der komplexen Nullstellen von f ist, ist Q(N) ein

Zerfällungskörper von f . Zu zeigen ist also Q(N) = Q( 3
√

5, ζ). Die Inklusion
”
⊆“ ist erfüllt, weil mit 3

√
5

und ζ auch die Elemente ak = 1 + ζk 3
√

5 mit k ∈ {0, 1, 2} in Q( 3
√

5, ζ) liegen. Es gilt also N ⊆ Q( 3
√

5, ζ),

und daraus folgt auch Q(N) ⊆ Q( 3
√

5, ζ). Zum Nachweis von
”
⊇“ bemerken wir zunächst, dass mit

a0 = 1 + 3
√

5 auch das Element a0−1 = 3
√

5 in Q(N) liegt. Aus a1 = 1 + ζ 3
√

5 ∈ Q(N) folgt ζ 3
√

5 ∈ Q(N),

und aus 3
√

5, ζ 3
√

5 ∈ Q(N) folgt ζ = ζ 3√5
3√5
∈ Q(N). Insgesamt gilt also { 3

√
5, ζ} ⊆ Q(N), und daraus folgt

Q( 3
√

5, ζ) ⊆ Q(N).

zu (d) Die Galoisgruppe Gal(L|Q) stimmt mit der Galoisgruppe Gal(f |Q) des Polynoms f überein,

weil L Zerfällungskörper von f ist. Da f drei verschiedene komplexe Nullstellen besitzt, ist diese Gruppe

laut Vorlesung isomorph zu einer Untergruppe von S3. Da L|Q eine endliche Galois-Erweiterung ist, gilt

außerdem |Gal(L|Q)| = [L : Q].

Wir bestimmen deshalb den Erweiterungsgrad [L : Q]. Das Polynom g = x3 − 5 ist irreduzibel über

Z, da das Eisenstein-Kriterium auf die Primzahl 5 angewendet werden kann. Nach dem Gauß’schen

Lemma ist g auch irreduzibel über Q. Außerdem ist g normiert, und es gilt g( 3
√

5) = 0. Somit ist

g das Minimalpolynom von 3
√

5 über Q, und es folgt [Q( 3
√

5) : Q] = grad(g) = 3. Wäre das dritte

Kreisteilungspolynom h = x2 +x+1 über Q( 3
√

5) reduzibel, dann müssten wegen grad(h) = 2 die beiden

komplexen Nullstellen ζ und ζ2 in Q( 3
√

5) liegen. Aber dies ist nicht der Fall, denn wegen 3
√

5 ∈ R gilt

Q( 3
√

5) ⊆ R, aber die Zahlen ζ = − 1
2 + 1

2

√
−3 und ζ2 = − 1

2 −
1
2

√
−3 sind nicht reell. Also ist h über

Q( 3
√

5) irreduzibel, außerdem normiert, und es gilt h(ζ) = 0. Somit ist h das Minimalpolynom von ζ



über Q( 3
√

5). Wir erhalten

[L : Q(
3
√

5)] = [Q( 3
√

)(ζ) : Q(
3
√

5)] = grad(h) = 2 ,

und die Gradformel liefert [L : Q] = [L : Q( 3
√

5)] · [Q( 3
√

5) : Q] = 2 · 3 = 6. Somit ist auch |Gal(L|Q)| = 6.

Wie oben bemerkt, ist Gal(L|Q) isomorph zu einer Untergruppe U von S3. Diese muss ebenfalls von

Ordnung 6 sein, und wegen |S3| = 6 folgt daraus U = S3. Damit ist insgesamt gezeigt, dass Gal(L|Q)

isomorph zu S3 ist.



Aufgabe F21T1A1

Seien Z[i] = {a+ bi | a, b ∈ Z} die Gauß’schen Zahlen und

N(a+ bi) = a2 + b2

die übliche Norm. Für α, β ∈ Z[i] ist α ein Teiler von β (Notation α | β), falls β = γ · α für ein γ ∈ Z[i]

gilt. Zeigen Sie:

(a) 4 + 5i ist ein Teiler von 14− 3i

(b) 3 + 7i ist kein Teiler von 10 + 3i

(c) Für α = a+ bi ∈ Z[i] gilt: N(α) ist gerade ⇔ 1 + i teilt α.

Lösung:

zu (a) Es gilt

14− 3i

4 + 5i
=

(14− 3i)(4− 5i)

4 + 5i)(4− 5i)
=

41− 82i

42 + 52
= 1

41 (41− 82i) = 1− 2i.

Somit gilt in Z[i] die Gleichung (1 − 2i)(4 + 5i) = 14 − 3i, und somit ist 4 + 5i in Z[i] ein Teiler von

14− 3i.

zu (b) Allgemein gilt: Sind α, β ∈ Z[i] und ist α ein Teiler von β in Z[i], dann ist N(α) ein Teiler

von N(β) in Z. Denn auf Grund der Teiler-Eigenschaft existiert ein γ ∈ Z[i] mit β = γα, und aus der

Multiplikativität der Norm folgt N(β) = N(γ)N(α). Hier ist N(3 + 7i) = 32 + 72 = 9 + 49 = 58 und

N(10 + 3i) = 102 + 32 = 109. Aber 58 ist kein Teiler von 109 in Z, somit ist 3 + 7i kein Teiler von 10 + 3i

in Z[i].

Hinweis: Die Umkehrung der angegebenen Aussage ist im Allgemeinen falsch, d.h. aus N(α)|N(β) folgt

im Allgemeinen nicht α | β. Setzen wir beispielsweise α = 2− i und β = 2 + i, dann ist N(α) ein Teiler

von N(β) wegen N(α) = N(β) = 5. Aber α ist kein Teiler von β. Denn anderenfalls gäbe es ein γ ∈ Z[i]

mit β = γα, und folglich wäre β
α = γ in Z[i] enthalten. Tatsächlich aber gilt

β

α
=

2 + i

2− i
=

(2 + i)2

(2 + i)(2− i)
=

3 + 4i

22 + 12
= 3

5 + 4
5 i

und somit β
α /∈ Z[i].

zu (c)
”
⇐“ Gilt (1 + i) | α, dann ist N(1 + i) = 2 ein Teiler von N(α), und folglich ist N(α) gerade.

”
⇒“ Ist N(α) = αᾱ gerade, dann ist gibt es ein d ∈ N mit αᾱ = 2d = (1 + i)(1− i)d. Somit ist 1 + i ein

Teiler von αᾱ in Z[i]. Weil N(1+i) = 2 eine Primzahl ist, ist 1+i laut Vorlesung in Z[i] irreduzibel. Weil

Z[i] außerdem ein euklidischer Ring ist, muss 1+ i darüber hinaus ein Primelement sein. Aus (1+ i) | αᾱ
folgt somit (1 + i) | α oder (1 + i) | ᾱ.

Im Fall (1 + i) | α sind wir fertig. Betrachten wir nun den Fall (1 + i) | ᾱ. Dann gilt ᾱ = γ(1 + i) für ein

γ ∈ Z[i], und komplexe Konjugation auf beiden Seiten liefert α = γ̄(1− i) = γ̄ · (−i) · (1 + i). Dies zeigt,

dass 1 + i auch in diesem Fall ein Teiler von α ist.



Aufgabe F21T1A2

Sei V ein K-Vektorraum und f : V → V eine K-lineare Abbildung. Es seien m ≥ 1 und a0, ..., am−1 ∈ K
gegeben mit

fm + am−1f
m−1 + ...+ a1f + a0 · idV = 0,

wobei m minimal gewählt ist (d.h. es gibt keine solche Relation mit kleinerem m). Zeigen Sie:

(a) Ist a0 = 0, so ist f nicht invertierbar.

(b) Ist a0 6= 0, so ist f invertierbar.

Lösung:

zu (a) Dies ergibt sich aus einer kurzen Rechnung im (in der Regel nicht-kommutativen) Ring EndK(V ).

Nehmen wir an, dass f invertierbar ist und a0 = 0 ist. Dann können wir die Gleichung fm+am−1f
m−1 +

...+ a1f = 0 auf beiden Seiten von links mit f−1 multiplizieren und erhalten fm−1 + am−1f
m−2 + ...+

a1 · idV = 0. Aber diese Gleichung widerspricht der Minimalität von m.

zu (b) Auch dies kann durch eine Rechnung in EndK(V ) gezeigt werden. Subtraktion von a0 · idV und

anschließende Multiplikation mit −a−1
0 auf beiden Seiten der Gleichung liefert

(−a−1
0 )fm + (−am−1

a0
)fm−1 + ...+ (−a2

a0
)f2 + (−a1

a0
)f = idV .

Es gilt also f ◦ g = idV mit g = (−a−1
0 )fm−1 + (−am−1

a0
)fm−2 + ...+ (−a2a0 )f + (−am−1

a0
) · idV . Dies zeigt,

dass f in EndK(V ) invierterbar ist.



Aufgabe F21T1A3

Sei K ⊆ L eine algebraische Körpererweiterung. Es sei α ∈ L mit K(α) = L. Zu jedem Zwischenkörper

E ist pE das Minimalpolynom von α über E.

(a) Zeigen Sie, dass [L : E] = deg(pE) für jeden Zwischenkörper E gilt.

(b) Seien E und F zwei Zwischenkörper mit F ⊆ E. Zeigen Sie, dass pE ein Teiler von pF in E[x] ist.

(c) Sei E ein Zwischenkörper. Sei F der Zwischenkörper erzeugt von den Koeffizienten von pE . Zeigen

Sie, dass pE = pF gilt. Folgern Sie daraus, dass E = F ist.

Lösung:

zu (a) Für jeden Zwischenkörper E von L|K gilt L = E(α). Denn wegen E ⊆ L und α ∈ L gilt

die Inklusion
”
⊇“; andererseits ist L = K(α) wegen K ⊆ E ⊆ E(α) und α ∈ E(α) ein Teilkörper

von E(α), also auch
”
⊆“ erfüllt. Da pE das Minimalpolynom von α über E ist, gilt laut Vorlesung

[E(α) : E] = deg(pE), somit auch [L : E] = deg(pE).

zu (b) Laut Vorlesung ist das Minimalpolynom pE ein Teiler jedes Polynoms f ∈ E[x] mit f(α) = 0.

Dies wenden wir auf das Polynom f = pF an. Dieses Polynom liegt in F [x], ist wegen F ⊆ E also auch

in E[x] enthalten, und es erfüllt die Bedingung pF (α) = 0. Also ist pE ein Teiler von pF .

zu (c) Sei m = deg(pE), und seien a0, .., am ∈ E die Koeffizienten von pE . Dann gilt nach Definition

(und wegen K ⊆ E sowie aj ∈ E für 0 ≤ j ≤ m) die Inklusion F = K(a0, ..., am) ⊆ E. Nach Teil (b) gilt

somit pE | pF . Andererseits gilt auch pE ∈ F [x], weil die Koeffizienten von pE alle in F liegen, außerdem

pE(α) = 0. Somit ist pF auch ein Teiler von pE .

Dies zeigt insgesamt, dass sich pE und pF nur um einen Faktor in E× unterscheiden. Weil pF und pE

als Minimalpolynome beide normiert sind, muss dieser Faktor gleich 1 sein. Daraus folgt pF = pE . Weil

E und F beides Zwischenkörper von L|K sind, gilt L = F (α) = E(α), wie in Teil (a) gezeigt. Daraus

folgt [L : F ] = [F (α) : F ] = deg(pF ) = deg(pE) = [E(α) : E] = [L : E]. Mit der Gradformel, angewendet

auf den Zwischenkörper E der Erweiterung L|F , erhalten wir

[E : F ] =
[L : F ]

[L : E]
= 1.

Aus F ⊆ E und [E : F ] = 1 wiederum folgt F = E.



Aufgabe F21T1A4

Gegeben sei die Gruppe der invertierbaren 3× 3-Matrizen über dem Körper mit 2 Elementen

G = GL3(F2).

(a) Verifizieren Sie, dass G die Ordnung 168 hat.

(b) Bestimmen Sie eine 2-Sylowgruppe von G.

Hinweis: Betrachten Sie die Dreiecksmatrizen in G.

(c) Wieviele 2-Sylowgruppen hat G?

Hinweis: Betrachten Sie den Stabilisator einer 2-Sylowgruppe.

Lösung:

zu (a) Sei A ∈ M3,F2 eine 3 × 3-Matrix über F2, und seien v1, v2, v3 ∈ F3
2 die Spaltenvektoren von

A. Laut Vorlesung ist A genau dann invertierbar, also in G enthalten, wenn das Tupel (v1, v2, v3) linear

unabhängig ist. Dies wiederum ist genau dann der Fall, wenn v1 ∈ F3
2 \ {0F3

2
}, v2 ∈ F3

2 \ lin{v1} und

v3 ∈ F3
2 \ lin{v1, v2} gilt. Für die Wahl von v1 gibt es |F3

2 \ {0F3
2
}| = 23 − 1 = 7 Möglichkeiten, danach

noch |F3
2 \ lin{v1}| = 23 − 21 = 6 Möglichkeiten für die Wahl von v2 und nach Wahl von (v1, v2) noch

|F3
2\lin{v1, v2}| = 23−22 = 4 Möglichkeiten für v3. Ingesamt gibt es also 7·6·4 = 168 linear unabhängige

Tupel, und somit gilt auch |G| = 168.

zu (b) Wegen 168 = 23 · 31 · 71 sind die 2-Sylowgruppen von G genau die Untergruppen von G der

Ordnung 8. Wir zeigen, dass

P =




1̄ a b

0̄ 1̄ c

0̄ 0̄ 1̄

 ∣∣∣∣ a, b, c ∈ F2


eine Untergruppe der Ordnung 8 von G ist. Zunächst ist klar, dass die Teilmenge P aus 23 = 8 Elementen

besteht, da es für die Wahl von a, b, c ∈ F2 in einer Matrix der angegeben Form jeweils zwei Möglichkeiten

gibt. Die Gleichung 
1̄ a b

0̄ 1̄ c

0̄ 0̄ 1̄

 ·


1̄ a1 b1

0̄ 1̄ c1

0̄ 0̄ 1̄

 =


1̄ a+ a1 b+ ac1 + b1

0̄ 1̄ c+ c1

0̄ 0̄ 1̄


für a, b, c, a1, b1, c1 ∈ F2 zeigt, dass das Produkt zweier Elemente aus P wiederum in P enthalten, die

Teilmenge P unter der Verknüpfung vonG also abgeschlossen ist. Zu zeigen ist noch die Abgeschlossenheit

unter Inversenbildung. Sei dazu A ∈ P vorgegeben. Als Element der endlichen Gruppe G besitzt A eine

endliche Ordnung m. Die Gleichung Am−1 ·A = Am = E (wobei E die Einheitsmatrix bezeichnet) zeigt,

dass Am−1 = A−1 gilt, und auf Grund der Abgeschlossenheit von P unter der Verknüpfung von G ist

Am−1 und somit auch A−1 in P enthalten. Insgesamt ist P also eine Untergruppe der Ordnung 8 von G

und somit eine 2-Sylowgruppe.

zu (c) Der Stabilsator der 2-Sylowgruppe P aus Teil (b) unter der Operation von G auf der Menge

der 2-Sylowgruppen durch Konjugation ist der Normalisator NG(P ) von P in G, und die Anzahl der

2-Sylowgruppen ist durch ν2 = (G : NG(P )) gegeben. Aus der Definition der Normalisators ergibt

sich unmittelbar, dass P ⊆ NG(P ) gilt. Wir zeigen, dass umgekehrt auch NG(P ) ⊆ P erfüllt ist. Sei

dazu T ∈ NG(P ) vorgegeben, und bezeichnen wir die drei Spalten von T mit u, v, w. Auf Grund der



Invertierbarkeit von T ist B = (u, v, w) eine geordnete Basis F3
2, und laut Vorlesung ist T die Matrix

des Basiswechsels T BE von B zur Einheitsbasis E = (e1, e2, e3). Nach Definition des Normalisators gilt

TAT−1 ∈ P für alle A ∈ P . Dabei ist jeweils TAT−1 = MB(φA), die Darstellungsmatrix der linearen

Abbildung φA : F3
2 → F3

2, v′ 7→ Av′ bezüglich der Basis B. Wegen TAT−1 ∈ P für beliebiges gibt es

jeweils a, b, c ∈ F2 mit

MB(φA) = TAT−1 =


1̄ a b

0̄ 1̄ c

0̄ 0̄ 1̄

 .

An der ersten und zweiten Spalte dieser Matrix kann abgelesen werden, dass jeweils φA(u) = u und

φA(v) = au+ v gilt; die Differenz φA(v)− v ist also jeweils in lin(u) enthalten. Wir betrachten nun in P

speziell die Elemente

A1 =


1̄ 1̄ 0̄

0̄ 1̄ 0̄

0̄ 0̄ 1̄

 , A2 =


1̄ 0̄ 1̄

0̄ 1̄ 0̄

0̄ 0̄ 1̄

 und A3 =


1̄ 0̄ 0̄

0̄ 1̄ 1̄

0̄ 0̄ 1̄

 .

Für den Vektor u = (u1, u2, u3) gilt nun insbesondere
u1 + u2

u2

u3

 = φA1
(u) =


u1

u2

u3

 und


u1 + u3

u2

u3

 = φA2
(u) =


u1

u2

u3

 ,

also u2 = u3 = 0̄. Für den Vektor v = (v1, v2, v3) liegt die Differenz
0̄

v3

0̄

 =


v1

v2 + v3

v3

−

v1

v2

v3

 = φA3(v)− v

in lin(u) ⊆ lin(e1), es gilt also v3 = 0̄. Dies zeigt, dass die Matrix T die Form

T =


u1 v1 w1

0̄ v2 w2

0̄ 0̄ w3


hat. Weil T invertierbar ist, müssen die Diagonaleinträge u1, v2 und w3 gleich 1̄ sein. Also ist T insgesamt

in P enthalten. Damit ist die Gleichheit NG(P ) = P nachgewiesen, und es folgt ν2 = (G : NG(P )) =

(G : P ) = |G|
|P | = 168

8 = 21. Es gibt also genau 21 2-Sylowgruppen in G.



Aufgabe F21T1A5

Sei K ein Körper der Charakteristik 0 und K(α, β)|K eine endliche Galois-Erweiterung. Seien weiter

K(α)|K und K(β)|K Galois-Erweiterungen, sowie K(α)∩K(β) = K. Setze G = Gal(K(α, β)|K(α+β)).

Zeigen Sie:

(a) Für σ ∈ G gilt: σ(α)− α = β − σ(β) ∈ K

(b) Es ist K(α+ β) = K(α, β).

Hinweis zu (b): Berechnen Sie zunächst σj(α) unter Verwendung von (a).

Lösung:

zu (a) Sei σ ∈ G. Als Automorphismus von K(α, β) ist σ verträglich mit der Addition. Außerdem wird

das Element α+β auf sich selbst abgebildet, da σ nach Definition von G ein K(α+β)-Automorphismus

ist. Daraus folgt insgesamt α + β = σ(α + β) = σ(α) + σ(β), was zu σ(α) − α = β − σ(β) umgeformt

werden kann.

Die Einschränkung σ|K(α) kann als K-Homomorphismus K(α) → K(α, β) aufgefasst werden, somit

auch aus K-Homomorphismus in einen algebraischen Abschluss von K(α, β). Weil K(α)|K als Galois-

Erweiterung insbesondere normal ist, handelt es sich bei σ|K(α) somit um einen K-Automorphismus von

K(α). Es gilt also σ(α) ∈ K(α) und σ(α)− α ∈ K(α). Genauso zeigt man, dass β − σ(β) in K(β) liegt.

Insgesamt ist σ(α)− α = β − σ(β) somit in K(α) ∩K(β) = K enthalten.

zu (b) Sei σ ∈ G. Wegen σ(α) − α ∈ K gilt σ2(α) − σ(α) = σ(σ(α) − α) = σ(α) − α, was zu

σ2(α) = 2σ(α)−α umgeformt werden kann. Anwendung von σ auf beide Seiten liefert σ3(α) = 2σ2(α)−
σ(α) = 2(2σ(α) − α) − σ(α) = 4σ(α) − 2α − σ(α) = 3σ(α) − 2α. Wir beweisen nun durch vollständige

Induktion, dass

σm(α) = mσ(α)− (m− 1)α für alle m ∈ N gilt.

Für m = 1 ist die Gleichung wegen σ1(α) = σ(α) = 1 · σ(α)− (1− 1)α offenbar erfüllt. Sei nun m ∈ N,

und setzen wir die Gleichung voraus. Durch Anwendung von σ auf beide Seiten erhalten wir

σm+1(α) = σ (mσ(α)− (m− 1)α) = mσ2(α)− (m− 1)σ(α) =

m(2σ(α)− α)− (m− 1)σ(α) = 2mσ(α)−mα− (m− 1)σ(α) = (m+ 1)σ(α)−mα ,

wodurch die Gleichung für m+ 1 bewiesen ist.

Nach Voraussetzung ist K(α, β)|K und damit auch K(α, β)|K(α+ β) eine endliche Galois-Erweiterung.

Daraus folgt, dass die Galois-Gruppe G dieser Erweiterung eine endliche Ordnung n besitzt, und somit

σn = idK(α,β) gilt. Mit Hilfe der soeben bewiesenen Gleichung erhalten wir α = idK(α,β)(α) = σn(α) =

nσ(α) − (n − 1)α, was zu nα = nσ(α) und α = σ(α) umgestellt werden kann. Dieselbe Argumentation

zeigt, dass auch σ(β) = β gilt. Weil der K-Homomorphismus σ auf K(α, β) durch die Bilder von α und

β bereits eindeutig festgelegt ist, folgt σ = idK(α,β). Weil σ als Element von G beliebig vorgegeben war,

haben wir damit gezeigt, dass Gal(K(α, β)|K(α+ β)) = G = {idK(α,β)} gilt. Da K(α, β)|K eine Galois-

Erweiterung ist, folgt daraus Gal(K(α, β)|K(α+β)) = [K(α, β) : K(α+β)] = 1 und K(α, β) = K(α+β).



Aufgabe F21T2A1

(a) Begründen Sie, dass die Permutation

σ =

(
1 2 3 4 5 6 7 8 9

7 5 8 3 9 1 6 4 2

)
∈ S9

in der alternierenden Gruppe A9 liegt.

(b) Zeigen Sie, dass ϕ(n) für n ≥ 3 stets gerade ist - hierbei bezeichne ϕ die Eulersche ϕ-Funktion.

(c) Begründen Sie, dass in einem Integritätsbereich R aus e2 = e, wobei e ∈ R, stets e = 0 oder e = 1

folgt.

(d) Bestimmen Sie den Körpergrad [Q( 5
√

7 · e−2πi/5) : Q].

Lösung:

zu (a) Das Element σ besitzt die Darstellung σ = (1 7 6)(2 5 9)(3 8 4) als Produkt disjunkte Zyklen.

Bekanntlich hat für n ∈ N und 2 ≤ k ≤ n jeder k-Zykel in Sn das Signum (−1)k−1. Daraus folgt

sgn(σ) = sgn((1 7 6)(2 5 9)(3 8 4)) = sgn((1 7 6)) · sgn((2 5 9)) · sgn((3 8 4)) = (−1)2 · (−1)2 · (−1)2 = 1. Da

A9 genau aus den Elementen von S9 mit positivem Signum besteht, folgt σ ∈ A9.

zu (b) Sei n ∈ N mit n ≥ 3 und n = 2e
∏r
i=1 p

ei
i die Primfaktorzerlegung von n (wobei r ∈ N0, p1, ..., pr

ungerade Primzahlen, e ∈ N0 und e1, ..., er ∈ N sind). Auf Grund der Rechenregeln für die Eulersche

ϕ-Funktion gilt

ϕ(n) = ϕ(2e)

r∏
i=1

ϕ(peii ) = ϕ(2e)

r∏
i=1

pei−1
i (pi − 1).

Wegen n ≥ 3 gilt e ≥ 2 oder r ≥ 1. Im Fall e ≥ 2 ist der Faktor ϕ(2e) = 2e−1 gerade, im Fall r ≥ 1 ist

pe1−1
1 (p1 − 1) gerade. In beiden Fällen ist ϕ(n) also eine gerade Zahl.

zu (c) Angenommen, es gilt e2 = e und e 6= 0R. Die Gleichung kann zu e(e− 1R) = e2 − e = 0R umge-

stellt werden. Da R ein Integritätsbereich und e laut Annahme ungleich 0R ist, kann die Kürzungsregel

angewendet werden und liefert e− 1R = 0R, was wiederum zu e = 1R äquivalent ist.

zu (d) Sei g = x5−7 ∈ Q[x] und α = 5
√

7·e−2πi/5. Dann gilt g(α) = g( 5
√

7·e−2πi/5) = ( 5
√

7·e−2πi/5)5−7 =

( 5
√

7)5 · (e−2πi/5)5− 7 = 7 · e−2πi− 7 = 7 · 1− 7 = 0. Nach dem Eisenstein-Kriterium, angewendet auf die

Primzahl p = 7, ist g in Q[x] irreduzibel, außerdem normiert. Insgesamt ist g also das Minimalpolynom

von α über Q, und es folgt [Q(α) : Q] = grad(g) = 5.



Aufgabe F21T2A2

Sei K ein Körper und KK die Menge aller Abbildungen K → K. Es sei die Abbildung

ϕ : K[x]→ KK , f 7→ ϕ(f)

betrachtet, wobei ϕ(f)(a) = f(a) für alle a ∈ K gelte. Beweisen Sie:

(a) Genau dann ist ϕ injektiv, wenn K unendlich ist.

(b) Genau dann ist ϕ surjektiv, wenn K endlich ist.

Lösung:

zu (a)
”
⇒“ Angenommen, ϕ ist injektiv, der Körper K aber endlich. Dann ist KK eine endliche Menge,

denn für jedes α ∈ KK ist der Definitionsbereich K von α endlich, und für jedes c ∈ K gibt es jeweils

nur endlich viele Möglichkeiten für das Bild α(c) (nämlich |K| Stück). Dagegen ist K[x] unendlich, da

zum Beispiel die Polynome xn mit n ∈ N0 alle verschieden sind. Es gibt aber keine injektive Abbildung

von einer unendlichen in eine endliche Menge.

”
⇐“ Bekanntlich sind K[x] und KK beides K-Vektorräume. Wir zeigen, dass durch ϕ eine lineare

Abbildung gegeben ist. Seien dazu f, g ∈ K[x] und λ ∈ K vorgegeben. Dann gilt für alle a ∈ K jeweils

ϕ(f + g)(a) = (f + g)(a) = f(a) + g(a) = ϕ(f)(a) + ϕ(g)(a) = (ϕ(f) + ϕ(g))(a) ,

also ϕ(f+g) = ϕ(f)+ϕ(g). Ebenso gilt für alle a ∈ K jeweils ϕ(λf)(a) = (λf)(a) = λf(a) = λϕ(f)(a) =

(λϕ(f))(a) und somit ϕ(λf) = λϕ(f). Damit ist die Linearität nachgewiesen.

Setzen wir nun voraus, dass K unendlich ist. Für die Injektivität von ϕ genügt es auf Grund der Li-

nearität zu zeigen, dass ker(ϕ) = {0K} gilt. Die Inklusion
”
⊇“ ist (ebenfalls auf Grund der Linearität)

offensichtlich. Zum Nachweis von
”
⊆“ sei f ∈ ker(ϕ) vorgegeben. Dann ist ϕ(f) ∈ KK die Nullabbildung,

es gilt also ϕ(f)(a) = 0K für alle a ∈ K. Da K unendlich ist, hat f also unendlich viele Nullstellen. Wäre

f 6= 0K und n = grad(f) ∈ N0, dann hätte f laut Vorlesung in K höchstens n Nullstellen. So aber muss

f das Nullpolynom sein. Damit ist die Injektivität von ϕ nachgewiesen.

zu (b)
”
⇒“ Nehmen wir an, ϕ ist surjektiv, der Körper K aber unendlich. Sei a ∈ K beliebig gewählt

und α ∈ KK gegeben durch α(a) = 1K sowie α(c) = 0K für alle c ∈ K \ {a}. Da ϕ laut Annahme

surjektiv ist, existiert ein f ∈ K[x] mit ϕ(f) = α. Wegen f(a) = ϕ(f)(a) = α(a) = 1K ist f nicht das

Nullpolynom. Andererseits besitzt f wegen f(c) = ϕ(f)(c) = α(c) = 0K für alle c ∈ K \ {a} unendlich

viele Nullstellen. Wie in Teil (a) gezeigt, folgt daraus, dass f das Nullpolynom ist, im Widerspruch zu

unserer vorherigen Feststellung. Der Widerspruch zeigt, dass unsere Annahme falsch war und aus der

Surjektivität von ϕ die Endlichkeit des Körpers K folgt.

”
⇐“ Unter der Voraussetzung, dass K endlich ist, beweisen wir die Surjektivität von ϕ. Sei q = |K|,

und seien a1, ..., aq ∈ K die Elemente von K. Wir zeigen zunächst, dass für jedes i ∈ {1, ..., q} jeweils

ein Polynom fi ∈ K[x] mit fi(ai) = 1K und fi(aj) = 0K für alle j 6= i gibt. Setzen wir zunächst

f̃i =
∏
j 6=i(x− aj), dann gilt f̃i(ai) 6= 0K und f̃i(aj) = 0K für j 6= i. Definieren wir nun fi = f̃i(ai)

−1f̃i,

dann folgt fi(ai) = 1K und fi(aj) = 0K , insgesamt also fi(aj) = δij für 1 ≤ j ≤ n (wobei δij wie üblich

das Kronecker-Delta bezeichnet).

Sei nun α ∈ KK vorgegeben und f =
∑q
i=1 α(ai)fi. Dann gilt für alle 1 ≤ j ≤ n jeweils

f(aj) =

q∑
i=1

α(ai)fi(aj) =

q∑
i=1

α(ai)δij = α(aj) ,



also ϕ(f)(a) = f(a) = α(a) für alle a ∈ K und somit ϕ(f) = α. Da KK beliebig vorgegeben war, ist

damit ist die Surjektivität von ϕ nachgewiesen.



Aufgabe F21T2A3

Sei R ein (nicht notwendig kommutativer) Ring mit 1. Ein Element x ∈ R heißt nilpotent, falls es ein

n ∈ N mit xn = 0 gibt.

(a) Zeigen Sie: Ist der Ring R kommutativ, und ist u ∈ R eine Einheit sowie x ∈ R nilpotent, so ist

u+ x eine Einheit.

(b) Es sei R der Ring der 2 × 2-Matrizen über Q. Geben Sie mit Begründung ein Beispiel für eine

Einheit u ∈ R und ein nilpotentes Element x ∈ R an derart, dass u+ x keine Einheit ist.

Lösung:

zu (a) Wir zeigen durch vollständige Induktion, dass folgende Aussage für alle n ∈ N gilt: Ist u eine

Einheit und x ∈ R ein Element mit xn = 0, dann ist u + x eine Einheit. Für n = 1 ist diese Aussage

offenbar erfüllt. Ist nämlich x ∈ R ein Element mit x1 = 0, dann ist u + x = u + x1 = u + 0 = u

eine Einheit. Sei nun n ∈ N vorgegeben, und setzen wir die Aussage für dieses n voraus. Sei x ∈ R ein

Element mit xn+1 = 0 und u ∈ R×. Zu zeigen ist, dass es sich bei u+ x um eine Einheit handelt.

Setzen wir y = −x2, dann gilt (u+ x)(u− x) = u2 − x2 = u2 + y. Das Element y erfüllt die Bedingung

yn = 0. Denn wegen n ≥ 1 ist n − 1 ≥ 0, und es folgt yn = (−x2)n = (−1)nx2n = (−1)nxn−1xn+1 =

(−1)nxn−1 · 0 = 0. Weil die Einheiten in R multiplikativ abgeschlossen sind, ist mit u auch u2 eine

Einheit. Auf Grund der Induktionsvoraussetzung ist also (u+ x)(u− x) = u2 + y somit eine Einheit. Es

gibt also ein ε ∈ R mit (u+ x)(u− x)ε = 1. Definieren wir ε′ = (u− x)ε ∈ R, dann folgt (u+ x)ε′ = 1.

Dies zeigt, dass auch u+ x eine Einheit ist. Der Induktionsschritt ist damit abgeschlossen.

zu (b) Seien zum Beispiel u, x ∈ R gegeben durch

u =

(
0 −1

1 0

)
und x =

(
0 1

0 0

)
.

Wegen det(u) = 1 6= 0 ist u eine invertierbare Matrix und somit eine Einheit in R. Außerdem ist

x2 =

(
0 1

0 0

)(
0 1

0 0

)
=

(
0 0

0 0

)

und x somit nilpotent. Andererseits gilt

u+ x =

(
0 −1

1 0

)
+

(
0 1

0 0

)
=

(
0 0

1 0

)
,

aber wegen det(u+ x) = 0 ist u+ x nicht invertierbar und somit keine Einheit in R.



Aufgabe F21T2A4

(a) Zeigen Sie, dass die Galois-Gruppe einer galois’schen Körpererweiterung L|K vom Grad 143 stets

zyklisch ist.

(b) Sei L|K eine galois’sche Körpererweiterung vom Grad 55 mit nichtabelscher Galois-Gruppe. Zeigen

Sie: Es gibt genau einen echten Zwischenkörper M von L|K, so dass M |K eine Galois-Erweiterung

ist. Berechnen Sie den Grad [M : K].

Lösung:

zu (a) Sei G = Gal(L|K), und für jede Primzahl p sei νp die Anzahl der p-Sylowgruppen von G. Da L|K
eine endliche Galois-Erweiterung ist, gilt |G| = [L : K] = 143 = 11 · 13. Auf Grund des 3. Sylowsatzes

gilt ν13 | 11, also ν13 ∈ {1, 11}, andererseits aber auch ν13 ≡ 1 mod 13. Wegen 11 6≡ 1 mod 13 folgt

ν13 = 1. Ebenso gilt ν11 | 13, also ν11 ∈ {1, 13}, außerdem ν11 ≡ 1 mod 11. Wegen 13 ≡ 2 6≡ 1 mod 11

folgt ν11 = 1.

Sei nun U die einzige 11- und N die einzige 13-Sylowgruppe von G. Wir zeigen, dass G ein inneres

direktes Produkt von U und N ist. Wegen ν11 = ν13 = 1 folgt aus dem 2. Sylowsatz U � G und

N �G. Wegen G = 111 · 131 ist (nach Definition der p-Sylowgruppen) |U | = 11 und |N | = 13, und aus

ggT(|U |, |N |) = ggT(11, 13) = 1 folgt U ∩N = {idL}. Zu zeigen bleibt noch, dass das Komplexprodukt

H = UN mit G übereinstimmt. Wegen N � G ist H jedenfalls eine Untergruppe von G, und wegen

U ⊆ H und N ⊆ H sind U und N beides Untergruppen von H. Nach dem Satz von Lagrange ist |H|
somit ein gemeinsames Vielfaches von |U | = 11 und |N | = 13. Es folgt |H| ≥ kgV(11, 13) = 143 = |G|,
und wegen H ⊆ G folgt daraus G = H = UN .

Der Nachweis, dass G ein inneres direktes Produkt von U und N ist, ist damit abgeschlossen, und laut

Vorlesung folgt daraus G ∼= U ×N . Als Gruppen von Primzahlordnung sind U und N zyklisch. Daraus

folgt U ∼= Z/11Z und N ∼= Z/13Z, und wir erhalten G ∼= Z/11Z × Z/13Z. Wegen ggT(11, 13) = 1

kann schließlich der Chinesische Restsatz angewendet werden, und wir erhalten G ∼= Z/143Z. Damit ist

gezeigt, dass es sich bei G um eine zyklische Gruppe handelt.

zu (b) Nach Voraussetzung ist G = Gal(L|K) eine nicht-abelsche Gruppe. Da L|K eine endliche Galois-

Erweiterung ist, gilt außerdem |G| = [L : K] = 55. Wiederum sei νp für jede Primzahl p die Anzahl der

p-Sylowgruppen von G. Nach dem 3. Sylowsatz gilt ν11 | 5, also ν11 ∈ {1, 5}, außerdem ν11 ≡ 1 mod 11.

Wegen 5 6≡ 1 mod 11 folgt ν11 = 1. Ebenso gilt ν5 | 11, also ν5 ∈ {1, 11}. Wir betrachten zunächst den Fall

ν5 = 1 und zeigen, dass in diesem Fall G eine abelsche Gruppe ist, im Widerspruch zur Voraussetzung.

Sei dazu U die einzige 11- und N die einzige 5-Sylowgruppe. Wortwörtlich wie im im letzten Teil (wobei

die Primzahl 13 lediglich durch die Primzahl 5 zu ersetzen ist) zeigt man, dass G ∼= U ×N gilt. Wegen

|G| = 51 ·111 ist |U | = 11 und |N | = 5. Die Gruppen U und N sind also beide von Primzahlordnung und

als solche zyklisch, somit auch abelsch. Daraus folgt, dass auch U × N und G abelsche Gruppen sind,

was der Voraussetzung widerspricht.

Der Fall ν5 = 1 ist durch den Widerspruch also ausgeschlossen, und es folgt ν5 = 11. Sei nun M = LU ,

der Fixkörper der Untergruppe U von G = Gal(L|K). Nach dem Hauptsatz der Galoistheorie gilt dann

U = Gal(L|M). Als einzige 11-Sylowgruppe ist U ein Normalteiler von G. Daraus folgt, dass M |K eine

Galois-Erweiterung ist. Außerdem gilt

[M : K] = (G : U) =
|G|
|U |

=
55

11
= 5.



Nehmen wir nun an, dass M ′ ein weiterer, von M verschiedener, echter Zwischenkörper von L|K ist mit

der Eigenschaft, dass M ′|K galoissch ist. Sei V = Gal(L|M ′). Wegen K (M ′ ( L gilt {idL} ( V ( G.

Somit ist |V | ein echter Teiler von |G| = 55 größer als 1. Die einzigen solchen Teiler sind 5 und 11.

Betrachten wir zunächst den Fall |V | = 11. Dann ist V eine 11-Sylowgruppe von G, und wegen ν11 = 1

folgt V = U . Mit dem Hauptsatz der Galois-Theorie erhalten wir M ′ = LV = LU = M , im Widerspruch

zu unserer Annahme M ′ 6= M .

Betrachten wir nun die andere Möglichkeit, |V | = 5. Dann ist V eine 5-Sylowgruppe von G. Wegen

ν5 = 11 > 1 kann V kein Normalteiler von G sein. Andererseits folgt aber aus der Annahme, dass M ′|K
eine normale Teilererweiterung von L|K ist, die Normalteiler-Eigenschaft von V = Gal(L|M ′). Dieser

Widerspruch zeigt, dass auch der Fall |V | = 5 ausgeschlossen ist und somit kein Zwischenkörper M ′ 6= M

mit den angegebenen Eigenschaften existiert.



Aufgabe F21T2A5

(a) Sei K ein Körper, n ≥ 1 eine natürliche Zahl und A eine beliebige n×n-Matrix über K. Zeigen Sie:

Es existiert eine endliche Körpererweiterung L|K derart, dass A einen Eigenwert λ ∈ L besitzt.

(b) Begründen Sie, dass L = Q[x]/(x3 +x+1) ein Körper ist. Zeigen Sie, dass α = [x] ein Eigenwert der

linearen Abbildung f : L3 → L3, f(u, v, w) = (−w, u− w, v) ist, und geben Sie einen Eigenvektor

zum Eigenwert α an.

Lösung:

zu (a) Sei χA ∈ K[x] das charakteristische Polynom von A und f ∈ K[x] ein über K irreduzibler Faktor

von A. Laut Vorlesung existiert eine endlich Körpererweiterung L|K, so dass f in L eine Nullstelle

λ besitzt. Wegen f | χA ist λ auch eine Nullstelle von χA, und als Nullstelle des charakteristischen

Polynoms von A ist λ ∈ L ein Eigenwert von A.

zu (b) Das Polynom g = x3 + x + 1 ist irreduzibel über Q. Wäre es nämlich reduzibel, dann hätte es

wegen grad(g) = 3 eine Nullstelle r ∈ Q. Da g in Z[x] ist und normiert ist, müsste r ∈ Z gelten und

r den konstanten Termin 1 von g teilen. Es müsste also r ∈ {±1} gelten. Aber wegen g(−1) = −1 6= 0

und g(1) = 3 6= 0 sind ±1 keine Nullstellen von g; damit ist die Irreduzibilität von g nachgewiesen. Als

Polynomring über einem Körper ist Q[x] ein Hauptidealring, und auf Grund der Irreduziblität von g ist

das Hauptideal (g) ein maximales Ideal in Q[x]. Daraus wiederum folgt, dass L = Q[x]/(g) ein Körper

ist.

Seien e1, e2, e3 die Einheitsvektoren in L3. Es gilt f(e1) = f(1, 0, 0) = (0, 1, 0) = e2, f(e2) = f(0, 1, 0) =

(0, 0, 1) = e3 und f(e3) = f(0, 0, 1) = (−1,−1, 0) = −e1 − e2. Somit ist die Abbildung f gegeben durch

L3 7→ L3, v 7→ Av, wobei A ∈M3×3,L die Matrix mit den Spalten e2, e3,−e1 − e2 bezeichnet, also

A =


0 0 −1

1 0 −1

0 1 0

 .

Das charakteristische Polynom von f ist somit gleich dem charakteristischen Polynom von A, und dieses

ist gegeben durch

χA = det(xE −A) = det


x 0 1

−1 x 1

0 −1 x

 = x3 + 0 + 1− 0− (−x)− 0 = x3 + x+ 1

wobei E ∈ M3×3,L die Einheitsmatrix bezeichnet. Es gilt also χA = g. Als Nullstelle von χA ist α ein

Eigenwert von f . Die Eigenvektoren zum Eigenwert α sind genau die Elemente ungleich dem Nullvektor

in Eig(f, α) = Eig(A,α) = ker(A − αE). Wir bestimmen einen solchen Vektor durch Anwendung des

Gauß-Algorithmus.
−α 0 −1

1 −α −1

0 1 −α

 7→


1 −α −1

0 1 −α
−α 0 −1

 7→


1 −α −1

0 1 −α
0 −α2 −α− 1

 7→


1 −α −1

0 1 −α
0 0 −α3 − α− 1

 =


1 −α −1

0 1 −α
0 0 0

 7→


1 0 −α2 − 1

0 1 −α
0 0 0





Die beiden ersten Zeilen der umgeformten Matrix rechts entsprechen den Gleichungen x1 = (α2 + 1)x3

und x2 = αx3. Dies zeigt, dass zum Beispiel (α2 + 1, α, 1) ein Eigenvektor zum Eigenwert λ ist. Wir

überprüfen diese Ergebnis durch eine Proberechnung. Es gilt
0 0 −1

1 0 −1

0 1 0



α2 + 1

α

1

 =


−1

α2

α

 =


α3 + α

α2

α

 = α


α2 + 1

α

1

 ,

wobei im vorletzten Schritt in der ersten Komponente des Vektors noch zu beachten ist, dass α3 + α =

(α3 + α+ 1)− 1 = g(α)− 1 = 0− 1 = −1 gilt.



Aufgabe F21T3A1

(a) Zeigen Sie, dass durch

K = F7[t]/(t3 − 2)

ein Körper mit 343 Elementen gegeben wird.

(b) Bestimmen Sie das Minimalpolynom der komplexen Zahl z = π + ei über R.

(c) Zeigen oder widerlegen Sie, dass das Polynom

f = x2021 + 105x103 + 15x+ 45

über folgenden Körpern irreduzibel ist:

(i) K = Q

(ii) K = R

(iii) K = F2

(iv) K = Q[t]/(f)

(v) Begründen Sie, dass Q[t]/(f) ein Körper ist.

Lösung:

zu (a) Das Polynom f = t3− 2̄ = t3 +5̄ ∈ F7[x] besitzt in F7 keine Nullstelle, denn es gilt f(0̄) = 5̄ 6= 0̄,

f(1̄) = 6̄ 6= 0̄, f(2̄) = 13 = 6̄ 6= 0̄, f(3̄) = 32 = 4̄ 6= 0̄, f(4̄) = 69 = 6̄ 6= 0̄, f(5̄) = f(−2̄) = −3̄ = 4̄ 6= 0̄

und f(6̄) = f(−1̄) = 4̄ 6= 0̄. Wegen grad(f) = 3 folgt daraus, dass f über F7 irreduzibel ist. Da F7[t] als

Polynomring über einem Körper ein Hauptidealring ist, ist jedes von einem irreduziblen Element erzeugte

Ideal maximal. Also ist (f) ein maximales Ideal, und K = F7[t]/(f) ist ein Körper. Aus der Vorlesung ist

außerdem bekannt: Ist K ein Körper und 0 6= g ∈ K[x] vom Grad n, dann bilden die Polynome vom Grad

≤ n− 1 zusammen mit dem Nullpolynom ein Repräsentantensystem von K[x]/(g). Insbesondere bilden

die Polynome vom Grad ≤ 2 also ein Repräsentantensystem von F7[t]/(f). Jedes dieser Polynome hat die

Form ax2 + bx+ c mit eindeutig bestimmten a, b, c ∈ F7. Für jeden der Koeffizienten gibt es also genau

sieben Möglichkeiten, und 73 = 343 mögliche Kombinationen. Dies zeigt, dass das Repräsentantensytem,

und damit auch der Faktorring K = F7[t]/(f), aus genau 343 Elementen besteht.

zu (b) Es gilt z = π + ei ⇒ z − π = ei ⇒ (z − π)2 = −e2 ⇒ z2 − 2πz + π2 + e2 = 0. Dies zeigt, dass

π+ ei eine Nullstelle des Polynoms f = x2− 2πx+ π2 + e2 ∈ R[x] ist. Außerdem ist f normiert. Wäre f

über R reduzibel, dann müsste wegen grad(f) = 2 die Nullstelle π + ei in R liegen. Aber dies ist wegen

Im(π + ei) = e 6= 0 nicht der Fall. Insgesamt ist damit gezeigt, dass f das Minimalpolynom von π + ei

über R ist.

zu (c)(i) Die Primzahl 5 teilt nicht den Leitkoeffizienten 1 von f , wegen 5 mod 105, 5 | 15, 5 | 45

aber jeden anderen Koeffizienten des Polynoms, und 52 ist kein Teiler von 45 = 32 · 51. Also folgt die

Irreduzibilität von f über Z aus dem Eisenstein-Kriterium. Nach dem Gauß’schen Lemma ist f damit

auch irreduzibel über Q.

zu (c)(ii) Aus der Analysis ist bekannt, dass jedes reelle Polynom ungeraden Grades mindestens eine

reelle Nullstelle besitzt. Der Grad 2021 von f ist ungerade. Als Polynom vom Grad > 1 mit mindestens

einer Nullstelle in R ist f über R reduzibel (also nicht irreduzibel).

zu (c)(iii) Es gilt f(1̄) = 1̄2021 + 105 · 1̄103 + 15 · 1̄ + 45 = 1̄ + 105 + 15 + 45 = 1̄ + 1̄ + 1̄ + 1̄ = 4̄ = 0̄. Als

Polynom vom Grad > 1, das in F2 eine Nullstelle besitzt, ist f über F2 reduzibel.



zu (c)(iv) Sei α = t + (f). Identifizieren wir Q mit einem Teilkörper von K durch die die injektive

Abbildung Q→ K, a 7→ a+ (f), dann erhalten wir

f(α) = α2021 + 105α3 + 15α+ 45 = (t+ (f))2021 + 105(t+ (f))3 + 15(t+ (f)) + (45 + (f))

= t2021 + 105t3 + 15t+ 45 + (f) = f + (f) = 0 + (f) = 0.

Es handelt sich bei f also um ein Polynom in K[x] vom Grad > 1, das mit α in K eine Nullstelle besitzt.

Daraus folgt, dass f über K reduzibel ist.

zu (c)(v) Als Polynomring über einem Körper ist Q[t] ein Hauptidealring. Weil f nach Teil (c)(i) in

Q[t] irreduzibel ist, ist das Hauptideal (f) in Q[t] ein maximales Ideal. Daraus folgt, dass der Faktorring

K = Q[t]/(f) ein Körper ist.



Aufgabe F21T3A2

(a) Bestimmen Sie alle Nullstellen (mit Vielfachheiten) des Polynoms f = x4 + 2̄ über F3.

(b) Bestimmen Sie die Galois-Gruppe von f über F3.

(c) Sei α eine Nullstelle von g = x4 +2̄ in einem algebraischen Abschluss von F5. Zeigen Sie, dass dann

auch 2̄α, 3̄α und 4̄α Nullstellen von g sind.

(d) Zeigen Sie, dass g über F5 irreduzibel ist.

(e) Berechnen Sie die Galois-Gruppe von g über F5.

Lösung:

zu (a) Es gilt f(0̄) = 2̄ 6= 0̄, f(1̄) = 3̄ = 0̄ und f(2̄) = 18 = 0̄. Die Ableitung von f ist f ′ = 4̄x3 = x3, und

es gilt f ′(1̄) = 1̄ 6= 0̄ und f ′(2̄) = 8̄ = 2̄ 6= 0̄. Insgesamt zeigt dies, dass 1̄ und 2̄ die einzigen Nullstellen

von f in F3 sind, jeweils mit Vielfachheit 1.

zu (b) Aus Teil (a) folgt, dass f eine Zerlegung der Form f = (x − 1̄)(x − 2̄)g besitzt, mit einem

normierten, irreduziblen Polynom vom Grad 2. Sei Falg
3 ein algebraischer Abschluss von F3 und α ∈ Falg

3

eine Nullstelle von g. Da x− α ein Teiler von g in F3(α)[x] ist, existiert ein Polynom h ∈ F3(α)[x] vom

Grad 1 mit g = (x−α)h. Das Polynom g zerfällt über F3(α) also in Linearfaktoren, ebenso das Polynom

f . Andererseits wird der Körper F3(α) über F3 durch die Nullstellen von f erzeugt, da α nicht nur eine

Nullstelle von g, sondern auch eine Nullstelle von f ist.

Insgesamt handelt es sich bei F3(α) also um einen Zerfällungskörper von f über F3, und es folgt

Gal(f |F3) = Gal(F3(α)|F3). Das Polynom g ist normiert, irreduzibel und hat α als Nullstelle. Es ist also

das Minimalpolynom von α über F3, und folglich gilt [F3(α) : F3] = grad(g) = 2. Aus der Vorlesung ist

bekannt, dass für jeden endlichen Körper F jede Erweiterung E|F von einem endlichen Grad n galoissch

ist, und dass jeweils Gal(E|F ) ∼= Z/nZ gilt. Damit erhalten wir Gal(f |F3) = Gal(F3(α)|F3) ∼= Z/2Z.

zu (c) In F5 gilt 2̄4 = 16 = 1̄, 3̄4 = 81 = 1̄ und 4̄4 = (−1̄)4 = 1̄. Aus g(α) = 0̄ folgt für alle c ∈ {2̄, 3̄, 4̄}
also g(cα) = (cα)4 + 2̄ = 1̄ · α4 + 2̄ = g(α) = 0̄.

zu (d) Sei h ∈ F5[x] das Minimalpolynom von α über F5 und d = [F5(α) : F5]. Dann gilt grad(h) =

[F5(α) : F5] = d. Als d-dimensionaler F5-Vektorraum besteht F5(α) aus 5d Elementen. Bezeichnen wir

den in Teil (c) erwähnten algebraischen Abschluss, in dem α sich befindet, mit Falg
5 , dann stimmt F5(α)

also mit dem eindeutig bestimmten Zwischenkörper F5d von Falg
5 |F5 mit 5d Elementen überein. Die

multiplikative Gruppe F×
5d

besteht aus 5d − 1 Elementen. Wegen g(0̄) = 2̄ 6= 0̄ ist α 6= 0̄, und folglich ist

α in F×
5d

enthalten.

Wegen g ∈ F5[x] und g(α) = 0 ist h ein Teiler von g, es gilt also d = grad(h) ≤ grad(g) = 4 und somit

d ∈ {1, 2, 3, 4}. Wegen g(α) = 0̄ gilt außerdem α4 = 3̄ 6= 1̄, α8 = (3̄)2 = 9̄ = 4̄ 6= 1̄ und α16 = 4̄2 = 1̄.

Dies zeigt, dass α in F×
5d

ein Element der Ordnung 16 ist. Nach dem Satz von Lagrange muss 16 also ein

Teiler von 5d − 1 sein. Da 16 keine der Zahlen 51 − 1 = 4, 52 − 1 = 24, 53 − 1 = 124 teilt, muss d = 4

sein. Aus grad(h) = 4 = grad(g), h | g und der Tatsache, dass h und g beide normiert sind, folgt g = h.

Als Minimalpolynom eines über F5 algebraischen Elements ist g in F5[x] irreduzibel.

zu (e) Nach Teil (c) sind α, 2̄α, 3̄α, 4̄α alles Nullstellen von g in Falg
5 . Da die Elemente 1̄, 2̄, 3̄, 4̄ in

F5 verschieden und α 6= 0̄ ist, sind auch die vier angegebenen Nullstellen verschieden. Durch x − cα
mit c ∈ {1̄, 2̄, 3̄, 4̄} sind also vier verschiedene Linearfaktoren von g in F

alg
5 [x] gegeben, und wegen



grad(g) = 4 folgt daraus (x−α)(x− 2̄α)(x− 3̄α)(x− 4̄α). Dies zeigt, dass g über F5(α) in Linearfaktoren

zerfällt. Andererseits wird F5(α) über F5 durch die Nullstellen von g erzeugt, da α eine Nullstelle

von g ist. Insgesamt handelt es sich bei F5(α) also um den Zerfällungskörper von g über F5, und es

folgt Gal(g|F5) = Gal(F5(α)|F5). Da g nach Teil (d) das Minimalpolynom von α über F5 ist, gilt

[F5(α) : F5] = grad(g) = 4. Auf Grund des in Teil (b) erwähnten Satzes aus der Vorlesung folgt daraus

Gal(g|F5) = Gal(F5(α)|F5) ∼= Z/4Z.



Aufgabe F21T3A3

Seien G eine endliche Gruppe und ϕ : G→ H ein surjektiver Gruppenhomomorphismus auf eine weitere

Gruppe H.

(a) Zeigen Sie, dass H auflösbar ist, wenn G auflösbar ist.

(b) Zeigen Sie, dass H entweder trivial oder einfach ist, wenn G einfach ist.

Lösung:

zu (a) Laut Vorlesung gilt: Ist G eine Gruppe und N ein Normalteiler von G, so ist G genau dann

auflösbar, wenn die Gruppen N und G/N beide auflösbar sind. Setzen wir nun voraus, dass G auflösbar

ist, und sei N = ker(ϕ). Da ϕ ein Epimorphismus von Gruppen ist, existiert nach dem Homomorphiesatz

für Gruppen ein Isomorphismus G/N ∼= H. Aus der Auflösbarkeit von G folgt nun die Auflösbarkeit von

G/N , und wegen G/N ∼= H ist damit auch H auflösbar.

zu (b) Da G einfach ist, besitzt G genau zwei Normalteiler, nämlich {e} und G. Bereits in Teil (a) haben

wir festgestellt, dass G/N ∼= H gilt, mit N = ker(ϕ). Als Kern eines Gruppenhomomorphismus ist N ein

Normalteiler von G. Es gilt also entweder N = G oder N = {e}. Im ersten Fall folgt H ∼= G/G ∼= {e},
die Gruppe H ist also trivial. Im zweiten Fall gilt H ∼= G/{e} ∼= G. Da G einfach ist, folgt in dieser

Situation aus H ∼= G, dass auch H einfach ist.



Aufgabe F21T3A4

Sei R ein kommutativer Ring. Ein Element a ∈ R heißt nilpotent, wenn an = 0 für ein n ∈ N gilt.

(a) Begründen Sie, warum in einem Körper K das einzige nilpotente Element a das Element a = 0 ist.

(b) Zeigen Sie, dass das Nilradikal

n = {a ∈ R | a ist nilpotent }

ein Ideal ist.

(c) Zeigen Sie, dass das Nilradikal in jedem Primideal p des Ringes R enthalten ist.

(d) Berechnen Sie das Nilradikal des (endlichen) Rings Z/`Z, wobei ` ≥ 1 eine natürliche Zahl ist.

Lösung:

zu (a) Sei K ein Körper und 0K sein Nullelement. Wegen 01
K = 0K ist 0K jedenfalls nilpotent. Sei

nun a ∈ K ein beliebiges nilpotentes Element. Dann gilt an = 0K für ein n ∈ N; wir dürfen annehmen,

dass n die kleinste natürliche Zahl mit dieser Eigenschaft ist. Es gilt dann an−1 6= 0K , andererseits aber

an−1 · a = an = 0K . Weil K als Körper insbesondere ein Integritätsbereich ist, folgt daraus a = 0K . Dies

zeigt, dass es neben 0K keine weiteren nilpotenten Elemente in K gibt.

zu (b) Zu zeigen ist, dass das Nullelement 0R in n enthalten ist, und dass für beliebige a, b ∈ n und

r ∈ R auch a+ b und ra in n liegen. Aus 01
R = 0R folgt unmittelbar 0R ∈ n. Seien nun a, b ∈ n und r ∈ R

vorgegeben. Dann existieren m,n ∈ N mit am = bn = 0R. Es folgt (ra)m = rmam = rm · 0R = 0R und

somit ra ∈ n. Zum Nachweis von a + b ∈ n dürfen wir nach eventueller Vertauschung von a und b die

Ungleichung m ≤ n voraussetzen. Es gilt dann auch an = am · an−m = 0R · an−m = 0R. Auf Grund des

Binomischen Lehrsatzes gilt

(a+ b)2n =

2n∑
k=0

(
2n

k

)
a2n−kbk.

Für 0 ≤ k ≤ 2n gilt jeweils entweder k ≥ n oder 2n − k ≥ n. Im ersten Fall ist bk = bn · bk−n =

0R · bk−n = 0R, im zweiten a2n−k = an · an−k = 0R · an−k = 0R. Daraus folgt, dass jeder einzelne

Summand
(

2n
k

)
a2n−kbk gleich null ist, also (a+ b)2n = 0R und damit a+ b ∈ n gilt.

zu (c) Sei p ein beliebiges Primideal von R und a ∈ n. Dann gilt an = 0R für ein n ∈ N, und da p als

Ideal von R das Nullelement 0R enthält, folgt an ∈ p. Wir beweisen nun durch vollständige Induktion

über n, dass für alle n ∈ N aus an ∈ p jeweils a ∈ p folgt. Für n = 1 ist dies unmittelbar klar. Sei nun

n ∈ N, und setzen wir die Aussage für n voraus. Sei a ∈ R ein Element mit an+1 ∈ p. Aus an ·a ∈ p folgt

an ∈ p oder a ∈ p, da p ein Primideal ist. Im Fall a ∈ p ist der Induktionsschritt bereits abgeschlossen.

Im Fall an ∈ p können wir die Induktionsvoraussetzung anwenden und erhalten ebenfalls a ∈ p.

zu (d) Sei ` =
∏r
i=1 p

ei
i die Primfaktorzerlegung von `, wobei r ∈ N0 ist und p1, ..., pr verschiedene

Primzahlen bezeichnen. Sei `0 =
∏r
i=1 pi. Wir zeigen, dass das Nilradikal n von Z/(`) durch n = (`0 +`Z)

gegeben ist. Zum Nachweis von
”
⊇“ sei a+`Z ∈ (`0+`Z) vorgegeben, mit a ∈ Z, und e = max{e1, ..., er}.

Dann gibt es ein m ∈ Z mit a+ `Z = (m+ `Z)(`0 + `Z) = m`0 + `Z und ein s ∈ Z mit a = m`0 + s`.

Mit ` ist auch a ein Vielfaches von `0, es gilt also a = t`0 für ein t ∈ Z. Außerdem ist

`e0 =

(
r∏
i=1

pi

)e
=

r∏
i=1

pei =

(
r∏
i=1

pe−eii

)(
r∏
i=1

peii

)
=

(
r∏
i=1

pe−eii

)
· `



ein Vielfaches von `. Dies zeigt, dass auch ae ein Vielfaches von ` ist. In Z/(`) gilt also (a + `Z)e =

ae + `Z = 0 + `Z. Dies zeigt, dass a+ `Z im Nilradikal n von Z/(`) enthalten ist.

Zum Nachweis von
”
⊆“ setzen wir nun a+`Z ∈ n voraus, mit a ∈ Z. Dann gilt an+`Z = (a+`Z)n = 0+`Z

für ein n ∈ N. Somit ist an ein Vielfaches von `. Für i ∈ {1, ..., r} ist pi jeweils ein Teiler von `, damit

auch von an und (da pi eine Primzahl ist), auch von a. Insgesamt sind p1, ..., pr also Primteiler von a.

Somit ist auch deren Produkt `0 ein Teiler von a, es gilt also a = s`0 und a+ `Z = (s+ `Z)(`0 + `Z) für

ein s ∈ Z. Dies zeigt, dass a+ `Z im Hauptideal (`0 + `Z) von Z/(`) enthalten ist.



Aufgabe F21T3A5

(a) Geben Sie mit Begründung eine mögliche Abbildungsmatrix des Frobenius-Homomorphismus

F : F25 → F25 ,

aufgefasst als Endomorphismus des F5-Vektorraums F25, an.

(b) Bestimmen Sie die Anzahl der Unterkörper, die der endliche Körper F81 besitzt.

Lösung:

zu (a) Sei Falg
5 ein algebraischer Abschluss von F25 (und damit insbesondere ein algebraischer Abschluss

von F5). Sei f = x2 + 2̄ ∈ F5[x] und α ∈ Falg
5 eine Nullstelle von f . Dann ist f das Minimalpolynom

von α über F5. Denn wegen f(0̄) = 2̄ 6= 0̄, f(1̄) = 3̄ 6= 0̄, f(2̄) = 6̄ = 1̄ 6= 0̄, f(3̄) = 11 = 1̄ 6= 0̄ und

f(4̄) = 18 = 3̄ 6= 0̄ besitzt f in F5 keine Nullstellen, ist wegen grad(f) = 2 somit über F5 irreduzibel.

Außerdem ist f normiert, und es gilt f(α) = 0̄. Auf Grund der Eigenschaft von f als Minimalpolynom gilt

[F5(α) : F5] = grad(f) = 2. Als 2-dimensionaler F5-Vektorraum besteht F5(α) aus 52 = 25 Elementen.

Aus der Vorlesung ist bekannt, dass die Erweiterung Falg
5 |F5 für jedes d ∈ N genau einen Zwischenkörper

F5d mit 5d Elementen besitzt.

Es muss somit F25 = F5(α) gelten. Da das Minimalpolynom f von α über F5 vom Grad 2 ist, ist laut

Vorlesung durch (1, α) eine geordnete Basis von F5(α) als F5-Vektorraum gegeben. Wir bestimmen nun

die Darstellungsmatrix des Frobenius-Endomorphismus F : F25 → F25, γ 7→ γ5 bezüglich dieser Basis.

Die erste Spalte der Darstellungsmatrix ergibt sich durch die Rechung F (1̄) = 1̄5 = 1̄ = 1̄ · 1̄ + 0̄ · α.

Wegen f(α) = 0̄ gilt α2 = −2̄ = 3̄. Die zweite Spalte der Darstellungsmatrix erhält man nun durch die

Rechnung

F (α) = α5 = α2 · α2 · α = 3̄ · 3̄ · α = 9̄ · α = 4̄ · α = 0̄ · 1̄ + 4̄ · α.

Insgesamt ist die Darstellungsmatrix von F bezüglich (1, α) also durch(
1̄ 0̄

0̄ 4̄

)
gegeben.

zu (b) In der Vorlesung wurde gezeigt: Ist p eine Primzahl, Fp der Körper mit p Elementen und Falg
p

ein algebraischer Abschluss von Fp, dann gibt es für jedes n ∈ N genau einen Zwischenkörper Fpn von

Falg
p |Fp mit pn Elementen. Dabei gilt Fpm ⊆ Fpn für m,n ∈ N jeweils genau dann, wenn m ein Teiler von

n ist. Insbesondere ist die Anzahl der Zwischenkörper von Fpn |Fp also gleich der Anzahl der natürlichen

Teiler von n. Da Fp der Primkörper von Fpn ist, ist dies zugleich auch die Anzahl der Unterkörper von

Fpn . Die Zahl 4 besitzt in N genau drei Teiler (1, 2 und 4), somit hat der Körper F34 = F81 genau drei

Unterkörper (nämlich F3 = F31 , F9 = F32 und F81 = F34).



Aufgabe H21T1A1

Sei R ein kommutativer Ring (mit 1).

(a) Geben Sie die Definition des größten gemeinsamen Teilers (ggT) zweier Elemente a, b ∈ R an.

(b) Begründen Sie, dass in einem faktoriellen Ring je zwei Elemente einen ggT haben.

(c) Begründen Sie, dass je zwei Elemente des Polynomrings Q[x, y] einen ggT haben.

(d) Zwei Elemente a, b ∈ R heißen teilerfremd, wenn 1 ein ggT von a und b ist. Sie heißen relativ prim,

wenn es u, v ∈ R gibt mit ua + vb = 1. Zeigen Sie: Sind a, b ∈ R relativ prim, dann sind sie auch

teilerfremd.

(e) Geben Sie zwei Elemente a, b ∈ Q[x, y] an, die teilerfremd sind, aber nicht relativ prim.

Lösung:

zu (a) Ein Element d ∈ R wird als größter gemeinsamer Teiler von a und b bezeichnet, wenn d

ein gemeinsamer Teiler von a und b ist, also d | a und d | b gilt, und wenn d′ | d für jeden weiteren

gemeinsamen Teiler d′ von a und b erfüllt ist.

zu (b) Sei R ein faktorieller Ring und P ⊆ R ein Repräsentantensystem der Primelemente von R (was

bedeutet, dass P aus Primelementen besteht und jedes Primelement aus R zu genau einem Element

aus P assoziiert ist). Aus der Vorlesung ist bekannt, dass jedes Element aus R dann eine eindeutige

Darstellung der Form ε
∏
p∈P p

vp besitzt, mit ε ∈ R×, vp ∈ N0 für alle p ∈ P und vp = 0 für alle bis

auf endlich viele p ∈ P . Sind nun a, b ∈ R zwei beliebige Elemente ungleich null und a = ε
∏
p∈P p

vp ,

b = µ
∏
p∈P p

wp die zugehörigen eindeutigen Darstellungen (mit ε, µ ∈ R×), dann ist laut Vorlesung

durch
∏
p∈P p

min{vp,wp} ein ggT von a und b gegeben.

zu (c) Nach Teil (b) genügt es zu zeigen, dass Q[x, y] ein faktorieller Ring ist. Laut Vorlesung ist jeder

Polynomring über einem faktoriellen Ring wiederum faktoriell. Als Polynomring über einem Körper

ist Q[x] ein Hauptidealring, somit insbesondere ein faktorieller Ring. Also ist auch Q[x, y] = Q[x][y]

faktoriell.

zu (d) Seien a, b ∈ R relativ prim. Dann gibt es nach Definition u, v ∈ R mit ua + vb = 1. Offenbar

ist 1 ein gemeinsamer Teiler von a und b (denn es gilt a = 1 · a und b = 1 · b). Sei nun d ein weiterer

gemeinsamer Teiler von a und b. Dann ist d auch ein Teiler von ua und vb, und damit auch ein Teiler von

ua+ vb = 1. Damit ist nachgewiesen, dass 1 ein ggT von a und b ist, die Elemente a, b also teilerfremd

sind.

zu (e) Sei a = x und b = y. Wir zeigen zunächst, dass 1 ein größter gemeinsamer Teiler von a und b ist.

Dass 1 ein gemeinsamer Teiler dieser beiden Elemente ist, ist wiederum offensichtlich. Sei nun d ∈ Q[x, y]

ein weiterer gemeinsamer Teiler von a und b. Wegen d | x existiert ein u ∈ Q[x, y] mit x = ud. Betrachten

wir u und x als Polynome über dem Ring Q[x] in der Variablen y, so ist x ein Polynom vom Grad null,

und aus der Gleichung x = ud folgt, dass auch der Grad von u im Polynomring Q[x][y] gleich null ist.

Dies bedeutet also, dass der Grad von u in der Variablen y gleich null ist. Ebenso folgt aus der Relation

d | y, dass der Grad von d in der Variablen x gleich null ist. Somit ist das Polynom d insgesamt ein

Konstante (wegen ud = x 6= 0 ungleich null), also eine Einheit in Q[x, y]. Es folgt d | 1; also sind x und

y tatsächlich teilerfremd in Q[x, y].



Nehmen wir nun an, dass x und y relativ prim sind. Dann gäbe es Polynome u, v ∈ Q[x, y] mit ux+vy = 1.

Aber der konstante Term auf der linken Seite dieser Gleichung ist gleich 0, während der Termin auf der

rechten Seite gleich 1 ist. Also kann eine solche Gleichung nicht gelten. Die Elemente x und y sind also

nicht relativ prim zueinander.



Aufgabe H21T1A2

Sei V ein unendlich-dimensionaler R-Vektorraum, auf dem eine positiv definite symmetrische Bilinear-

form 〈·, ·〉 definiert ist. Wir schreiben ‖v‖ =
√
〈v, v〉.

Es seien v1, ..., vn ∈ V . Zeigen Sie: Der Schwerpunkt s = 1
n (v1 + ... + vn) ist das eindeutig bestimmte

Element v ∈ V , für das
∑n
j=1 ‖v − vj‖2 minimal wird.

Hinweis: Schreiben Sie v als v = s+ w.

Lösung:

Sei v ∈ V beliebig vorgegeben und w = v − s. Wir beweisen die Gleichung

n∑
j=1

‖v − vj‖2 =

n∑
j=1

‖s− vj‖2 + n‖w‖2.

Daraus folgt unmittelbar, dass die Summe
∑n
j=1 ‖v − vj‖2 genau dann minimal ist, wenn w = 0, also

v = s ist. Für 1 ≤ j ≤ n gilt jeweils

‖v − vj‖2 = ‖s− vj + w‖2 = 〈s− vj + w, s− vj + w〉 =

〈s− vj , s− vj〉+ 〈s− vj , w〉+ 〈w, s− vj〉+ 〈w,w〉 = 〈s− vj , s− vj〉+ 2〈s− vj , w〉+ 〈w,w〉

= ‖s− vj‖2 + ‖w‖2 + 2〈s− vj , w〉.

Außerdem ist

n∑
j=1

〈s− vj , w〉 =

n∑
j=1

〈s, w〉 −
n∑
j=1

〈vj , w〉 = n〈s, w〉 −

〈
n∑
j=1

vj , w

〉
=

n〈s, w〉 − 〈ns,w〉 = n〈s, w〉 − n〈s, w〉 = 0.

Insgesamt erhalten wir also

n∑
j=1

‖v − vj‖2 =

n∑
j=1

‖s− vj‖2 +

n∑
j=1

‖w‖2 + 2

n∑
j=1

〈s− vj , w〉 =

n∑
j=1

‖s− vj‖2 + n‖w‖2 + 2 · 0 =

n∑
j=1

‖s− vj‖2 + n‖w‖2.



Aufgabe H21T1A3

Sei K ein Körper. Für Polynome f, g ∈ K[x] sei f ◦ g das Polynom f(g(x)). Beweisen oder widerlegen

Sie durch ein Gegenbeispiel, ob folgende Aussage für alle Körper K richtig sind.

(a) ∀f, g ∈ K[x] : (f irreduzibel ⇒ f ◦ g irreduzibel)

(b) ∀f, g ∈ K[x] : (f ◦ g irreduzibel ⇒ f irreduzibel)

(c) ∀f, g ∈ K[x] : (f ◦ g irreduzibel ⇒ g irreduzibel)

Lösung:

zu (a) Diese Aussage ist falsch. Sei zum Beispiel K = Q, f = x und g = x2. Dann ist f als lineares

Polynom über einem Körper irreduzibel. Es gilt aber f ◦ g = f(x2) = x2, und dieses Polynom ist

reduzibel, denn x2 = x ·x ist eine Zerlegung in Nicht-Einheiten. (Die Einheiten im Ring Q[x] sind genau

die konstanten Polynome ungleich null.)

zu (b) Diese Aussage ist wahr. Denn nehmen wir an, f, g ∈ Q[x] sind Polynome mit der Eigenschaft,

dass f ◦ g irreduzibel, f aber nicht irreduzibel ist. Dann ist f entweder eine Einheit oder reduzibel.

Im ersten Fall wäre f konstant. Dann wäre auch f ◦ g eine Konstante und somit eine Einheit in Q[x],

insbesondere kein irreduzibles Element. Im zweiten Fall gäbe es eine Zerlegung f = f1f2 von f in Nicht-

Einheiten. Durch f ◦ g = f(g(x)) = (f1f2)(g(x)) = f1(g(x))f2(g(x)) = (f1 ◦ g) · (f2 ◦ g) ist dann ebenfalls

eine Zerlegung in Nicht-Einheiten gegeben. Da nämlich f1 und f2 keine Konstanten sind, können die

Polynome f1 ◦ g und f2 ◦ g nur dann konstant sein, wenn g eine Konstante ist. Aber dann wäre auch

f ◦ g konstant, im Widerspruch zur Voraussetzung, dass f ◦ g irreduzibel ist.

zu (c) Diese Aussage ist falsch. Sei zum Beispiel K = Q, f = x + 1 und g = x2. Dann ist f ◦ g =

f(g(x)) = x2 + 1. Dieses Polynom ist irreduzibel, da es vom Grad 2 ist und keine rationale Nullstelle

besitzt; wegen (f ◦ g)(a) = a2 + 1 > 0 für alle a ∈ R besitzt es noch nicht einmal eine Nullstelle in R.

Andererseits ist g irreduzibel, denn x2 = x · x ist eine Zerlegung in Nicht-Einheiten.



Aufgabe H21T1A4

(a) Wir betrachten die additiven Gruppen Z ⊆ Q. Zeigen Sie: Die Faktorgruppe Q/Z ist unendlich,

aber jede endlich erzeugte Untergruppe von Q/Z ist endlich.

(b) Sei A = {f : Z → Z, x 7→ ax + b | a = ±1, b ∈ Z}. Zeigen Sie: A ist eine Gruppe mit der

Hintereinanderschaltung von Abbildungen als Verknüpfung, und diese Gruppe ist isomorph zum

semidirekten Produkt der (additiven) Gruppe Z mit der (multiplikativen) Gruppe {±1}, wobei

{±1} auf Z durch Multiplikation operiert.

Lösung:

zu (a) Um nachzuweisen, dass Q/Z unendlich ist, zeigen wir, dass durch 2−n +Z mit n ∈ N unendlich

viele verschiedene Elemente von Q/Z gegeben sind. Wäre die Menge {2−n + Z | n ∈ N} endlich, dann

gäbe es m,n ∈ N, m < n mit 2−m + Z = 2−n + Z. Dies wäre gleichbedeutend mit 2−m ∈ 2−n + Z,

also 2−m = 2−n + a für ein a ∈ Z, was zu a = 2−m − 2−n umgeformt werden kann. Im Fall a = 0 wäre

2−m = 2−n und m = −log2(2−m) = −log2(2−n) = n, im Widerspruch zur Voraussetzung. Im Fall a 6= 0

ist einerseits |a| ≥ 1, andererseits aber m ≥ 1 und somit |2−m− 2−n| ≤ 2−m ≤ 1
2 < 1, was der Gleichung

a = 2−m − 2−n ebenfalls widerspricht.

Sei nun U eine endlich erzeugte Untergruppe von Q/Z und {ri +Z | 1 ≤ i ≤ t} ein endliches Erzeugen-

densystem von U , mit ri ∈ Q für 1 ≤ i ≤ t und t ∈ N0. Wir schreiben ri = ai
bi

mit ai ∈ Z und bi ∈ N, für

1 ≤ i ≤ t. Setzen wir d = kgV(b1, ..., bt), dann gelten di = d
bi
∈ N und ri+Z = aidi ·( 1

d +Z) ∈ 〈 1d +Z〉 für

1 ≤ i ≤ t. Aus r1+Z, ..., rt+Z ∈ 〈 1d+Z〉 folgt U ⊆ 〈 1d+Z〉 (da {r1+Z, ..., rt+Z} ein Erzeugendensystem

von U ist).

Um zu zeigen, dass U endlich ist, genügt es also nachzuweisen, dass die Gruppe 〈 1d +Z〉 endlich ist. Dazu

wiederum genügt es zu überprüfen, dass die Gruppe in der endlichen Menge { rd +Z | r ∈ Z , 0 ≤ r < d}
enthalten ist. Jedes Element in 〈 1d +Z〉 hat die Form n ·( 1

d +Z) = n
d +Z, mit n ∈ Z. Division von n durch

d mit Rest liefert ein q ∈ Z und ein r ∈ {0, ..., d− 1} mit n = qd+ r. Wegen n
d −

r
d = n−r

d = qd
d = q ∈ Z

gilt n
d +Z = r

d+Z. Das Element n
d +Z ist also tatsächlich in der angegebenen endlichen Menge enthalten.

zu (b) Für jedes a ∈ {±1} und jedes b ∈ Z sei fa,b : Z 7→ Z die Abbildung gegeben durch f(x) = ax+ b

für alle x ∈ Z.

(i) Die Abbildung fa,b : Z→ Z ist für alle a ∈ {±1} und b ∈ Z jeweils bijektiv, es gilt also A ⊆ Per(Z).

(ii) Es ist A eine Untergruppe von Per(Z) (und somit insbesondere eine Gruppe).

(iii) Durch φ : Z → A, b 7→ f1,b und ψ : {±1} → A sind injektive Homomorphismen definiert. Setzen

wir N = φ(Z) und U = ψ({±1}), dann sind N und U also Untergruppen von A, und es gilt Z ∼= N

und {±1} ∼= U .

(iv) Bei A handelt es sich um ein inneres semidirektes Produkt von N und U . (Zusammen mit den

Isomorphismen aus Teil (iii) folgt daraus, dass A isomorph zu einem semidirekten Produkt von Z

und {±1} ist.)

(v) Es gilt fa,0 ◦ f1,b ◦ f−1
a,0 = f1,ab für alle a ∈ {±1} und b ∈ Z. (Daraus folgt, dass {±1} auf Z bei der

Bildung des semidirekten Produkts durch Multiplikation operiert.)



zu (i) Sei a ∈ {±1} und b ∈ Z. Wir zeigen, dass fa,b : Z → Z bijektiv ist. Für alle x, y ∈ Z gilt die

Äquivalenz ax + b = y ⇔ ax = y − b ⇔ x = a−1(y − b) ⇔ x = a−1y + (−a−1)b ⇔ x = fa−1,−a−1b(y).

Dies zeigt, dass fa−1,−a−1b eine Umkehrabbildung von fa,b und fa,b somit bijektiv ist.

zu (ii) Das Neutralelement von Per(Z) ist die identische Abbildung idZ, und für alle x ∈ Z gilt

idZ(x) = x = 1 · x+ 0 = f1,0(x). Wegen 1 ∈ {±1} und 0 ∈ Z ist idZ = f1,0 somit in A enthalten. Seien

nun f, g ∈ A vorgegeben. Dann gibt es a, c ∈ {±1} und b, d ∈ Z mit f = fa,b und g = fc,d. Zu zeigen ist

f ◦ g ∈ A und f−1 ∈ A. Wir haben bereits unter (i) festgestellt, dass die Umkehrabbildung von f = fa,b

durch f−1 = fa−1,−a−1b gegeben ist. Wegen a ∈ {±1} und b ∈ Z gilt a−1 ∈ {±1} und −a−1b ∈ Z, und

dies zeigt, dass f−1 = fa−1,−a−1b in A enthalten ist. Außerdem gilt für alle x ∈ Z jeweils

(f ◦ g)(x) = (fa,b ◦ fc,d)(x) = fa,b(cx+ d) = a(cx+ d) + b

= (ac)x+ (ad+ b) = fac,ad+b(x).

Wegen a, c ∈ {±1} und b, d ∈ Z gilt ac ∈ {±1} und ad + b ∈ Z, und damit folgt f ◦ g = fac,ad+b ∈ A.

Insgesamt ist die Untergruppen-Eigenschaft von A damit nachgewiesen.

zu (iii) Seien b1, b2 ∈ Z vorgegeben. Für alle x ∈ Z gilt (f1,b1 ◦f1,b2)(x) = f1,b1(x+ b2) = (x+ b2)+ b1 =

x+(b1+b2) = f1,b1+b2(x) und somit φ(b1+b2) = f1,b1+b2 = f1,b1 ◦f1,b2 = φ(b1)◦φ(b2). Also ist φ : Z→ A,

b 7→ f1,b ein Gruppenhomomorphismus. Zum Nachweis der Injektivität sei b ∈ ker(φ) vorgegeben. Zu

zeigen ist b = 0. Das Neutralelement in N ist die identische Abbildung, wegen b ∈ ker(φ) gilt also

f1,b = φ(b) = idZ. Es folgt b = 0 + b = f1,b(0) = idZ(0) = 0.

Seien nun a1, a2 ∈ {±1} vorgegeben. Für alle x ∈ Z gilt (fa1,0 ◦ fa2,0)(x) = fa1,0(a2x) = a1(a2x) =

(a1a2)x = fa1a2,0(x) und somit ψ(a1a2) = fa1a2,0 = fa1,0 ◦ fa2,0 = ψ(a1) ◦ψ(a2). Also ist ψ : {±1} → A,

a 7→ fa,0 ein Gruppenhomomorphismus. Um zu zeigen, dass ψ injektiv ist, sei a ∈ ker(ψ) vorgegeben.

Zu zeigen ist a = 1. Das Neutralelement in U ist die identische Abbildung, wegen a ∈ ker(ψ) gilt also

fa,0 = ψ(a) = idZ. Es folgt a = a · 1 = fa,0(1) = idZ(1) = 1.

Als Bilder von Gruppen unter Gruppenhomomorphismen sind N = φ(Z) und U = ψ({±1}) Untergrup-

pen von A. Durch φ ist ein Isomorphismus Z ∼= N gegeben, denn aufgefasst als Abbildung φ : Z → N

ist φ surjektiv, außerdem (wie bereits oben gezeigt) injektiv und ein Homomorphismus. Aus demselben

Grund ist durch ψ ein Isomorphismus {±1} ∼= U definiert.

zu (iv) In Teil (iii) wurde bereits gezeigt, dass N und U Untergruppen von A sind. Zu zeigen bleibt,

dass N ein Normalteiler von A ist und außerdem die Gleichungen N ∩ U = {idZ} und NU = A erfüllt

sind. Zum Nachweis der Normalteiler-Eigenschaft seien f ∈ A und n ∈ N vorgegeben. Zu zeigen ist

f ◦ n ◦ f−1 ∈ N . Auf Grund der Voraussetzungen gibt es a ∈ {±1} und b, d ∈ Z mit f = fa,b und

n = f1,d. Für alle x ∈ Z gilt

(f ◦ n ◦ f−1)(x) = (fa,b ◦ f1,d ◦ f−1
a,b )(x) = (fa,b ◦ f1,d ◦ fa−1,−a−1b)(x) =

(fa,b ◦ f1,d)(a
−1x+ (−a−1b)) = fa,b(a

−1x+ (−a−1b) + d) =

a(a−1x+ (−a−1b) + d) + b = x+ (−b) + ad+ b = x+ ad

und somit f ◦ n ◦ f−1 = f1,ad ∈ N . In der Gleichung N ∩ U = {idZ} ist die Inklusion
”
⊇“ offensichtlich

(da N und U als Untergruppen von A beide das Neutralelement enthalten). Zum Nachweis von
”
⊆“ sei

f ∈ N ∩ U vorgegeben. Wegen f ∈ N gibt es ein b ∈ Z mit f = f1,b, und wegen f ∈ U existiert ein

a ∈ {±1} mit f = fa,0. Es folgt b = 0 + b = f1,b(0) = fa,0(0) = a · 0 + 0 = 0 und a = a · 1 + 0 = fa,0(1) =

f1,b(1) = 1 + b = 1. Ingesamt gilt also f = f1,0. Wegen f1,0(x) = 1 · x + 0 = x = idZ(x) für alle x ∈ Z
erhalten wir f = idZ.



In der Gleichung NU = A ist
”
⊆“ offensichtlich (weil N und U nach Definition Teilmengen von A sind).

Zum Nachweis von
”
⊇“ sei f ∈ A vorgegeben, f = fa,b mit a ∈ {±1} und b ∈ Z. Für alle x ∈ Z gilt

(f1,b ◦ fa,0)(x) = f1,b(ax + 0) = ax + b = fa,b(x). Wegen f1,b = φ(b) ∈ N und fa,0 = ψ(a) ∈ U folgt

f = fa,b = f1,b ◦ fa,0 ∈ NU .

zu (v) Wir haben bereits unter (iv) nachgerechnet, dass fa,b ◦ f1,d ◦ f−1
a,b = f1,ad für alle a ∈ {±1} und

b, d ∈ Z gilt. Insbesondere gilt also fa,0 ◦ f1,b ◦ f−1
a,0 = f1,ab für alle a ∈ {±1} und b ∈ Z.



Aufgabe H21T1A5

Sei Q ⊆ K ⊆ C, wobei K eine galoissche Körpererweiterung von Q vom Grad 2021 ist. Zeigen Sie:

(a) Es gibt Zwischenkörper Q ⊆ Lj ⊆ K, j ∈ {1, 2}, mit [L1 : Q] = 43 und [L2 : Q] = 47, die über Q

galoissch sind.

(b) Sei α ∈ K, so dass K = Q(α) gilt, und sei f das Minimalpolynom von α über Q. Dann zerfällt f

über R in Linearfaktoren.

Lösung:

zu (a) Sei G = Gal(K|Q). Weil K|Q eine Galois-Erweiterung vom Grad 2021 ist, gilt |G| = [K : Q] =

2021 = 43 · 47. Für jede Primzahl p sei νp die Anzahl der p-Sylowgruppen von G. Auf Grund des 3.

Sylowsatzes gilt ν47 | 43, da 43 eine Primzahl ist also ν47 ∈ {1, 43}, außerdem ν47 ≡ 1 mod 47. Wegen

43 6≡ 1 mod 47 folgt ν47 = 1. Ebenso gilt ν43 | 47, da 47 eine Primzahl ist also ν43 ∈ {1, 47}, außerdem

ν43 ≡ 1 mod 43. Wegen 47 ≡ 4 6≡ 1 mod 43 folgt ν43 = 1.

Sei nun N1 die einzige 47- und N2 die einzige 43-Sylowgruppe, außerdem Lj jeweils der Fixkörper von

Nj , also Lj = KNj für j = 1, 2. Wegen G = 431 · 471 gilt |N1| = 47 und |N2| = 43, nach Definition

der p-Sylowgruppen. Auf Grund der Ergänzungen zum Hauptsatz der Galoistheorie gilt [L1 : Q] = (G :

N1) = |G|
|N1| = 2021

47 = 43 und ebenso [L2 : Q] = (G : N2) = |G|
|N2| = 2021

43 = 47. Da N1 als einzige 47-

Sylowgruppe ein Normalteiler von G ist, liefert der zugehörige Fixkörper eine galoissche Teilerweiterung

L1|Q von K|Q. Aus demselben Grund ist auch L2|Q eine Galois-Erweiterung.

zu (b) Laut Angabe ist die Erweiterung K|Q galoissch, also insbesondere normal. Das Polynom f ist

als Minimalpolynom von α über Q in Q[x] irreduzibel, außerdem besitzt es in K = Q(α) eine Nullstelle

(nämlich α). Weil K|Q normal ist, zerfällt f über K also in Linearfaktoren.

Weil f das Minimalpolynom von α ist, gilt außerdem grad(f) = [Q(α) : Q] = [K : Q] = 2021. Weil f

ein Polynom ungeraden Grades ist, besitzt es in R eine Nullstelle β. Weil f über K in Linearfaktoren

zerfällt, enthält K alle Nullstellen von f , insbesondere die Nullstelle β. Es gilt also β ∈ K und (da K

eine Erweiterung von Q ist) somit auch Q(β) ⊆ K. Da f (als Minimalpolynom von α über Q) normiert

und irreduzibel ist, folgt aus f(β) = 0, dass f auch das Minimalpolynom von β über Q ist. Es gilt also

[Q(β) : Q] = grad(f) = [K : Q]. Zusammen mit Q(β) ⊆ K folgt daraus K = Q(β). Damit ist gezeigt,

dass f auch über Q(β) in Linearfaktoren zerfällt. Wegen β ∈ R gilt Q(β) ⊆ R. Also zerfällt f erst recht

über R in Linearfaktoren.



Aufgabe H21T2A1

Sei G eine Gruppe, und seien a, b, c Elemente aus G.

(a) Zeigen Sie, dass a und a−1 dieselbe Ordnung haben.

(b) Zeigen Sie, dass ab und ba dieselbe Ordnung haben.

(c) Zeigen Sie, dass abc und bca dieselbe Ordnung haben.

(d) Geben Sie Elemente a, b, c in der symmetrischen Gruppe S3 an, so dass abc und bac nicht dieselbe

Ordnung haben.

(e) Zeigen Sie, dass es in einer nichtkommutativen Gruppe G stets Elemente a, b, c gibt, so dass abc

und bac nicht dieselbe Ordnung haben.

Lösung:

zu (a) Ist ord(a) unendlich, dann muss auch a−1 unendliche Ordnung haben. Denn ansonsten gäbe es

ein n ∈ N mit (a−1)n = e, wobei e das Neutralelement von G bezeichnet. Auf Grund der Potenzgesetze

für Gruppenelemente würde dann an = a−(−n) = ((a−1)n)−1 = e−1 = e gelten. Somit hätte auch a

unendliche Ordnung, im Widerspruch zur Voraussetzung.

Somit können wir uns auf den Fall beschränken, dass m = ord(a) endlich ist. Sei n = ord(a−1). Wegen

(a−1)m = a−m = (am)−1 = e−1 = e ist n = ord(a−1) ein Teiler von m. Umgekehrt ist wegen an =

((a−1)n)−1 = e−1 = e auch m = ord(a) ein Teiler von n. Damit ist insgesamt ord(a) = m = n = ord(a−1)

nachgewiesen.

zu (b) Sei φ : G→ G gegeben durch die Konjugation mit a−1, also durch φ(g) = a−1ga für alle g ∈ G.

Laut Vorlesung ist eine solche Abbildung ein Automorphismus von G. Außerdem ist bekannt, dass die

Ordnung von Gruppenelementen unter Isomorphismen erhalten bleibt. Wegen φ(ab) = a−1(ab)a = ba

haben die Elemente also ab und ba dieselbe Ordnung.

zu (c) Sei φ wie in Aufgabenteil (b) definiert. Aus der Gleichung φ(abc) = a−1(abc)a = bca ergibt sich

wie in Teil (b), dass die Elemente abc und bca dieselbe Ordnung haben.

zu (d) Sei a = (1 2), b = (1 3) und c = (1 2 3). Dann gilt abc = (1 2)◦(1 3)◦(1 2 3) = (1 3 2)◦(1 2 3) = id,

andererseits bac = (1 3) ◦ (1 2) ◦ (1 2 3) = (1 2 3) ◦ (1 2 3) = (1 3 2). Es ist also einerseits ord(abc) = 1,

andererseits aber ord(bac) = 3 (weil in Sn jeder k-Zykel von Ordnung k ist, für alle n ∈ N und 2 ≤ k ≤ n).

zu (e) Ist G eine nichtkommutative Gruppe, dann gibt es Elemente a, b mit ab 6= ba. Sei c = (ab)−1 =

b−1a−1. Dann ist einerseits abc = (ab)(ab)−1 = e (wobei e wiederum das Neutralelement von G be-

zeichnet), andererseits bac = (ba)(b−1a−1). Hätten abc und bac dieselbe Ordnung, dann müsste wegen

ord(abc) = ord(e) = 1 auch die Ordnung von bac gleich 1 sein, das Element bac also mit dem Neutralele-

ment übereinstimmen. Aber daraus würde sich (ba)(b−1a−1) = e ⇒ bab−1 = a ⇒ ba = ab ergeben, im

Widerspruch zur Voraussetzung. Also haben die Elemente abc und bac verschiedene Ordnung.



Aufgabe H21T2A2

(a) Bestimmen Sie das Minimalpolynom m von 3
√

2 über Q. Zeigen Sie, dass m über Q[ 3
√

2] nicht in

Linearfaktoren zerfällt.

(b) Sei F5 der endliche Körper mit fünf Elementen. Geben Sie einen Isomorphismus ϕ : F5[
√

2] →
F5[
√

3] explizit an.

Lösung:

zu (a) Zunächst zeigen wir, dass m = x3−2 gilt. Das Polynom f = x3−2 liegt in Q[x], ist normiert, und

es erfüllt die Bedingung f( 3
√

2) = 0. Außerdem ist es nach dem Eisenstein-Kriterium (angewendet auf

die Primzahl p = 2) irreduzibel über Z und damit nach dem Gauß’schen Lemma auch irreduzibel über

Q. Insgesamt handelt es sich also um das Minimalpolynom von 3
√

2 über Q, es gilt also m = f = x3 − 2.

Nun besitzt m neben 3
√

2 auch die komplexe Nullstelle ζ 3
√

2, mit ζ = e2πi/3 = − 1
2 + 1

2

√
−3, denn es gilt

ζ3 = 1 und somit m(ζ 3
√

2) = (ζ 3
√

2)3 − 2 = ζ3( 3
√

2)3 − 2 = 1 · 2− 2 = 0. Würde m bereits über Q[ 3
√

2] in

Linearfaktoren zerfallen, dann müssten alle komplexen Nullstellen von m in Q[ 3
√

2] liegen, insbesondere

die Nullstelle ζ 3
√

2. Aber dies ist nicht der Fall, denn wegen 3
√

2 ∈ R gilt Q[ 3
√

2] ⊆ R, aber andererseits

hat ζ 3
√

2 den Imaginärteil 1
2

√
3 3
√

2 ungleich null und ist somit nicht in R enthalten.

zu (b) Das Polynom f = x2 − 2̄ = x2 + 3̄ ∈ F5[x] ist das Minimalpolynom von
√

2 über F5. Denn wie

die Rechnung f(0̄) = 3̄ 6= 0̄, f(1̄) = 4̄ 6= 0̄, f(2̄) = 2̄ 6= 0̄, f(3̄) = 2̄ 6= 0̄, f(4̄) = 4̄ 6= 0̄ zeigt, besitzt f

in F5 keine Nullstellen; wegen grad(f) = 2 folgt daraus die Irreduzibilität. Da f außerdem normiert ist

und f(
√

2) = (
√

2)2 − 2̄ = 2̄ − 2̄ = 0̄ gilt, ist f insgesamt das Minimalpolynom von
√

2 über F5. Laut

Vorlesung existiert somit ein Isomorphismus φ : F5[x]/(f)→ F5[
√

2] gegeben durch φ(g + (f)) = g(
√

2)

für alle g ∈ F5[x].

Im nächsten Schritt bestimmen wir eine Quadratwurzel aus 2̄ in F5[
√

3]. Für alle a, b ∈ F5 gilt die

Äquivalenz

(a+ b
√

3)2 = 2̄ ⇔ a2 + 2̄ab
√

3 + (b
√

3)2 = 2̄ ⇔ a2 + 3̄b2 + 2̄ab
√

2 = 2̄.

Die letzte Gleichung ist zum Beispiel erfüllt, wenn wir a = 0̄ und b = 2̄ setzen. Tatsächlich ist (2̄
√

3)2 =

2̄2 · 3̄ = 4̄ · 3̄ = 12 = 2̄, d.h. das Element 2̄
√

3 ∈ F5[
√

3] ist eine Quadratwurzel aus 2̄.

Auf Grund der universellen Eigenschaft des Polynomrings gibt es einen eindeutig bestimmten Ringhomo-

morphismus ψ : F5[x]→ F5[
√

3] mit ψ|F5
= idF5

und ψ(x) = 2̄
√

3, nämlich den Auswertungshomomor-

phismus gegeben durch ψ(g) = g(2̄
√

3). Dieser Homomorphismus ist surjektiv, denn wegen ψ|F5
= idF5

ist der Teilring F5 im Bild enthalten, und wegen ψ(3̄x) = 3̄ · (2̄
√

3) = 6̄ ·
√

3 =
√

3 auch das Element
√

3, insgesamt also der komplette Ring F5[
√

3]. Darüber hinaus gilt ker(ψ) = (x2 − 2̄) = (f). Denn

die Rechung ψ(f) = f(2̄
√

3) = (2̄
√

3)2 − 2̄ = 2̄ − 2̄ = 0̄ zeigt zunächst, dass das Hauptideal (f) im

Kern enthalten ist. Weil f = x2 − 2̄, wie oben gezeigt, ein in F5[x] irreduzibles Polynom und F5[x] als

Polynomring über einem Körper ein Hauptidealring ist, handelt es sich bei (f) um ein maximales Ideal.

Somit ist ker(ψ) ) (f) nur möglich, wenn ker(ψ) = (1̄) und ψ somit die Nullabbildung ist. Aber dies ist

wegen ψ|F5
= idF5

nicht der Fall. Damit ist die angegebene Gleichung bewiesen.

Der Homomorphiesatz für Ringe zeigt nun, dass ψ einen Isomorphismus ψ̄ : F5[x]/(f) → F5[
√

3]

induziert, gegeben durch ψ̄(g + (f)) = ψ(g) = g(2̄
√

3). Durch Komposition der beiden Isomorphis-

men φ−1 : F5[
√

2] → F5[x]/(f) und ψ̄ : F5[x]/(f) → F5[
√

3] erhalten wir nun einen Isomorphismus

α = ψ̄ ◦ φ−1. Dieser ist explizit gegeben durch α(g(
√

2)) = (ψ̄ ◦ φ−1)(g(
√

2)) = ψ̄(g + (f)) = g(2̄
√

3) für

alle g ∈ F5[x], insbesondere ist α(
√

2) = 2̄
√

3.



Aufgabe H21T2A3

Es sei L|K eine Körpererweiterung vom Grad 2.

(a) Zeigen Sie, dass L|K stets normal ist.

(b) Zeigen Sie, dass L|K im Fall char(K) 6= 2 stets separabel ist.

(c) Geben Sie (mit Begründung) jeweils ein Beispiel für eine separable und eine inseparable Körperer-

weiterung vom Grad 2 im Fall char(K) = 2 an.

Hinweis für den zweiten Teil:

Betrachten Sie den rationalen Funktionenkörper k(t) über einem Körper k.

Lösung:

zu (a) Sei f ∈ K[x] ein über K irreduzibles Polynom, das in L eine Nullstelle α besitzt. Zu zeigen ist,

dass f über L in Linearfaktoren zerfällt. Da K(α) ein Zwischenkörper von L|K ist, gilt 2 = [L : K] =

[L : K(α)] · [K(α) : K] auf Grund der Gradformel, also [K(α) : K] | 2 und somit [K(α) : K] ∈ {1, 2}. Da

f irreduzibel über K und α ∈ L eine Nullstelle von f ist, folgt grad(f) = [K(α) : K] ∈ {1, 2}. Im Fall

grad(f) = 1 ist das Polynom f selbst linear und somit nichts zu zeigen. Im Fall grad(f) = 2 ist x − α
wegen f(α) = 0 ein Teiler von f in L[x], es existiert also ein h ∈ K[x] mit f = (x − α)h, und wegen

grad(f) = 2 muss grad(h) = 1 gelten. Also zerfällt f auch in diesem Fall über L in Linearfaktoren.

zu (b) Sei L|K eine Erweiterung mit char(K) 6= 2 und [L : K] = 2. Zu zeigen ist, dass jedes Element

aus L über K separabel ist. Sei also α ∈ L vorgegeben und f ∈ K[x] das Minimalpolynom von α über

K. Zu zeigen ist, dass es sich bei f um ein separables Polynom handelt, also ggT(f, f ′) = 1 gilt. Auf

Grund der Gradformel gilt [L : K(α)] · [K(α) : K] = [L : K] = 2. Daraus folgt [K(α) : K] | 2 und

somit grad(f) = [K(α) : K] ∈ {1, 2}. Im Fall grad(f) = 1 ist f ′ die Ableitung eines normierten linearen

Polynoms, also f ′ = 1 und ggT(f, f ′) = 1 somit erfüllt.

Im Fall grad(f) = 2 gibt es a, b ∈ K mit f = x2 + ax+ b. Es gilt dann f ′ = 2x+ a. In diesem Fall sind

f und f ′ nur dann nicht teilerfremd, wenn f ′ ein Teiler von f und somit − 1
2a ∈ K eine Nullstelle von f

ist. (Dabei ist zu beachten, dass in K wegen char(K) 6= 2 die 2 nicht das Nullelement ist und somit 1
2

in K existiert.) Aber dies würde der Tatsache widersprechen, dass f als Minimalpolynom von α über K

irreduzibel ist. Also ist f auch in diesem Fall separabel.

zu (c) Sei K = F2 und L = F4, der Körper mit zwei bzw. vier Elementen. Da F2 der gemeinsame

Primkörper von K und L ist, gilt char(K) = char(L) = 2. Wegen 4 = 22 gilt laut Vorlesung [L : K] = 2.

Außerdem ist bekannt, dass jede algebraische Erweiterung eines endlichen Körpers separabel ist. Weil L

endlich ist, ist L|K eine endliche und somit auch eine algebraisch und separable Erweiterung.

Sei nun L = F2(t) der rationale Funktionenkörper über F2 und K der von t2 über F2 erzeugte Teilkörper,

also K = F2(t2). Wieder ist F2 der gemeinsame Primkörper von K und L, es gilt also auch hier char(K) =

char(L) = 2. Wir zeigen nun, dass f = x2 − t2 ∈ K[x] das Minimalpolynom von t über K ist. Das

Polynom ist normiert, und es gilt f(t) = t2− t2 = 0. Wäre es reduzibel, dann müsste wegen grad(f) = 2

die Nullstelle t bereits in K enthalten sein. Aus der Vorlesung ist bekannt, dass die Elemente in K

die Form u(t2)
v(t2) haben, mit u, v ∈ F2[x] und v 6= 0̄. Es gäbe also solche Polynome u, v mit u(t2)

v(t2) = t,

was zu u(t2) = tv(t2) umgeformt werden kann. Aber eine solche Gleichung in F2[t] ist unmöglich, weil

grad(u(t2)) = 2 · grad(u) eine gerade, grad(tv(t2)) = 2 · grad(v) + 1 jedoch eine ungerade Zahl ist.

Dies zeigt, dass f irreduzibel und insgesamt tatsächlich das Minimalpolynom von t über K ist. Außerdem



gilt L = K(t), denn wegen F2 ⊆ K und t ∈ K(t) gilt L = F2(t) ⊆ K(t), und wegen K ⊆ L und t ∈ L
andererseits auch K(t) ⊆ L. Es folgt [L : K] = [K(t) : K] = grad(f) = 2. Aber die Erweiterung L|K ist

nicht separabel. Denn wegen ggT(f, f ′) = ggT(f, 2̄x) = ggT(f, 0̄) = f sind f und f ′ nicht teilerfremd,

das Polynom f ∈ K[x] also nicht separabel und folglich (weil f das Minimalpolynom von t über K ist)

das Element t ∈ L nicht separabel über K.



Aufgabe H21T2A4

Zu betrachten seien die Körpererweiterungen Q(α) und Q(β) von Q, wobei

α =

√
1 +
√

2 ∈ R und β = i

√√
2− 1 ∈ C ist.

(a) Bestimmen Sie jeweils das Minimalpolynom von α und β über Q.

(b) Bestimmen Sie die Grade [Q(α) : Q] und [Q(β) : Q]. Entscheiden Sie, ob die beiden Erweiterungen

verschieden sind.

(c) Entscheiden und begründen Sie, ob die Q(α)|Q und Q(β)|Q jeweils normal sind.

(d) Bestimmen Sie die Automorphismengruppen AutQ(Q(α)) und AutQ(Q(β)).

Lösung:

zu (a) Zunächst bestimmen wir das Minimalpolynom von α über Q. Die Rechnung

α =

√
1 +
√

2 ⇒ α2 = 1 +
√

2 ⇒ α2 − 1 =
√

2 ⇒ (α2 − 1)2 = 2 ⇒

α4 − 2α2 + 1 = 2 ⇒ α4 − 2α2 − 1 = 0

zeigt, dass α eine Nullstelle von f = x4 − 2x2 − 1 ∈ Q[x] ist. Wir zeigen, dass f über Q irreduzibel

ist. Da f in Z[x] liegt und normiert ist, ist jede rationale Nullstelle von f ganzzahlig und ein Teiler des

konstanten Terms −1. Die einzigen mögichen rationalen Nullstellen sind also ±1. Es gilt aber f(1) =

f(−1) = 1− 2− 1 = −2 6= 0, also besitzt f keine rationale Nullstelle. Wäre f dennoch über Q reduzibel,

dann auch über Z. Es gäbe also zwei nicht-konstante Polynome g, h ∈ Z[x] mit f = gh. Da f normiert

ist, können auch g und h normiert gewählt werden, und das Produkt der konstanten Terme von g und h

muss −1 sein. Da −1 = 1 · (−1) bis auf Reihenfolge die einzige Zerlegung von −1 in ganzzahlige Faktoren

ist, können wir nach eventueller Vertauschung von g und h davon ausgehen, dass der konstante Term

von g gleich 1 und der konstante Term von h gleich −1 ist. Da f keine rationale Nullstelle besitzt, ist

keiner der Faktoren g, h vom Grad 1. Es muss also grad(g) = grad(h) = 2 gelten. Insgesamt haben damit

gezeigt, dass g = x2 + ax+ 1 und h = x2 + bx− 1 ist, mit geeigneten a, b ∈ Z. Weiter gilt

x4 − 2x2 − 1 = f = gh = (x2 + ax+ 1)(x2 + bx− 1)

= x4 + (a+ b)x3 + abx2 + (−a+ b)x− 1.

Durch Koeffizientenvergleich erhalten wir a + b = −a + b = 0 und ab = −2. Die Addition der ersten

beiden Gleichungen liefert 2b = 0 und b = 0, woraus dann aber ab = 0, im Widerspruch zu ab = −2. Es

gibt also keine Zerlegung von f der angegebenen Form, und insgesamt ist damit die Irreduzibilität von

f nachgewiesen.

Nun bestimmen wir noch das Minimalpolynom von β über Q. Es gilt

β = i

√√
2− 1 ⇒ β2 = −(

√
2− 1) = 1−

√
2 ⇒ β2 − 1 = −

√
2 ⇒ (β2 − 1)2 = 2

⇒ β4 − 2β2 + 1 = 2 ⇒ β4 − 2β2 − 1 = 0.

Es gilt also auch f(β) = 0, und wie wir bereits oben festgestellt haben, ist f normiert und irreduzibel

über Q. Dies zeigt, dass f auch das Minimalpolynom von β über Q ist.

zu (b) Da f nach Teil (a) sowohl das Minimalpolynom von α als auch das Minimalpolynom von β ist,

gilt [Q(α) : Q] = grad(f) = 4 und ebenso [Q(β) : Q] = grad(f) = 4. Es ist aber Q(α) 6= Q(β), denn



wegen α ∈ R gilt Q(α) ⊆ R; andererseits ist Q(β) wegen
√√

2− 1 ∈ R und β = i
√√

2− 1 /∈ R kein

Teilkörper von R.

zu (c) Angenommen, Q(α)|Q ist eine normale Erweiterung. Dann zerfällt jedes über Q irreduzible

Polynom, das in Q(α) eine Nullstelle hat, über Q(α) in Linearfaktoren. Das Polynom f = x4 − 2x2 − 1

ist, wie wir in Teil (a) gesehen haben, über Q irreduzibel, und es besitzt in Q(α) eine Nullstelle, nämlich

α. Auf Grund unserer Annahme zerfällt f somit über Q(α) in Linearfaktoren. Dies bedeutet, dass alle

komplexen Nullstellen von f bereits in Q(α) enthalten sind, unter anderem auch die Nullstelle β. Aber

wie in Teil (b) gezeigt wurde, gilt einerseits Q(α) ⊆ R, andererseits aber β /∈ R. Damit kann β auch kein

Element von Q(α) sein, und folglich ist Q(α)|Q nicht normal.

Nehmen wir nun an, dass Q(β)|Q eine normale Erweiterung ist. Da f auch in Q(β) eine Nullstelle

besitzt, nämlich β, kommen wir erneut zu dem Ergebnis, dass f über Q(β) in Linearfaktoren zerfällt.

Damit ist dann die Nullstelle α in Q(β) enthalten, und es folgt Q(α) ⊆ Q(β). Zusammen mit dem

Ergebnis [Q(α) : Q] = 4 = [Q(β) : Q] aus Teil (b) folgt daraus Q(α) = Q(β). Aber dies hätte β ∈ Q(α)

zur Folge, was wir bereits ausgeschlossen haben. Somit ist auch die Erweiterung Q(β)|Q nicht normal.

zu (d) Zunächst zeigen wir, dass die vier komplexen Nullstellen von f durch ±α,±β gegeben sind. Weil

f nur Terme mit geraden Exponenten enthält, gilt neben f(α) = f(β) = 0 auch f(−α) = f(α) = 0 und

f(−β) = f(β) = 0. Desweiteren sind die Elemente ±α,±β alle verschieden. Denn wegen f(0) 6= 0 gilt

α, β 6= 0 und somit −α 6= α, −β 6= β. Auch die Gleichungen β = ±α und −β = ±α sind ausgeschlossen,

denn wie wir in Teil (b) gesehen haben, sind ±α im Gegensatz zu ±β reelle Zahlen. Durch ±α,±β sind

also vier komplexe Nullstellen von f gegeben, und wegen grad(f) = 4 kann es keine weiteren Nullstellen

in C geben.

Weil die Erweiterung Q(α)|Q von α erzeugt wird, ist jedes Element σ ∈ AutQ(Q(α)) bereits durch das

Bild σ(α) festgelegt. Außerdem muss σ aus Q-Automorphismus die Nullstelle α von f ∈ Q[x] wiederum

auf eine Nullstelle von f abbilden. Es gibt für σ(α) also nur die vier Möglichkeiten {±α,±β}. Wie in

Teil (c) gezeigt wurde, ist aber β kein Element von Q(α), und daraus folgt auch β /∈ Q(α) (denn mit

−β wäre auch β = −(−β) in Q(α) enthalten). Im Fall σ(α) = β oder σ(α) = −β wäre σ also keine

Abbildung Q(α)→ Q(α) und erst recht kein Automorphismus.

Somit ist nur σ(α) ∈ {±α} möglich, d.h. AutQ(Q(α)) besitzt nicht mehr als zwei Elemente. Weil f über

Q irreduzibel ist und ±α Nullstellen von f sind, liefert der Fortsetzungssatz einen Q-Homomorphismus

τ1 : Q(α) → C mit τ1(α) = −α. Wegen −α = τ1(α) ∈ Q(α) gilt τ1(α) ∈ Q(α) und damit auch

τ1(Q(α)) ⊆ Q(α) (da τ1 ein Q-Homomorphismus ist). Jeder Körperhomomorphismus ist injektiv, und als

injektiver Endomorphismus des endlich-dimensionalen Q-Vektorraums Q(α) ist τ1 auch bijektiv. Damit

ist insgesamt τ1 ∈ AutQ(Q(α)) nachgewiesen. Ein weiterer Q-Homomorphismus ist die Identität idQ(α)

(die wegen τ(α) 6= α von τ verschieden ist). Da es in AutQ(Q(α)) nicht mehr als zwei Elemente gibt,

haben wir damit insgesamt AutQ(Q(α)) = {idQ(α), τ1} gezeigt. Weil neben β /∈ Q(α) nach Teil (c) auch

α /∈ Q(β) gilt, kann auf analoge Weise gezeigt werden, dass AutQ(Q(β)) = {idQ(β), τ2} gilt, wobei τ2 den

eindeutig bestimmten Q-Automorphismus von Q(β) mit τ2(β) = −β bezeichnet.



Aufgabe H21T2A5

(a) Sei G eine Gruppe und Aut(G) deren Automorphismengruppe. Zeigen Sie, dass folgende Abbildung

wohldefiniert ist und einen Gruppenhomomorphismus darstellt.

c : G→ Aut(G) , g 7→ [cg : x 7→ gxg−1]

(b) Bezeichne S3 die symmetrische Gruppe des Grades 3. Beweisen Sie, dass die Automorphismen-

gruppe Aut(S3) zur Gruppe S3 isomorph ist.

Lösung:

zu (a) Für den Nachweis, dass c eine wohldefinierte Abbildung ist, müssen wir zeigen, dass cg für jedes g ∈
G ein Element aus Aut(G) ist. Für jedes g ∈ G ist cg : G→ G, x 7→ gxg−1 ein Gruppenhomomorphismus,

denn es gilt cg(h1h2) = g(h1h2)g−1 = (gh1g
−1)(gh2g

−1) = cg(h1)cg(h2) für alle h1, h2 ∈ G. Außerdem

ist cg für jedes g ∈ G bijektiv, denn durch c−1
g ist jeweils eine Umkehrabbildung von cg gegeben: Für

alle h ∈ G gilt (cg−1 ◦ cg)(h) = cg−1(cg(h)) = cg−1(ghg−1) = g−1ghg−1g = ehe = h = idG(h) und

ebenso (cg ◦ cg−1)(h) = cg(g
−1h(g−1)−1) = gg−1hgg−1 = ehe = h = idG(h), also cg−1 ◦ cg = idG und

cg ◦ cg−1 = idG. Insgesamt ist cg damit für jedes g ∈ G ein Automorphismus von G.

Nun muss noch gezeigt werden, dass durch G→ Aut(G), g 7→ cg ein Gruppenhomomorphismus gegeben

ist. Seien g1, g2 ∈ G vorgegeben. Für jedes h ∈ G gilt (cg1 ◦ cg2)(h) = cg1(cg2(h)) = cg1(g2hg
−1
2 ) =

g1(g2hg
−1
2 )g−1

1 = (g1g2)h(g1g2)−1 = cg1g2(h). Daraus folgt c(g1g2) = cg1g2 = cg1 ◦ cg2 = c(g1) ◦ c(g2).

zu (b) Nach Teil (a) existiert ein Gruppenhomomorphismus c : S3 → Aut(S3), σ 7→ [cσ : τ 7→ στσ−1].

Wir zeigen, dass c injektiv und surjektiv ist. Zum Nachweis der Injektivität sei σ ∈ ker(c) vorgegeben.

Zu zeigen ist σ = id. Wegen σ ∈ ker(c) gilt cσ = c(σ) = idS3 , also στσ−1 = cσ(τ) = idS3(τ) = τ für

alle τ ∈ S3. Dies ist gleichbedeutend mit στ = τσ für alle τ ∈ S3, d.h. σ ist im Zentrum Z(S3) von S3

enthalten. Aber wegen (1 2)◦(1 3) = (1 3 2) 6= (1 2 3) = (1 3)◦(1 2) und (1 2)◦(2 3) = (1 2 3) 6= (1 3 2) =

(2 3)◦(1 2) sind die Transpositionen (1 2), (1 3), (2 3) keine Elemente des Zentrums, und die Ungleichungen

(1 2 3) ◦ (1 2) = (1 3) 6= (2 3) = (1 2) ◦ (1 2 3) und (1 3 2) ◦ (1 2) = (2 3) 6= (1 3) = (1 2) ◦ (1 3 2) zeigen,

dass Z(S3) auch keine 3-Zykel enthält. Es gilt also Z(S3) = {id}. Damit ist σ = id und die Injektivität

von σ nachgewiesen. (Eventuell ist auch aus der Vorlesung bekannt, dass Z(Sn) für n 6= 2 ein triviales

Zentrum besitzt.)

Durch {(1 2), (1 2 3)} ist ein zweielementige Erzeugendensystem von S3 definiert. Setzen wir nämlich

U = 〈(1 2), (1 2 3)〉, dann ist die Ordnung von U wegen (1 2) ∈ U ein Vielfaches von ord((1 2)) = 2

und wegen (1 2 3) ∈ U auch ein Vielfaches von ord((1 2 3)) = 3. Insgesamt ist |U | also ein Vielfaches

von kgV(2, 3) = 6 = |S3|, und aus U ⊆ S3 und |U | ≥ |S3| folgt U = S3. Weil die Gruppe S3 von

{(1 2), (1 2 3)} erzeugt wird, ist jedes φ ∈ Aut(S3) durch die Bilder φ((1 2)) und φ((1 2 3)) bereits

eindeutig festgelegt. Außerdem ist bekannt, dass ein Automorphismus jedes Gruppenelement jeweils auf

ein Element gleicher Ordnung abbildet. Für φ((1 2)) kommen also nur die drei Transpositionen und für

φ((1 2 3)) nur die beiden 3-Zykel in Frage.

Dies zeigt, dass |Aut(S3)| aus höchstens 3 · 2 = 6 Elementen besteht. Andererseits besitzt Aut(S3) auf

Grund der Injektivität von c eine zu S3 isomorphe Untergruppe, nämlich c(S3). Wegen |c(S3)| = |S3| =
6 ≥ |Aut(S3)| und c(S3) ⊆ Aut(S3) muss c(S3) = Aut(S3) gelten. Durch c ist also ein Isomorphismus

zwischen S3 und Aut(S3) definiert.



Aufgabe H21T3A1

Sei S5 die symmetrische Gruppe auf {1, 2, 3, 4, 5} und sei A5 ≤ S5 die alternierende Gruppe. Zeigen Sie

die folgenden Aussagen:

(a) Sei U ≤ S5 eine Untergruppe mit 3 oder 5 Elementen. Dann ist U ≤ A5.

(b) S5 hat genau 10 Untergruppen der Ordnung 3

(c) S5 hat genau 6 Untergruppen der Ordnung 5

Lösung:

zu (a) Sei zunächst U eine Untergruppe mit |U | = 5. Auf Grund der Primzahlordnung 5 ist U zyklisch,

es gibt also ein Element σ ∈ S5 mit ord(σ) = 5. Dieses Element ist ein 5-Zykel. Ist nämlich (k1, ..., kr)

der Zerlegungstyp von σ (mit r, k1, ..., kr ∈ N, k1 ≥ ... ≥ kr ≥ 2), dann gilt k1 + ... + kr ≤ 5 und

kgV(k1, ..., kr) = ord(σ) = 5. Auf Grund der letzten Gleichung teilt die 5 zumindest eine der Zykellängen

k1, ..., kr; auf Grund der Ungleichung k1 + ...+kr ≤ 5 ist dies nur für r = 1 und k1 = 5 möglich. Da σ ein

5-Zykel ist, gilt sgn(σ) = (−1)5−1 = (−1)4 = 1 und somit σ ∈ A5. Daraus wiederum folgt U = 〈σ〉 ≤ A5.

Betrachten wir nun den Fall |U | = 3. Auch 3 ist eine Primzahl, die Untergruppe U somit zyklisch, U = σ

für ein σ ∈ S5 mit ord(σ) = 3. Sei (k1, ...kr) wie oben der Zerlegungstyp von σ. Wegen kgV(k1, ..., kr) = 3

gilt 3 | ki für ein i ∈ {1, ..., r}. Wegen k1 + ... + kr ≤ 5 folgt daraus zunächst r = 1, k1 = 3 oder r = 2,

k1 = 3, k2 = 2. Im zweiten Fall wäre aber ord(σ) = kgV(3, 2) = 6, im Widerspruch zu ord(σ) = 3. Also

bleibt r = 1, k1 = 3 als einzige Möglichkeit, und σ ist ein 3-Zykel. Es folgt sgn(σ) = (−1)3−1 = (−1)2 = 1

und σ ∈ A5, und wiederum erhalten wir U = 〈σ〉 ≤ A5.

zu (b) Wir haben bereits in Teil (a) festgestellt, dass jede Untergruppe der Ordnung 3 von S5 zyklisch

ist. Jede solche Gruppe enthält ϕ(3) = 2 Elemente der Ordnung 3, und umgekehrt ist jedes σ ∈ S5 mit

ord(σ) = 3 in genau einer zyklischen Untergruppe der Ordnung 3 enthalten, nämlich in 〈σ〉. Es gibt also

doppelt so viele Elemente der Ordnung 3 wie Untergruppen der Ordnung 3. Die Anzahl der 3-Zykel in S5

ist gleich
(

5
3

)
· (3− 1)! = 10 · 2 = 20, denn für den Träger des 3-Zykels, eine dreielementige Teilmenge von

M5 = {1, 2, ..., 5} gibt es
(

5
3

)
Möglichkeiten, und nach Wahl des Trägers gibt es noch (3−1)! Möglichkeiten

für den 3-Zykel. Die Anzahl der Untergruppen der Ordnung 3 ist also gleich 1
2 · 20 = 10.

zu (c) Aus Teil (a) wissen wir auch bereits, dass jede Untergruppe der Ordnung 5 zyklisch ist. Jede

solche Gruppe enthält ϕ(5) = 4 Elemente der Ordnung 5, und umgekehrt ist jedes σ ∈ S5 mit ord(σ)

in genau einer zyklischen Untergruppe der Ordnung 5 enthalten, nämlich in 〈σ〉. Es gibt also viermal so

viele Elemente der Ordnund 5 wie Untergruppen der Ordnung 5. Die Anzahl der 5-Zykel in S5 ist gleich

(5− 1)! = 24, denn der Träger eines 5-Zykels ist zwangsläufig die gesamte Menge M5 = {1, 2, ..., 5}, und

allgemein gibt es in Sn jeweils genau (k− 1)! k-Zykel mit festem Träger, für alle k, n ∈ N mit 2 ≤ k ≤ n.

Die Anzahl der Untergruppen der Ordnung 5 ist also gleich 1
4 · 24 = 6.



Aufgabe H21T3A2

Es sei p eine Primzahl und Fp = Z/pZ der endliche Körper mit p Elementen. Wir betrachten die Menge

G =

{(
a b

0̄ 1̄

) ∣∣∣∣ a ∈ F×p , b ∈ Fp

}

von 2× 2-Matrizen über dem Körper Fp.

(a) Zeigen Sie, dass G ⊆ GL2(Fp) ist.

(b) Zeigen Sie, dass G eine Gruppe ist.

(c) Bestimmen Sie alle Primzahlen p, für die G abelsch ist.

(d) Bestimmen Sie alle Primzahlen p, für die G zu einer symmetrischen Gruppe Sn isomorph ist.

Lösung:

zu (a) Für alle a ∈ F×p und alle b ∈ Fp gilt

det

(
a b

0̄ 1̄

)
= a · 1̄ = a 6= 0̄.

Dies zeigt, dass die Matrix

(
a b

0̄ 1̄

)
jeweils invertierbar ist, also in GL2(Fp) liegt.

zu (b) Wegen Teil (a) genügt es zu zeigen, dass G eine Untergruppe von GL2(Fp) ist. (Denn jede

Untergruppe von GL2(Fp) ist insbesondere eine Gruppe.) Das Neutralelement von GL2(Fp) ist die Ein-

heitsmatrix

(
1̄ 0̄

0̄ 1̄

)
, und wegen 1̄ ∈ F×p und 0̄ ∈ Fp ist diese in G enthalten.

Seien nun A1, A2 ∈ G vorgegeben. Dann gibt es a1, a2 ∈ F×p und b1, b2 ∈ Fp mit

A1 =

(
a1 b1

0̄ 1̄

)
und A2 =

(
a2 b2

0̄ 1̄

)
.

Auf Grund der Gleichung

A1A2 =

(
a1 b1

0̄ 1̄

)(
a2 b2

0̄ 1̄

)
=

(
a1a2 a1b2 + b1

0̄ 1̄

)

und a1a2 ∈ F×p , a1b2 + b1 ∈ Fp ist auch A1A2 in G enthalten. Wegen(
a1 b1

0̄ 1̄

)(
a−1

1 −a−1
1 b1

0̄ 1̄

)
=

(
1̄ 0̄

0̄ 1̄

)

und a−1
1 ∈ F×p , −a−1

1 b1 ∈ Fp ist auch A−1
1 =

(
a−1

1 −a−1
1 b1

0̄ 1̄

)
in G enthalten.

zu (c) Im Fall p = 2 gilt |F×p | = 1 und |Fp| = 2. Jedes Element aus G ist durch die beiden Einträge

a ∈ F×p und b ∈ Fp eindeutig festgelegt. Daraus folgt |G| = 1·2 = 2, und als Gruppe von Primzahlordnung

ist G zyklisch, insbesondere abelsch. Sei nun p eine ungerade Primzahl. Dann gibt es ein a ∈ F×p ungleich

1̄, und die Matrizen

A =

(
a 0̄

0̄ 1̄

)
und T =

(
1̄ 1̄

0̄ 1̄

)



sind beides Elemente von G. Wegen

AT =

(
a 0̄

0̄ 1̄

)(
1̄ 1̄

0̄ 1̄

)
=

(
a a

0̄ 1̄

)
, TA =

(
1̄ 1̄

0̄ 1̄

)(
a 0̄

0̄ 1̄

)
=

(
a 1̄

0̄ 1̄

)

gilt aber TA 6= AT wegen a 6= 1̄. Für jede ungerade Primzahl p ist die Gruppe G also nicht abelsch.

zu (d) Sei p eine beliebige Primzahl. Jedes Element der Gruppe G ist durch die Einträge a ∈ F×p und

b ∈ Fp eindeutig festgelegt. Da es für a jeweils p − 1 und für b jeweils p Möglichkeiten gibt, gilt |G| =

p(p−1). Nehmen wir nun an, G ist isomorph zu Sn für ein n ∈ N. Dann folgt p(p−1) = |G| = |Sn| = n!.

Da der Primfaktor p in n! vorkommt, muss n ≥ p gelten. Ist nun p ≥ 5, dann ergibt sich der Widerspruch

n! ≥ p! ≥ p(p−1)(p−2) ≥ p(p−1) ·3 > p(p−1). Somit ist G ∼= Sn nur für p ∈ {2, 3} möglich. In Teil (c)

haben wir bereits festgestellt, dass G im Fall p = 2 zyklisch von Ordnung 2 ist, und dasselbe gilt auch

für S2. Da je zwei zyklische Gruppen derselben Ordnung isomorph sind, folgt G ∼= S2 für p = 2.

Um zu zeigen, dass G im Fall p = 3 zu S3 isomorph ist, betrachten wir eine Operation von G auf einer

geeigneten dreielementigen Menge. Sei X = {(c, 1̄) | c ∈ F3} = {(0̄, 1̄), (1̄, 1̄), (2̄, 1̄)} ⊆ F2
3}. Für alle

a ∈ F×3 und b, c ∈ F3 gilt (
a b

0̄ 1̄

)(
c

1̄

)
=

(
ac+ b

1̄

)
∈ X.

Dies zeigt, dass durch (A, v) 7→ Av eine Abbildung ∗ : G ×X → X definiert ist. Dabei handelt es sich

um eine Gruppenoperation, denn es gilt E ∗ v = Ev = v für alle v ∈ X (wobei E die Einheitsmatrix

bezeichnet) und A1 ∗ (A2 ∗ v) = A1 ∗ (A2v) = A1(A2v) = (A1A2)v = (A1A2) ∗ v für alle A1, A2 ∈ G und

v ∈ X. Laut Vorlesung liefert die Operation einen Gruppenhomomorphismus φ : G → Per(X), gegeben

durch φ(A)(v) = A∗v = Av für alle A ∈ G und v ∈ X. Dieser Homomorphismus ist injektiv. Sei nämlich

A ∈ ker(φ) vorgegeben,

A =

(
a b

0̄ 1̄

)
mit a ∈ F×3 und b ∈ F3.

Dann gilt φ(A) = idX und Av = φ(A)(v) = idX(v) = v für alle v ∈ X. Aus den Gleichungen(
b

1̄

)
=

(
a b

0̄ 1̄

)(
0̄

1̄

)
=

(
0̄

1̄

)
und

(
a+ b

1̄

)
=

(
a b

0̄ 1̄

)(
1̄

1̄

)
=

(
1̄

1̄

)

folgt dann b = 0̄ und a+ b = 1̄, also a = 1̄ und b = 0̄ und somit A = E.

Wegen |X| = 3 gilt Per(X) ∼= S3 und |Per(X)| = |S3| = 6 = |G|. Aus dieser Gleichheit und der

Injektivität von φ folgt, dass φ bijektiv ist. Also ist φ ein Isomorphismus, und es gilt G ∼= Per(X) ∼= S3

im Fall p = 3.



Aufgabe H21T3A3

Sei L|K eine endliche Körpererweiterung und sei α ∈ L. Zeigen Sie:

(a) Das Minimalpolynom fα der K-linearen Abbildung ϕα : L→ L, x 7→ αx, ist gleich dem Minimal-

polynom gα von α über K.

(b) Ist L = K(α), so stimmen das charakteristische Polynom und das Minimalpolynom von ϕα überein.

Lösung:

zu (a) Wir zeigen, dass für jedes Polynom f ∈ K[x] genau dann f(α) = 0 gilt, wenn die K-lineare

Abbildung f(ϕα) : L → L die Nullabbildung ist, also f(ϕα) = 0EndK(L) gilt. Nach Definition ist fα

das eindeutig bestimmte, normierte Polynom minimalen Grades mit fα(ϕα) = 0EndK(L), und gα ist

das eindeutig bestimmte, normierte Polynom minimalen Grades mit gα(α) = 0. Aus der behaupteten

Äquivalenz folgt also die Übereinstimmung von fα und gα.

Sei also f ∈ K[x] vorgegeben, f = anx
n + ... + a1x + a0 mit n ∈ N und a0, ..., an ∈ K. Ist f(α) = 0,

dann folgt
∑n
k=0 akα

k = 0. Für alle β ∈ L erhalten wir

f(ϕα)(β) =

(
n∑
k=0

akϕ
k
α

)
(β) =

n∑
k=0

akϕ
k
α(β) =

n∑
k=0

akα
kβ

= f(α) · β = 0 · β = 0 ,

wobei im dritten Schritt verwendet wurde, dass ϕα(β) = αβ und ϕkα(β) = αkβ für alle k ∈ N0 gilt. Aus

f(ϕα)(β) = 0 für alle β ∈ L folgt f(ϕα) = 0EndK(L). Setzen wir nun diese Gleichung umgekehrt voraus,

dann gilt insbesondere

0 = 0EndK(L)(1) = f(ϕα)(1) =

(
n∑
k=0

akϕ
k
α

)
(1) =

n∑
k=0

(akϕ
k
α)(1)

=

n∑
k=0

akα
k · 1 =

n∑
k=0

akα
k = f(α) ,

also f(α) = 0. Damit ist die behauptete Äquivalenz insgesamt bewiesen.

zu (b) Aus der Linearen Algebra ist bekannt, dass für jeden Endomorphismus eines endlich-

dimensionalen K-Vektorraums V das Minimalpolynom stets ein Teiler des charakteristischen Polynoms

ist. Außerdem ist der Grad des charakteristischen Polynoms immer gleich der Dimension von V .

Das Minimalpolynom fα von ϕα ist also ein Teiler des charakteristischen Polynoms χϕα von ϕα. Da

L|K eine endliche Erweiterung ist, und K(α) wegen α ∈ L ein Zwischenkörper von L|K, ist auch

n = [K(α) : K] endlich. Aus der allgemeinen Aussage zum Grad des charakteristischen Polynoms

folgt grad(χϕα) = dimK K(α) = [K(α) : K] = n, wobei dimK K(α) die Dimension von K(α) als K-

Vektorraum bezeichnet. Nach Teil (a), und weil gα das Minimalpolynom von α ist, gilt andererseits

n = [K(α) : K] = grad(gα) = grad(fα). Da fα ein Teiler von χϕα ist, die beiden Polynome aber

andererseits denselben Grad haben, stimmen sie überein.



Aufgabe H21T3A4

Es sei F2 der Körper mit zwei Elementen und f = x4 + x+ 1̄ ∈ F2[x].

(a) Zeigen Sie, dass f irreduzibel ist.

(b) Sei K = F2[x]/(f) = F2(α) mit α = x̄ die durch Adjunktion einer Nullstelle von f entstandene

algebraische Körpererweiterung von F2. Zeigen Sie, dass α ein Erzeuger der multiplikativen Gruppe

K× ist.

(c) Zeigen Sie: In K[x] gilt f = (x− α)(x− α2)(x− α4)(x− α8).

Lösung:

zu (a) Wegen f(0̄) = 1̄ 6= 0̄ und f(1̄) = 3̄ = 1̄ 6= 0̄ besitzt f in F2 keine Nullstelle. Ist f dennoch reduzibel

in F2[x], dann muss das Polynom wegen grad(f) = 4 das Produkt zweier irreduzibler Polynome vom

Grad 2 sein. Das einzige irreduzible Polynom vom Grad 2 über F2 ist bekanntlich x2 +x+1̄. Es gilt aber

(x2 + x+ 1̄)(x2 + x+ 1̄) = x4 + x3 + x2 + x3 + x2 + x+ x2 + x+ 1̄ = x4 + x2 + 1̄ 6= f.

Also ist f irreduzibel über F2.

zu (b) Da f normiert und irreduzibel über F2 ist und α als Nullstelle besitzt, ist f das Minimalpolynom

von α über F2. Daraus folgt [K : F2] = grad(f) = 4. Es ist K also ein vierdimensionaler F2-Vektorraum

und besteht als solcher aus 24 = 16 Elementen. Die multiplikative Gruppe K× = K \ {0} enthält somit

16 − 1 = 15 Elemente. Wegen f(0̄) 6= 0̄ ist α ungleich null, also in K× enthalten. Das Element α ist

genau dann ein Erzeuger von K×, wenn es ein Element der Ordnung 15 ist. Wegen |K×| = 15 ist

ord(α) jedenfalls ein Teiler von 15. Es gilt ord(α) = 15 genau dann, wenn α3 6= 1̄ und α5 6= 1̄ gilt. Die

Gleichung α3 = 1̄ ist ausgeschlossen, denn ansonsten wäre α eine Nullstelle des Polynoms x3− 1̄. Weil das

Minimalpolynom von α aber vom Grad 4 ist, existiert kein Polynom ungleich null mit einem kleineren

Grad als 4, das α als Nullstelle hat. Nehmen wir nun an, es gilt α5 = 1̄. Wegen α4 + α + 1̄ = f(α) = 0̄

gilt α4 = −1̄ − α = 1̄ + α. Aus α4 · α = α5 = 1̄ folgt also α2 + α = (α + 1̄) · α = 1̄ = −1̄ und somit

α2 + α+ 1̄ = 0̄. Es wäre α also eine Nullstelle von x2 + x+ 1̄, was wiederum ausgeschlossen ist, weil das

Minimalpolynom von α vom Grad 4 ist.

zu (c) Das Polynom g = (x − α)(x − α2)(x − α4)(x − α8) ∈ K[x] ist vom Grad 4, normiert, und

besitzt α als Nullstelle. Wenn wir zeigen können, dass g darüber hinaus in F2[x] enthalten ist, dann ist

g insgesamt das Minimalpolynom von α über F2, und aus der Eindeutigkeit des Minimalpolynoms folgt

g = f . Sei ϕ : K → K der Frobenius-Automorphismus definiert durch ϕ(γ) = γ2 für alle γ ∈ K. Aus

der Vorlesung ist bekannt, dass jedes γ ∈ K genau dann in F2 liegt, wenn ϕ(γ) = γ gilt. Wir können

γ zu einem Automorphismus des Polynomrings K[x] fortsetzen, indem wir γ auf die Koeffizienten der

Polynome anwenden. Bemerken wir noch, dass wegen |K×| = 15 und α ∈ K× die Gleichungen α15 = 1̄

und α16 = α gelten, so erhalten wir

ϕ(g) = (x− ϕ(α))(x− ϕ(α2))(x− ϕ(α4))(x− ϕ(α8)) =

(x− α2)(x− (α2)2)(x− (α4)2)(x− (α8)2) = (x− α2)(x− α4)(x− α8)(x− α16)

= (x− α2)(x− α4)(x− α8)(x− α1) = g.

Alle Koeffizienten von g bleiben also unter der Anwendung von ϕ unverändert. Sie liegen also in F2, und

damit gilt tatsächlich g ∈ F2[x].



Aufgabe H21T3A5

Seien m und n zwei positive ganze Zahlen mit ggT(m,n) = 1. Für jede positive ganze Zahl a sei

ζa = e2πi/a ∈ C; ζa ist eine primitive a-te Einheitswurzel. Beweisen Sie die folgenden Aussagen:

(a) Q(ζm, ζn) = Q(ζmn)

(b) [Q(ζm, ζn) : Q] = [Q(ζm) : Q] · [Q(ζn) : Q]

(c) Q(ζm) ∩Q(ζn) = Q

Lösung:

zu (a) Zu zeigen ist ζm, ζn ∈ Q(ζmn) und ζmn ∈ Q(ζm, ζn). Die ersten Aussage ist wegen ζm = e2πi/m =

(e2πi/(mn))n = ζnmn ∈ Q(ζmn) und ζn = e2πi/n = (e2πi/(mn))m = ζmmn ∈ Q(ζmn) offenbar erfüllt. Für

die zweite Aussage bemerken wir zunächst, dass wegen ggT(m,n) = 1 und auf Grund des Lemmas von

Bézout ganze Zahlen a, b mit am+ bn = 1 existieren. Es folgt 1
mn = a

n + b
m und

ζmn = e2πi/(mn) = e2πi·( an+ b
m ) = e2πia/ne2πib/m = ζanζ

b
m.

Dies zeigt, dass ζmn in Q(ζm, ζn) enthalten ist.

zu (b) Laut Vorlesung gilt [Q(ζ`) : Q] = ϕ(`) für alle ` ∈ N, wobei ϕ die Eulersche ϕ-Funktion

bezeichnet. Weil m und n teilerfremd sind, gilt ϕ(mn) = ϕ(m)ϕ(n). Zusammen mit dem Ergebnis aus

Teil (a) erhalten wir

[Q(ζm, ζn) : Q] = [Q(ζmn) : Q] = ϕ(mn) = ϕ(m)ϕ(n) = [Q(ζm) : Q] · [Q(ζn) : Q].

zu (c) Aus der Vorlesung ist bekannt, dass Q(ζ`)|Q für jedes ` ∈ N eine Galois-Erweiterung ist, und

dass ferner ein Isomorphismus ψ : (Z/`Z)× → Gal(Q(ζ`)|Q) mit ψ(a + `Z) = σa für alle a ∈ Z mit

ggT(a, `) = 1 existiert, wobei σa ∈ Gal(Q(ζ`)|Q) jeweils den Automorphismus bezeichnet, der durch

σa(ζ`) = ζa` eindeutig bestimmt ist.

Sei nun G = Gal(Q(ζmn)|Q). Auf Grund des Hauptsatzes der Galoistheorie genügt es zu zeigen,

dass die Untergruppe Gal(Q(ζmn)|Q(ζm) ∩ Q(ζn)) mit ganz G übereinstimmt, denn dann stimmen

die zugehörigen Fixkörper Q bzw. Q(ζm) ∩ Q(ζn) überein. Sei also σ ∈ G vorgegeben; zu zeigen ist

σ ∈ Gal(Q(ζmn)|Q(ζm) ∩ Q(ζn)). Für ein vorgegebenes γ ∈ Q(ζm) ∩ Q(ζn) muss also die Gleichung

σ(γ) = γ bewiesen werden.

Auf Grund der oben angebenen Beschreibung der Elemente von G existiert ein a ∈ Z mit ggT(a,mn) = 1

und σ(ζmn) = ζamn. Nach dem

Chinesischen Restsatzes existiert ein Isomorphismus φ : (Z/mnZ)× → (Z/mZ)× × (Z/nZ)× mit φ(c+

mnZ) = (c+mZ, c+nZ) für alle c ∈ Z. Seien b, c ∈ Z Repräsentanten der Urbilder b+mnZ = φ−1(a+

mZ, 1 + nZ) und c+mnZ = φ−1(1 +mZ, a+ nZ). Auf Grund der Definition von φ gilt b ≡ a mod m,

b ≡ 1 mod n, c ≡ 1 mod m und c ≡ a mod n. Es gibt also r, s, t, u ∈ Z mit b = a + rm = 1 + sn und

c = 1+tm = a+un. Wegen φ(bc+mnZ) = φ(b+mnZ)φ(c+mnZ) = (a+mZ, 1+nZ)(1+mZ, a+nZ) =

(a + mZ, a + nZ) = φ(a + mnZ) und der Bijektivität von φ gilt auch bc + mnZ = a + mnZ, also

bc ≡ a mod (mn) und somit a = bc+ vmn für ein v ∈ Z.

Seien nun die Elemente ρ, τ ∈ G gegeben durch ρ(ζmn) = ζbmn und τ(ζmn) = ζcmn. Dann gilt

(ρ ◦ τ)(ζmn) = ρ(τ(ζmn)) = ρ(ζcmn) = ρ(ζmn)c = (ζcmn)b = ζbcmn =

ζa−vmnmn = ζamn(ζmnmn )−v = ζamn · 1−v = ζamn = σ(ζmn).



Weil jedes Element aus G durch das Bild von ζmn eindeutig festgelegt ist, folgt daraus σ = ρ ◦ τ . Nun

gilt außerdem

ρ(ζn) = ρ(ζmmn) = ρ(ζmn)m = (ζbmn)m = ζbmmn = ζbn = ζ1+sn
n =

ζn · (ζnn )s = ζn · 1s = ζn.

Dies zeigt, dass ζn im Fixkörper Q(ζmn)〈ρ〉 enthalten ist, also auch Q(ζn) ⊆ Q(ζmn)〈ρ〉 gilt. Wegen

γ ∈ Q(ζm) ∩ Q(ζn) ⊆ Q(ζn) ⊆ Q(ζmn)〈ρ〉 folgt ρ(γ) = γ. Genauso beweist man auch die Gleichung

τ(γ) = γ. Denn zunächst gilt

τ(ζm) = τ(ζnmn) = τ(ζmn)n = (ζcmn)n = ζcnmn = ζcm = ζ1+tm
m =

ζm · (ζmm )t = ζm · 1t = ζm.

Das Element ζm liegt also im Fixkörper von 〈τ〉, es gilt somit Q(ζm) ⊆ Q(ζmn)〈τ〉. Wegen γ ∈ Q(ζm) ∩
Q(ζn) ⊆ Q(ζm) ⊆ Q(ζmn)〈τ〉 folgt τ(γ) = γ. Insgesamt erhalten wir nun σ(γ) = (ρ ◦ τ)(γ) = ρ(τ(γ)) =

ρ(γ) = γ, wie gewünscht.



Aufgabe F22T1A1

Sei A ∈ M2,Q eine 2 × 2-Matrix mit rationalen Einträgen, so dass An die Einheitsmatrix I2 ist für ein

n ≥ 1. Sei mA ∈ Q[x] das Minimalpolynom von A. Zeigen Sie:

(a) Der Grad von mA ist höchstens 2.

(b) Das Polynom mA ist ein Teiler von xn − 1 in Q[x].

(c) Wählt man n ≥ 1 minimal mit An = I2, dann ist n ∈ {1, 2, 3, 4, 6}.
Hinweis: Betrachten Sie geeeignete Kreisteilungspolynome.

Lösung:

zu (a) Laut Vorlesung ist jedes Polynom f ∈ Q[x] mit f(A) = 0M2,Q
ein Vielfaches vom Minimal-

polynom mA. Nach dem Satz von Cayley-Hamilton erfüllt das charakteristische Polynom cA von A die

Bedingung cA(A) = 0M2,Q
, es gilt also mA | cA. Der Grad von cA stimmt mit der Zeilenanzahl (oder der

Spaltenanzahl von A überein, ist also gleich 2. Aus mA | cA folgt somit grad(mA) ≤ 2.

zu (b) Das Polynom f = xn−1 ∈ Q[x] erfüllt ebenfalls die Bedingung f(A) = An−I2 = I2−I2 = 0M2,Q
.

Daraus folgt, dass mA ein Teiler von f ist.

zu (c) Sei n ∈ Nminimal mit An = I2. Nach Teil (b) ist das Minimalpolynom mA ∈ Q[x] von A ein Teiler

von xn − 1. Weil die irreduziblen Faktoren von xn − 1 in Q[x] laut Vorlesung die Kreisteilungspolynome

Φd sind, wobei d ∈ N die Teiler von n durchläuft, muss mA ein Produkt dieser Kreisteilungspolynome

sein. Setzen wir f = xn − 1, dann gilt ggT(f, f ′) = ggT(xn − 1, nxn−1) = 1. Das Polynom f besitzt

also keine mehrfahren komplexen Nullstellen, und wegen mA | f gilt dasselbe für mA. Die irreduziblen

Faktoren von mA sind also alle verschieden. Da nach Teil (a) außerdem die Ungleichung grad(mA) ≤ 2

gilt, muss mA entweder selbst ein Kreisteilungspolynom vom Grad 1 oder 2, oder ein Produkt zweier

verschiedener Kreisteilungspolynome vom Grad 1 sein.

Die einzigen linearen Kreisteilungspolynome sind Φ1 = x−1 und Φ2 = x+1. Im Fall mA = Φ1 ist n = 1.

Im Fall mA = Φ2 ist A+ I2 = 0, also A = −I2 6= I2 und A2 = (−I2)2 = I2, woraus n = 2 folgt. Im Fall

mA = (x − 1)(x + 1) = x2 − 1 gilt ebenfalls n = 2. Die einzige verbleibende Möglichkeit ist mA = Φd,

wobei d ∈ N mit ϕ(d) = grad(Φd) = 2 ist. Ist d =
∏r
i=1 p

ei
i die Primfaktorzerlegung von d (mit r ∈ N,

Primzahlen p1, ..., pr und Exponenten e1, ..., er ∈ N), dann folgt
∏r
i=1 p

ei−1
i (pi − 1) = ϕ(d) = 2. Dies

zeigt, dass pi ≤ 3 für alle i gilt, es ist also d = 2e13e2 mt e1, e2 ∈ N0 und (e1, e2) 6= (0, 0). Im Fall

e1 > 0, e2 = 0 ist d = 2e1 und 2e1−1 = ϕ(d) = 2, also e1 = 2 und n = 4. Im Fall e1 = 0 und e2 > 0

ist d = 3e1 und 2 · 3e2−1 = ϕ(d) = 2, also e2 = 1 und n = 3. Im Fall e1, e2 > 0 schließlich erhalten wir

2e1−1 · 2 · 3e2−1 = 2e13e2−1 = ϕ(d) = 2, was nur für (e1, e2) = (1, 1) und n = 6 möglich ist. Insgesamt ist

damit n ∈ {1, 2, 3, 4, 6} nachgewiesen.



Aufgabe F22T1A2

(a) Bestimmen Sie die letzten drei Ziffern von 7404404.

(b) Es sei ϕ die Eulersche ϕ-Funktion. Zeigen Sie, dass ϕ(n2) = nϕ(n) für alle n ∈ N gilt.

(c) Es sei p eine Primzahl mit p /∈ {2, 5}. Zeigen Sie, dass p eine der Zahlen 9, 99, 999, 9999, ... teilt.

Lösung:

zu (a) Die letzten drei Ziffern einer natürlichen Zahl in Dezimaldarstellung hängen nur von der Restklasse

der Zahl modulo 1000 ab. Es genügt deshalb, das Bild von n = 7404404 in Z/1000Z zu bestimmen. Mit

7 ist auch n teilerfremd zu 1000, also ist n̄ = n+ 1000Z ein Element von (Z/1000Z)×. Die Ordnung der

primen Restklassengruppe (Z/1000Z)× ist ϕ(1000) = ϕ(8)ϕ(125) = 4 ·100. Daraus folgt 7400 = 1. Wegen

404404 ≡ 4 mod 400 existiert ein m ∈ N mit 404404 = 400m + 4. Damit erhalten wir n̄ = 7̄404404 =

7̄400m+4 = (7̄400)m · 7̄4 = 1̄m · 7̄4 = 49
2

= 2401 = 401. Dies zeigt, dass 4, 0 und 1 die letzten drei Ziffern

von n sind.

zu (b) Sei n =
∏r
i=1 p

ei
i die Primfaktorzerlegung von n, mit r ∈ N0, Primzahlen p1, ..., pr und e1, ..., er ∈

N. Dann gilt

ϕ(n2) = ϕ

(
r∏
i=1

p2ei
i

)
=

r∏
i=1

ϕ(p2ei
i ) =

r∏
i=1

p2ei−1
i (pi − 1) =

r∏
i=1

peii p
ei−1
i (pi − 1)

=

r∏
i=1

peii ·
r∏
i=1

pei−1
i (pi − 1) =

r∏
i=1

peii ·
r∏
i=1

ϕ(peii ) = nϕ(n).

zu (c) Als Primzahl ungleich 2 und 5 ist p teilerfremd zu 10. Dies zeigt, dass 10 = 10 + pZ in der

primen Restklassengruppe (Z/pZ)× ist. Da es sich dabei um eine endliche Gruppe handelt, besitzt das

Element 10 eine endliche Ordnung. Es existiert also ein m ∈ N mit 10
m

= 1̄ in (Z/pZ)×. Daraus

wiederum folgt 10m ≡ 1 mod p, was zu p | (10m − 1) äquivalent ist. Die Primzahl p ist also ein Teiler

von 10m − 1 = 99....99, der Zahl, deren Dezimaldarstellung aus genau m-mal der Ziffer
”
9“ besteht.

Beispiel: Sei p = 61. Dann hat 10 = 10 + 61Z in (Z/61Z)× die Ordnung 60. Dies zeigt, dass 61 ein

Teiler von

1060 − 1 = 999999999999999999999999999999999999999999999999999999999999 ist.



Aufgabe F22T1A3

Man betrachte die symmetrische Gruppe S4 des Grades 4 und

V = {id , (1 2)(3 4) , (1 3)(2 4) , (1 4)(2 3)} ⊆ S4.

(a) Zeigen Sie, dass V ein zu Z/2Z×Z/2Z isomorpher Normalteiler in S4 ist.

(b) Zeigen Sie, dass S4/V zu S3 isomorph ist.

(c) Beweisen Sie, dass S4 keinen Normalteiler der Ordnung 8 hat.

(d) Bestimmen Sie alle Untergruppen und alle Normalteiler der Faktorgruppe S4/V .

Lösung:

zu (a) Zunächst zeigen wir, dass V eine Untergruppe von S4 ist. Das Neutralelement id von S4 ist

in V enthalten. Seien nun σ, τ ∈ V vorgegeben; zu zeigen ist σ ◦ τ ∈ V und σ−1 ∈ V . Wie man leicht

überprüft, gilt ρ2 = id für alle ρ ∈ V . Daraus folgt, dass jedes Element in V sein eigenes Inverses ist

und insbesondere σ−1 = σ in V liegt. Ist σ = id, dann folgt σ ◦ τ = τ , und dieses Element ist in V

enthalten. Ist τ = id, dann gilt σ ◦ τ = σ und somit ebenfalls σ ◦ τ ∈ V . Im Fall σ, τ 6= id zeigt die

folgende Verknüpfungstabelle, dass σ ◦ τ in V enthalten ist.

◦ (1 2)(3 4) (1 3)(2 4) (1 4)(2 3)

(1 2)(3 4) id (1 4)(2 3) (1 3)(2 4)

(1 3)(2 4) (1 4)(2 3) id (1 2)(3 4)

(1 4)(2 3) (1 3)(2 4) (1 2)(3 4) id

Als Gruppe der Primzahlquadratordnung 4 ist V abelsch. Nach dem Hauptsatz über endlich erzeugte

abelsche Gruppen ist V isomorph zu einem direkten Produkt zyklischer Gruppen, also isomorph zu

Z/4Z oder Z/2Z × Z/2Z. Da jedes Element in V sein eigenes Inverses ist, gibt es in V nur Elemente

der Ordnung 1 und 2, und folglich ist V isomorph zu Z/2Z×Z/2Z.

Nun zeigen wir noch, dass V ein Normalteiler von S4 ist. Laut Vorlesung sind zwei Elemente in S4 genau

dann zueinander konjugiert, wenn sie denselben Zerlegungstyp besitzen. Die drei Elemente 6= id in V

sind die einzigen Doppeltranspositionen in S4, also die einzigen Elemente vom Zerlegungstyp (2, 2). Seien

nun σ ∈ S4 und τ ∈ V vorgegeben; zu zeigen ist σ ◦ τ ◦ σ−1 ∈ V . Ist τ ∈ V \ {id}, dann ist mit τ auch

das zu τ konjugierte Element σ ◦ τ ◦ σ−1 eine Doppeltransposition, und es folgt σ ◦ τ ◦ σ−1 ∈ V . Im Fall

τ = id, ist σ ◦ τ ◦ σ−1 gleich id und somit ebenfalls in V enthalten.

zu (b) Sei X = V \ {id}. Wie wir in Teil (a) gesehen haben, ist mit σ ∈ S4 und τ ∈ X auch σ ◦ τ ◦ σ−1

wieder in X enthalten. Durch (σ, τ) 7→ σ ◦ τ ◦ σ−1 ist also eine Abbildung · : S4 × X → X definiert.

Dabei handelt es sich um eine Gruppenoperation von S4 auf X. Sind nämlich σ1, σ2 ∈ S4 und τ ∈ X
vorgegeben, dann gilt id · τ = τ ◦ id ◦ τ−1 = τ ◦ τ−1 = id und

σ1 · (σ2 · τ) = σ1 · (σ2 ◦ τ ◦ σ−1
2 ) = σ1 ◦ (σ2 ◦ τ ◦ σ−1

2 ) ◦ σ−1
1 =

(σ1 ◦ σ2) ◦ τ ◦ (σ1 ◦ σ2)−1 = (σ1 ◦ σ2) · τ.

Laut Vorlesung erhält man durch die Operation einen Gruppenhomomorphismus φ : S4 → Per(X),

definiert durch φ(σ)(τ) = σ · τ = σ ◦ τ ◦ σ−1. Dabei ist V im Kern von φ enthalten, denn weil V abelsch

ist, gilt für alle σ, τ ∈ V jeweils φ(σ)(τ) = σ ◦ τ ◦σ−1 = σ ◦σ−1 ◦ τ , und somit φ(σ) = idX für alle σ ∈ V .

Somit induziert φ einen Homomorphismus φ̄ : S4/V → Per(X).



Wenn wir zeigen können, dass φ̄ surjektiv ist, dass folgt daraus direkt, dass S4/V ∼= S3 gilt. Denn wegen

|X| = 3 gilt Per(X) ∼= S3 und somit |Per(X)| = |S3| = 6. Ebenso ist |S4/V | = (S4 : V ) = |S4|
|V | = 24

4 = 6,

und als surjektive Abbildung zwischen gleichmächtigen Mengen ist φ̄ auch bijektiv. Insgesamt ist φ̄ also

ein Isomorphismus, und es folgt S4/V ∼= Per(X) ∼= S3.

Beweisen wir also noch die Surjektivität von φ̄. Das Element (1 2 3) ∈ S4 ist ein Element der Ordnung

3, also muss die Ordnung von φ̄((1 2 3)) gleich 1 oder 3 sein. Wegen φ((1 2 3))((1 2)(3 4)) = (1 2 3) ◦
(1 2)(3 4) ◦ (1 2 3)−1 = (1 2 3) ◦ (1 2)(3 4) ◦ (1 3 2) = (1 4)(2 3) 6= (1 2)(3 4) ist φ((1 2 3)) 6= id

und somit ein Element der Ordnung 3 in Per(X). Ebenso zeigt die Rechung φ̄((1 2))((1 3)(2 4)) =

(1 2) ◦ (1 3)(2 4) ◦ (1 2)−1 = (1 2) ◦ (1 3)(2 4) ◦ (1 2) = (1 4)(2 3) 6= (1 3)(2 4), dass φ((1 2)) in Per(X)

ein Element der Ordnung 2 ist. Die Ordnung des Bildes im(φ̄) muss also ein gemeinsames Vielfaches von

2 und 3 sein. Aus |im(φ̄)| ≥ kgV(2, 3) = 6 = |Per(X)| und im(φ̄) ⊆ Per(X) folgt im(φ̄) = Per(X) und

somit die Surjektivität von φ̄.

Anmerkung:

Setzt man als bekannt voraus, dass S3 bis auf Isomorphie die einzige nicht-abelsche Gruppe der Ordnung

6 ist, kommt man schneller zum Ziel. Wie oben zeigt man zunächst, dass auch die Faktorgruppe S4/V

von Ordnung 6 ist. Anschließend überprüft man noch, dass S4/V nicht-abelsch ist, zum Beispiel, indem

man nachrechnet, dass

(1 2)V · (1 3)V 6= (1 3)V · (1 2)V

gilt. Das Element auf der linken Seite ist gleich ((1 2) ◦ (1 3))V = (1 3 2)V , das auf der rechten Seite

ist gleich ((1 3) ◦ (1 2))V = (1 2 3)V . Wären die Elemente gleich dann müsste (1 3 2)−1 ◦ (1 2 3) in V

liegen. Tatsächlich aber gilt (1 3 2)−1 ◦ (1 2 3) = (1 2 3) ◦ (1 2 3) = (1 3 2) /∈ V .

zu (c) Wegen |S4| = 24 = 23 · 3 sind die Untergruppen der Ordnung 8 genau die 2-Sylowgruppen von

S4. Gäbe es eine 2-Sylowgruppe, die Normalteiler ist, so wäre dies laut Zweitem Sylowsatz die einzige

2-Sylowgruppe. Nun ist bekanntlich die Diedergruppe D4 eine Untergruppe der Ordnung 8 von S4, und

diese enthält zwei Elemente der Ordnung 4. Wäre dies die einzige Untergruppe der Ordnung 8, dann

gäbe es also nur zwei Elemente der Ordnung 4 in S4. Offensichtlich gibt es aber mehr als zwei solche

Elemente, zum Beispiel (1 2 3 4), (1 4 3 2) und (1 3 2 4).

zu (d) Nach Teil (b) ist S4/V isomorph zu S3. Bekanntlich besitzt S3 genau drei verschiedene Unter-

gruppen der Ordnung 2 und genau je eine Untergruppe der Ordnung 1, 3 und 6. Dabei sind die drei

Untergruppen der Ordnung 2 keine Normalteiler, die übrigen drei Gruppen sind Normalteiler. Auf Grund

der Isomorphie besitzt S4/V die gleiche Untergruppenstruktur.

Das Neutralelement von S4/V ist eS4/V = V , und offenbar ist {V } die eindeutig bestimmte Untergruppe

der Ordnung 1 von S4/V . Ebenso ist S4/V die eindeutig bestimmte Untergruppe der Ordnung 6 von

S4/V . Wir betrachten in S4/V nun die Elemente g1 = (1 2)V , g2 = (1 3)V , g3 = (1 4)V und h =

(1 2 3)V . Wegen (1 2), (1 3), (1 4) /∈ V gilt g1 6= eS4/V , g2 6= eS4/V und g3 6= eS4/V . Andererseits

gilt g2
1 = (1 2)2V = idV = eS4/V , also ist g1 in S4/V ein Element der Ordnung 2. Ebenso zeigen die

Gleichungen g2
2 = (1 3)2V = idV = eS4/V und g2

3 = (1 4)2V = idV = eS4/V , dass auch g2 und g3

Elemente der Ordnung 2 in S4/V sind.



Durch 〈g1〉 = {eS4/V , g1}, 〈g2〉 = {eS4/V , g2} und 〈g3〉 = {eS4/V , g3} sind also Untergruppen von S4/V

der Ordnung 2 gegeben. Würden zwei davon übereinstimmen, dann wären auch zwei der Elemente g1,

g2, g3 identisch. Aus g1 = g2 würde (1 2)V = (1 3)V und (1 2)−1 ◦ (1 3) ∈ V folgen. Aber dies ist

wegen (1 2)−1 ◦ (1 3) = (1 2) ◦ (1 3) = (1 3 2) /∈ V nicht der Fall. Ebenso zeigen die Rechnungen

(1 2)−1 ◦ (1 4) = (1 2) ◦ (1 4) = (1 4 2) /∈ V und (1 3)−1 ◦ (1 4) = (1 3) ◦ (1 4) = (1 4 3) /∈ V , dass g1 6= g3

und g2 6= g3 gilt. Also sind 〈g1〉, 〈g2〉 und 〈g3〉 die drei Untergruppen der Ordnung 2 von S4/V .

Es gilt h = (1 2 3)V 6= eS4/V wegen (1 2 3) /∈ V , h2 = (1 2 3)2V = (1 3 2)V 6= eS4/V wegen (1 3 2) /∈ V
und h3 = (1 2 3)3V = idV = eS4/V . Also ist ord(h) = 3, und 〈h〉 ist eine Untergruppe der Ordnung 3

von S4/V . Insgesamt sind

{V } , 〈g1〉 , 〈g2〉 , 〈g3〉 , 〈h〉 und S4/V

also die sechs Untergruppen von S4/V , und {V }, 〈h〉, S4/V sind die drei Normalteiler.



Aufgabe F22T1A4

(a) Bestimmen Sie alle Ideale des Rings R = Z/2022Z. Bestimmen Sie darunter alle Primideale in R.

(b) Bestimmen Sie alle idempotenten Elemente des Rings R, d.h. alle Elemente a ∈ R mit a2 = a.

(c) Bestimmen Sie die Anzahl der Nullteiler in R.

(d) Bestimmen Sie ein n ∈ N mit n < 2022 und (Z/nZ)× ∼= (Z/2022Z)×.

Lösung:

zu (a) Sei π : Z → Z/2022Z der kanonische Epimorphismus und I = (2022). Nach dem Korrespon-

denzsatz der Ringtheorie ist durch J 7→ π(J) eine Bijektion gegeben zwischen den Idealen J von Z mit

J ⊇ I und den Idealen von Z/2022Z. Die Ideale von Z haben alle die Form (n) mit n ∈ N0, und es gilt

(n) ⊇ I genau dann, wenn 2022 in (n) liegt, was wiederum genau dann der Fall ist, wenn n ein Teiler

von 2022 ist. An der Primfaktorzerlegung 2022 = 2 · 3 · 337 liest man ab, dass 2022 genau acht Teiler

in N0 besitzt, nämlich 1, 2, 3, 6, 337, 674, 1011 und 2022. Die Ideale von Z/2022Z sind somit gegeben

durch (1̄), (2̄), (3̄), (6̄), (337), (674), (1011) und (2022) = (0̄) = {0̄}.

Wir zeigen, dass allgemein gilt: Ist R ein Ring, I ein Ideal von R und π : R → R/I der kanonische

Epimorphismus, so ist ein Ideal J von R mit J ⊇ I genau dann ein Primideal, wenn π(J) ein Primideal in

R/I ist. Ist J ein Primideal, dann gilt zunächst 1R+I /∈ π(J), denn ansonsten wäre 1R in π−1(π(J)) = J

enthalten. Sind a + I, b + I ∈ R/I mit a, b ∈ R und (a + I)(b + I) ∈ π(J), dann folgt ab + I ∈ π(J)

und ab ∈ J . Weil J ein Primideal ist, folgt a ∈ J oder b ∈ J , und daraus wiederum a + I ∈ π(J)

oder b + I ∈ π(J). Also ist π(J) ein Primideal in R/I. Setzen wir dies nun umgekehrt voraus, dann

ist 1R /∈ J , denn ansonsten wäre 1R/I = π(1R) ∈ π(J). Seien nun a, b ∈ R mit ab ∈ J . Dann folgt

π(a)π(b) = π(ab) ∈ π(J), und daraus wiederum π(a) ∈ π(J) oder π(b) ∈ π(J), weil π(J) ein Primideal

ist. Wegen π−1(π(J)) = J folgt daraus wiederum a ∈ J oder b ∈ J . Dies zeigt, dass J ein Pprimideal in

J ist.

Bekanntlich sind die Primideale in Z genau das Nullideal und die Ideale der Form (p), wobei p die

Primzahlen durchläuft. Die einzigen Primideale, die (2022) enthalten, sind also (2), (3) und (337). Die

soeben bewiesene Aussage zeigt, dass (2̄), (3̄) und (337) somit die Primideale von Z/2022Z sind.

zu (b) Weil 2022 = 2 ·3 ·337 gilt und die Zahlen 2, 3 und 337 paarweise teilerfremd sind, gilt Z/2022Z ∼=
Z/2Z×Z/3Z×Z/337Z nach dem Chinesischen Restsatz. Ein Element (ā, b̄, c̄) ∈ Z/2Z×Z/3Z×Z/337Z

ist genau dann idempotent, wenn (ā2, b̄2, c̄2) = (ā, b̄, c̄)2 = (ā, b̄, c̄) gilt, was wiederum zu ā2 = ā, b̄2 = b̄

und c̄2 = c̄ ist. Nun ist in einem Körper K für jedes α ∈ K die Gleichung α2 = α äquivalent zu

α(α− 1K) = 0K und damit zu α ∈ {0K , 1K}. Weil 2, 3 und 337 Primzahlen sind, sind Z/2Z, Z/3Z und

Z/337Z Körper. Also sind die Gleichungen ā2 = ā, b̄2 = b̄, c̄2 = c̄ äquivalent zu ā ∈ {0̄, 1̄}, b̄ ∈ {0̄, 1̄},
c̄ ∈ {0̄, 1̄}. Insgesamt zeigt dies, dass in Z/2022Z genau acht idempotente Elemente existieren, nämlich

die Urbilder von

(0̄, 0̄, 0̄), (0̄, 0̄, 1̄), (0̄, 1̄, 0̄), (0̄, 1̄, 1̄), (1̄, 0̄, 0̄), (1̄, 0̄, 1̄), (1̄, 1̄, 0̄), (1̄, 0̄, 1̄)

unter dem Isomorphismus Z/2022Z ∼= Z/2Z×Z/3Z×Z/337Z. Wir rechnen diese acht Urbilder nun aus.

Das Urbild von (0̄, 0̄, 0̄) ist das eindeutig bestimmte Element a+ 2022Z mit a ≡ 0 mod 2, a ≡ 0 mod 3

und a ≡ 0 mod 337, und dies ist offenbar 0 + 2022Z. Genauso sieht man, dass 1 + 2022Z das Urbild von

(1̄, 1̄, 1̄) ist.



Das Urbild a+ 2022Z von (0̄, 0̄, 1̄) erfüllt a ≡ 0 mod 2, a ≡ 0 mod 3 und a ≡ 1 mod 337, was äquivalent

ist zu a ≡ 0 mod 6 und a ≡ 1 mod 337. Die letzte Bedingung zeigt, dass a die Form 1 + 337k mit k ∈ Z
haben muss. Wegen 337 ≡ 1 mod 6 erfüllt 1 + 337 · 5 = 1686 auch die Bedingung 1686 ≡ 0 mod 6. Also

ist 1686 + 2022Z das Ubild von (0̄, 0̄, 1̄).

Das Urbild a + 2022Z von (0̄, 1̄, 0̄) erfüllt a ≡ 0 mod 2, a ≡ 1 mod 3 und a ≡ 0 mod 337, was

äquivalent ist zu a ≡ 0 mod 674 und a ≡ 1 mod 3. Es gilt 674 ≡ 2 mod 3, also 1348 ≡ 2 · 674 ≡ 4 ≡
1 mod 3. Also ist 1348 + 2022Z das Urbild von (0̄, 1̄, 0̄). Durch analoge Rechnungen sieht man, dass

die Urbilder von (0̄, 1̄, 1̄), (1̄, 0̄, 0̄), (1̄, 0̄, 1̄) und (1̄, 1̄, 0̄) durch 1012 + 2022Z, 1011 + 2022Z, 675 + 2022Z

und 337 + 2022Z gegeben sind. Die idempotenten Elemente von Z/2022Z sind also a + 2022Z mit

a ∈ {0, 1, 337, 675, 1011, 1012, 1348, 1686}.

zu (c) Weil Z/2022Z ein endlicher Ring ist, ist jedes Element entweder Einheit oder Nullteiler. Laut

Vorlesung hat die Einheitengruppe (Z/2022Z)× die Ordnung ϕ(2022) = ϕ(2)ϕ(3)ϕ(337) = 1 · 2 · 336 =

772. Die Zahl der Nullteiler ist also gegeben durch |Z/2022Z| − |(Z/2022Z)×| = 2022− 772 = 1350.

zu (d) Sei n = 1011; diese Zahl besitzt die Primfaktorzerlegung 3 · 337. Wegen (Z/2Z)× = {1̄} und

dem Chinesischen Restsatz gilt

(Z/nZ)× ∼= (Z/3Z)× × (Z/337Z)× ∼= {1̄} × (Z/3Z)× × (Z/337Z)×

∼= (Z/2Z)× × (Z/3Z)× × (Z/337Z)× ∼= (Z/2022Z)×.



Aufgabe F22T1A5

Für jedes n ∈ N sei an = 2n
√

2. Weiter seien A = {an | n ∈ N} und K = Q(A). Zeigen Sie:

(a) [Q(an) : Q] = 2n für jedes n ∈ N

(b) [K : Q] =∞

(c) K =
⋃
n∈NQ(an)

(d) K ist eine algebraische Erweiterung von Q

Lösung:

zu (a) Das Polynom fn = x2n − 2 ∈ Z[x] ist normiert, nach dem Eisenstein-Kriterium (angewendet

auf die Primzahl 2) über Q irreduzibel, und es gilt fn(an) = ( 2n
√

2)2n − 2 = 2− 2 = 0. Somit ist fn das

Minimalpolynom von an über Q, und es folgt [Q(an) : Q] = grad(fn) = 2n.

zu (b) Nehmen wir an, der Grad m = [K : Q] wäre endlich. Wegen an ∈ A ⊆ Q(A) = K ist Q(an) für

jedes n ∈ N ein Zwischenkörper von K|Q. Mit der Gradformel und dem Ergebnis von Teil (a) erhalten

wir

m = [K : Q] = [K : Q(an)] · [Q(an) : Q] = [K : Q(an)] · 2n

für alle n ∈ N. Die Zahl m ∈ N wäre also durch 2n teilbar für jedes n ∈ N, was offenbar unmöglich ist.

zu (c)
”
⊇“ Wie bereits in Teil (b) festgestellt, ist Q(an) für jedes n ∈ N ein Zwischenkörper von

K|Q. Insbesondere gilt also Q(an) ⊆ K für alle n ∈ N, und damit auch
⋃
n∈NQ(an) ⊆ K.

”
⊆“ Sei

L =
⋃
n∈NQ(an). Für jedes m ∈ N gilt am ∈ Q(am) ⊆ L und damit A = {am | m ∈ N} ⊆ L.

Außerdem ist L ein Zwischenkörper der Erweiterung R|Q. Zum Nachweis der Teilkörper-Eigenschaft

stellen wir zunächst fest, dass 1 in Q(a1) ⊆ L enthalten ist. Seien nun α, β ∈ L vorgegeben. Dann

gibt es nach Definition von L natürliche Zahlen m,n mit α ∈ Q(am) und β ∈ Q(an). Nach eventueller

Vertauschung von α und β können wir m ≤ n annehmen. Wegen am = 2m
√

2 = 22−m = 22−n·2n−m =

(22−n)2n−m = ( 2n
√

2)2n−m = a2n−m

n ∈ Q(an) gilt Q(am) ⊆ Q(an). Aus α ∈ Q(am) ⊆ Q(an) und β ∈ Q(an)

sowie der Teilkörper-Eigenschaft von Q(an) folgt nun, dass auch α − β und αβ in Q(an) und wegen

Q(an) ⊆ L damit auch in L enthalten sind. Im Fall α 6= 0 erhält man ebenso α−1 ∈ Q(am) und

damit α−1 ∈ L. Damit ist der Nachweis der Teilkörper-Eigenschaft von L abgeschlossen. Außerdem gilt

Q ⊆ Q(a1) ⊆ L.

Somit ist L tatsächlich ein Zwischenkörper von R|Q. Da außerdem, wie bereits festgestellt, A ⊆ L gibt,

erhalten wir insgesamt K = Q(A) ⊆ L.

zu (d) Es genügt zu zeigen, dass jedes α ∈ K algebraisch über Q ist. Sei also α ∈ K vorgegeben.

Auf Grund des Ergebnisses von Teil (c) gilt α ∈ Q(an) für ein n ∈ N. Nach Teil (a) ist Q(an)|Q eine

endliche Erweiterung, und jede endliche Erweiterung ist laut Vorlesung algebraisch. Daraus folgt, dass

alle Elemente aus Q(an) algebraisch über Q sind, insbesondere auch das Element α.

alternative Lösung:

Wie wir in Teil (a) festgestellt haben, ist an für jedes n ∈ N jeweils eine Nullstelle des Polynoms

fn = x2n − 1 ∈ Q[x] und somit algebraisch über Q. Die Menge A besteht also aus Elementen, die

algebraisch über Q sind. Laut Vorlesung ist jede Körpererweiterung, die von Elementen erzeugt wird, die

über dem Grundkörper algebraisch sind, selbst eine algebraische Erweiterung. Wegen K = Q(A) ist die

Erweiterung K|Q somit algebraisch. (Vom Aufgabensteller war aber wohl nicht vorgesehen, dass man

dieses Resultat verwendet. Es wird eventuell nicht in jeder Algebra-Vorlesung behandelt.)



Aufgabe F22T2A1

Gegeben sei die komplexe 2× 2-Matrix

A =

(
i 2

0 −i

)
.

Berechnen Sie die Matrix A2022.

Lösung:

Es gilt

A2 =

(
i 2

0 −i

)(
i 2

0 −i

)
=

(
−1 0

0 −1

)
und A4 = (A2)2 = (−E) = E ,

wobei E die 2×2-Einheitsmatrix bezeichnet. Daraus folgt A2022 = A4·505+2 = (A4)505 ·A2 = E505 ·A2 =

A2 = −E.



Aufgabe F22T2A2

(a) Geben Sie eine nicht-abelsche Gruppe der Ordnung 100 an.

(b) Zeigen Sie mit Hilfe der Sylowsätze, dass jede Gruppe der Ordnung 100 auflösbar ist.

(c) Zeigen Sie, dass eine Gruppe der Ordnung 100 genau dann abelsch ist, wenn es in G lediglich eine

2-Sylowgruppe gibt.

Lösung:

zu (a) Laut Vorlesung ist die Diedergruppe Dn für alle n ∈ N mit n ≥ 3 eine nicht-abelsche Gruppe

der Ordnung 2n. Also ist D50 eine nicht-abelsche Gruppe der Ordnung 100.

zu (b) Sei G eine Gruppe der Ordnung 100 = 22 · 52, und es sei ν5 die Anzahl der 5-Sylowgruppen

von G. Auf Grund des Dritten Sylowsatzes gilt ν5 | 22, also ν5 ∈ {1, 2, 4}, außerdem ν5 ≡ 1 mod 5.

Wegen 2, 4 6≡ 1 mod 5 folgt daraus ν5 = 1. Sei N die einzige 5-Sylowgruppe von G. Auf Grund des

Zweiten Sylowsatzes ist N ein Normalteiler von G. Als Gruppe der Primzahlpotenzordnung 52 ist N

eine auflösbare Gruppe. Auch die Ordnung der Faktorgruppe G/N ist eine Primzahlpotenz, nämlich

|G/N | = (G : N) = |G|
|N | = 100

25 = 22. Somit ist auch G/N auflösbar. Aus der Auflösbarkeit von N und

G/N folgt die Auflösbarkeit von G. (Als Gruppen von Primzahlquadratordnung sind N und G/N sogar

abelsch, aber daraus folgt natürlich nicht, dass G abelsch sein muss.)

zu (c) Wieder sei G eine Gruppe der Ordnung 100, und für jede Primzahl p sei νp die Anzahl der p-

Sylowgruppen von G. Bereits in Teil (b) haben wir gesehen, dass G genau eine 5-Sylowgruppe N besitzt,

und dass N �G gilt. Laut Vorlesung besitzt G für jede Primzahl p mindestens eine p-Sylowgruppe. Wir

bezeichnen mit U eine beliebige 2-Sylowgruppe und beweisen nun die angegbene Äquivalenz.

”
⇒“ Ist G abelsch, dann ist jede Untergruppe von G ein Normalteiler, insbesondere auch die 2-

Sylowgruppe U . Aus U�G folgt auf Grund des Zweiten Sylowsatzes ν2 = 1.
”
⇐“ Aus ν2 = 1 folgt mit

dem Zweiten Sylowsatz umgekehrt auch U �G. Wir zeigen nun, dass G ein inneres direktes Produkt von

N und U ist. Die Bedingung N,U �G haben wir bereits verifiziert. Auf Grund der Teilerfremdheit von

|N | = 25 und |U | = 4 gilt N ∩ U = {e}. Für den Nachweis der Gleichung G = NU stellen wir zunächst

fest, dass NU wegen N,U �G eine Untergruppe von G ist (sogar ein Normalteiler). Aus N ⊆ NU folgt

mit dem Satz von Lagrange, dass |N | = 25 ein Teiler von |NU | ist. Aus U ⊆ NU folgt ebenso 4 | |NU |.
Insgesamt ist |NU | damit ein Vielfaches von kgV(25, 4) = 100; insbesondere gilt |NU | ≥ 100 = |G|.
Wegen NU ⊆ G folgt daraus NU = G.

Insgesamt ist G also tatsächlich ein inneres direktes Produkt von N und U . Laut Vorlesung folgt daraus

G ∼= N × U . Als Gruppen von Primzahlquadratordnung sind N und U abelsch. Also ist auch N × U ,

und auf Grund der Isomorphie auch G, eine abelsche Gruppe.



Aufgabe F22T2A3

Sei n ∈ N und R ein kommutativer Ring (mit Einselement). Betrachten Sie für a, b ∈ R das Ideal

I = (a, b) ⊆ R.

(a) Zeigen Sie: Aus an = bn = 0 folgt I2n = (0).

(b) Nehmen Sie an, dass 2 = 1 + 1 eine Einheit von R ist und dass c2 = 0 für alle c ∈ I gilt. Zeigen

Sie, dass dann ab = 0 folgt.

(c) Geben Sie einen kommutativen Ring R mit Elementen a, b ∈ R an, für welche a2 = b2 = 0 und

ab 6= 0 gilt. Begründen Sie, dass diese beiden Bedingungen für den von Ihnen angegebenen Ring

erfüllt sind.

Hinweis: Betrachten Sie R = Q[x, y]/I für ein geeignetes Ideal I.

Lösung:

zu (a) Wir zeigen durch vollständige Induktion, dass Sm = {an−jbj | 0 ≤ j ≤ m} für jedes m ∈ N ein

Erzeugendensystem des Ideals Im ist. Dass S1 = {a, b} das Ideal I1 = I erzeugt, gilt laut Angabe. Sei

nun m ∈ N, und setzen wir Im = (Sm) voraus. Wegen Im+1 = Im · I, Im = (Sm) und I = (a, b) ist

laut Vorlesung S = {cd | c ∈ Sm, d ∈ {a, b}} ein Erzeugendensystem von Im+1. Diese Menge stimmt mit

Sm+1 überein, denn es gilt

S = {am−jbj · a | 0 ≤ j ≤ m} ∪ {am−jbj · b | 0 ≤ j ≤ m}

= {am+1−jbj | 0 ≤ j ≤ m} ∪ {a(m+1)−(j+1)bj+1 · b | 0 ≤ j ≤ m}

= {am+1−jbj | 0 ≤ j ≤ m} ∪ {a(m+1)−jbj · b | 1 ≤ j ≤ m+ 1}

= {am+1−jbj | 0 ≤ j ≤ m+ 1} = Sm+1.

Setzen wir nun voraus, dass an = bn = 0 für ein n ∈ N gilt. Für 0 ≤ j ≤ n gilt dann 2n−j ≥ n und somit

a2n−j ·bj = an ·an−j ·bj = 0 ·an−j ·bj = 0, und für n < j ≤ 2n erhalten wir a2n−j ·bj = a2n−j ·bj−n ·bn =

a2n−j · bj−n · 0 = 0. Insgesamt gilt damit S2n = {0}, und es folgt I2n = (S2n) = (0).

zu (b) Auf Grund der Voraussetzungen gilt 2ab = 0 + 2ab+ 0 = a2 + 2ab+ b2 = (a+ b)2 = 0. Weil 2 in

R eine Einheit ist, folgt daraus ab = 2−1(2ab) = 2−1 · 0 = 0.

zu (c) Wir betrachten im Polynomring Q[x, y] das Ideal I = (x2, y2) und setzen R = Q[x, y]/I. Es

sei a = x + I und b = y + I. Wegen x2 ∈ I gilt a2 = x2 + I = I = 0R, und aus y2 ∈ I folgt ebenso

b2 = y2 + I = I = 0R. Nehmen wir nun an, dass auch ab = 0R gilt. Dann folgt xy+ I = (x+ I)(y+ I) =

ab = 0R = I und damit xy ∈ I. Nach Definition des Ideals I würden dann Polynome f, g ∈ Q[x, y]

existieren mit der Eigenschaft, dass die Gleichung xy = x2f+y2g erfüllt ist. Aber das ist ausgeschlossen,

denn stellt man f und g auf der rechten Seite als Summe von Monomen dar, dann kommt weder in x2f

noch in y2g ein Monom vor, dass genau einmal durch x und genau einmal durch y teilbar ist.



Aufgabe F22T2A4

Sei p eine Primzahl und n ∈ N. Seien Fp ⊆ Fpn endliche Körper mit p bzw. pn Elementen.

(a) Sei zunächst n = 2. Zeigen Sie: Für jedes a ∈ Fp2 \ Fp gilt Fp(a) = Fp2 .

(b) Bestimmen Sie die Anzahl der Elemente a ∈ Fp2 mit Fp2 = Fp(a).

(c) Sei jetzt n = 6. Zeigen Sie, dass die Anzahl der Elemente a ∈ Fp6 mit Fp6 = Fp(a) genau

p6 − p3 − p2 + p beträgt.

(d) Bestimmen Sie die Anzahl der irreduziblen, normierten Polynome f ∈ Fp[x] vom Grad 6.

Lösung:

zu (a) Sei a ∈ Fp2 \ Fp vorgegeben. Wegen a ∈ Fp2 ist Fp(a) ein Zwischenkörper von Fp2 |Fp. Laut

Vorlesung sind die Zwischenkörper dieser Erweiterung durch Fpd gegeben, wobei d ∈ N die Teiler von 2

durchläuft. Es ist somit nur Fp(a) = Fp oder Fp(a) = Fp2 möglich. Im Fall Fp(a) = Fp wäre a ∈ Fp, im

Widerspruch zur Voraussetzung. Also muss Fp(a) = Fp2 gelten.

zu (b) Zunächst zeigen wir, dass umgekehrt aus Fp2 = Fp(a) auch a ∈ Fp2 \ Fp folgt. Auf Grund der

Gleichung muss offenbar a ∈ Fp2 gelten. Wäre a ∈ Fp, dann würde Fp(a) = Fp ( Fp2 folgen. Also ist

a in Fp2 \ Fp enthalten. Zusammen mit dem Ergebnis aus Teil (a) folgt, dass die Elemente a ∈ Fp2 mit

Fp(a) = Fp2 genau die Elemente der Menge Fp2 \Fp sind. Die Anzahl der Elemente in dieser Menge ist

gegeben durch |Fp2 \ Fp| = |Fp2 | − |Fp| = p2 − p.

zu (c) Zunächst beweisen wir für alle a ∈ Fp6 die Äquivalenz

Fp(a) = Fp6 ⇔ a /∈ Fp2 ∪ Fp3 .

”
⇒“ (durch Kontraposition) Ist a ∈ Fp2 ∪Fp3 , dann folgt a ∈ Fp2 oder a ∈ Fp3 . Im ersten Fall erhalten

wir Fp(a) ⊆ Fp2 ( Fp6 , im zweiten Fp(a) ⊆ Fp3 ( Fp6 . In beiden Fällen gilt also Fp(a) 6= Fp6 .

”
⇐“ Wegen a ∈ Fp6 ist Fp(a) ein Zwischenkörper von Fp6 |Fp. Die Zwischenkörper dieser Erweiterung

sind gegeben durch Fpd , wobei d ∈ N die Teiler von 6 durchläuft, also d ∈ {1, 2, 3, 6} gilt. Im Fall

Fp(a) = Fp oder Fp(a) = Fp2 wäre a ∈ Fp2 , im Widerspruch zur Voraussetzung. Im Fall Fp(a) = Fp3

wäre a ∈ Fp3 , was der Voraussetzung ebenfalls widerspricht. Also muss Fp(a) = Fp6 gelten.

Aus der soeben bewiesenen Äquivalenz folgt, dass die Anzahl der Elemente a ∈ Fp6 mit Fp(a) = Fp6

mit der Anzahl der Elemente in Fp6 \ (Fp2 ∪ Fp3) übereinstimmt. Zunächst bestimmen wir |Fp2 ∩ Fp3 |.
Es ist Fp2 ∩ Fp3 ein gemeinsamer Teilkörper von Fp2 und Fp3 , also von der Form Fpd mit d ∈ N und

d | 2, 3. Es folgt d = 1 und Fp2 ∩ Fp3 = Fp. Damit erhalten wir

|Fp2 ∪ Fp3 | = |Fp2 |+ |Fp3 | − |Fp2 ∩ Fp3 | = |Fp2 |+ |Fp3 | − |Fp| = p2 + p3 − p.

Die gesuchte Elementezahl ist somit |Fp6 \ (Fp2 ∪ Fp3)| = |Fp6 | − |Fp2 ∪ Fp3 | = p6 − (p2 + p3 − p) =

p6 − p2 − p3 + p.

zu (d) Sei L ein algebraischer Abschluss von Fp6 (und somit zugleich ein algebraischer Abschluss von

Fp). Jedes irreduzible, normierte Polynom f ∈ Fp[x] vom Grad 6 ist laut Vorlesung separabel, besitzt

also laut Vorlesung sechs verschiedene Nullstellen in L. Bezeichnet a eine solche Nullstelle, dann ist f

das Minimalpolynom von a über Fp. Daraus folgt [F(a) : Fp] = grad(f) = 6 und somit Fp(a) = Fp6 ,

denn laut Vorlesung ist Fp6 |Fp die eindeutig bestimmte Teilerweiterung von L|Fp vom Grad 6. Wäre



a ∈ Fp2 ∪ Fp3 , dann würde Fp(a) ⊆ Fp2 oder Fp(a) ⊆ Fp3 und somit [Fp(a) : Fp] ≤ [Fp2 : Fp] = 2 oder

[Fp(a) : Fp] ≤ [Fp3 : Fp] = 3 folgen, im Widerspruch zu [Fp(a) : Fp] = 6. Insgesamt haben wir damit

gezeigt, dass f genau 6 verschiedene Nullstellen in Fp6 \ (Fp2 ∪ Fp3) besitzt.

Umgekehrt gilt für jedes a ∈ Fp6 \ (Fp2 ∪ Fp3), wie in Teil (c) gezeigt, jeweils Fp6 = Fp(a). Bezeichnet

f ∈ Fp[x] das Minimalpolynom von a über Fp, dann folgt grad(f) = [Fp(a) : Fp] = [Fp6 : Fp] = 6.

Außerdem ist f normiert, irreduzibel, und es gilt f(a) = 0. Also ist jedes a ∈ Fp6 \ (Fp2 ∪Fp3) Nullstelle

von einem normierten, irreduziblen Polynom vom Grad 6 in Fp[x].

Insgesamt ist damit gezeigt, dass die Anzahl der Elemente in Fp6 \ (Fp2 ∪ Fp3) sechsmal so groß ist wie

die Anzahl der normierten, irreduziblen Polynome vom Grad 6. Mit dem Ergebnis von Teil (c) kommen

wir zu dem Schluss, dass es genau 1
6 (p6 − p2 − p3 + p) solche Polynome gibt.



Aufgabe F22T2A5

Betrachten Sie die Teilkörper K1 = Q(
√

3) und K2 = Q(
√

6) von C.

(a) Zeigen Sie: Für das Kompositum L = K1K2 gilt L = Q(
√

2,
√

3).

(b) Beweisen Sie: K1 ∩K2 = Q

(c) Bestimmen Sie den Grad der Körpererweiterung L|Q.

(d) Zeigen Sie, dass L|Q galoissch ist und bestimmen Sie die Galois-Gruppe Gal(L|Q) bis auf Isomor-

phie.

(e) Bestimmen Sie sämtliche Zwischenkörper der Erweiterung L|Q.

Lösung:

zu (a) Nach Definition ist das Kompositum gleich K1(K2), also die von K2 erzeugte Erweiterung des

Körpers K1. Zu zeigen ist, dass K1(K2) = Q(
√

2,
√

3) gilt. Für die Inklusion
”
⊇“ muss gezeigt werden,

dass Q ∪ {
√

2,
√

3} in K1(K2) gezeigt werden, denn daraus folgt, dass K1(K2) ein Erweiterungskörper

von Q ist, der {
√

2,
√

3} enthält, und Q(
√

2,
√

3) ist nach Definition der kleinste Erweiterungskörper von

Q mit dieser Eigenschaft. Offenbar gilt Q ⊆ K1 ⊆ K1(K2), und wegen
√

3 ∈ K1 ist
√

3 auch in K1(K2)

enthalten. Desweiteren gilt
√

6 ∈ K2, somit auch
√

6 ∈ K1(K2), und mit
√

3 und
√

6 ist auch
√

2 =
√

6√
3

im Teilkörper K1(K2) enthalten.

Für die Inklusion
”
⊆“ muss K1 ∪K2 ⊆ Q(

√
2,
√

3) nachgewiesen werden. Wegen {
√

3} ⊆ {
√

2,
√

3} ist

K1 = Q(
√

3) in Q(
√

2,
√

3) enthalten. Für die Inklusion K2 = Q(
√

6) ⊆ Q(
√

2,
√

3) genügt es auf Grund

der Teilkörper-Eigenschaft von Q(
√

2,
√

3) zu zeigen, dass Q ∪ {
√

6} ⊆ Q(
√

2,
√

3) gilt. Die Inklusion

Q ⊆ Q(
√

2,
√

3) ist erfüllt, weil Q(
√

2,
√

3) nach Definition ein Erweiterungskörper von Q ist, und mit
√

2 und
√

3 ist auch das Produkt
√

6 =
√

2 ·
√

3 in Q(
√

2,
√

3) enthalten.

zu (b) Die Inklusion
”
⊇“ ist wegen Q ⊆ Q(

√
3) = K1 und Q ⊆ Q(

√
6) = K2 erfüllt. Für die Inklusion

”
⊆“ bemerken wir zunächst, dass K1∩K2 ein Zwischenkörper von K1|Q ist. Laut Vorlesung gilt [Q(

√
m) :

Q] = 2 für jede quadratfreie Zahl m ∈ Z \ {0, 1}, insbesondere also [K1 : Q] = [Q(
√

3) : Q] = 2. Auf

Grund der Gradformel gilt

2 = [K1 : Q] = [K1 : K1 ∩K2] · [K1 ∩K2 : Q] ,

daraus folgt [K1 ∩ K2 : Q] ∈ {1, 2}. Im Fall [K1 ∩ K2 : Q] = 2 wäre [K1 : K1 ∩ K2] = K1 und

somit K1 = K1 ∩ K2, was zu K1 ⊆ K2 äquivalent ist. Daraus wiederum würde folgen, dass
√

3 in

K2 = Q(
√

6) enthalten ist. Aus der Vorlesung aber ist bekannt, dass für zwei verschiedene, quadratfreie

Zahlenm,n ∈ Z\{0, 1} jeweils
√
m /∈ Q(

√
n) gilt. Also muss [K1∩K2 : Q] = 1 gelten, worausK1∩K2 = Q

folgt.

zu (c) Bereits in Teil (b) wurde festgestellt, dass [K1 : Q] = [Q(
√

3) : Q] = 2 gilt. Das Polynom f =

x2 − 2 ∈ Q(
√

3)[x] ist normiert, und es erfüllt f(
√

2) = 0. Wäre es über Q(
√

3) reduzibel, dann müssten

wegen grad(f) = 2 die beiden Nullstellen ±
√

2 in Q(
√

3) liegen. Weil aber 2 und 3 zwei verschiedene,

quadratfreie Zahlen in Z \ {0, 1} sind, gilt
√

2 /∈ Q(
√

3). Also ist f in Q(
√

3)[x] irreduzibel, insgesamt

das Minimalpolynom von
√

2 über Q(
√

3). Daraus folgt

[L : Q(
√

3)] = [Q(
√

3)(
√

2) : Q(
√

3)] = grad(f) = 2

und [L : Q] = [L : Q(
√

3)] · [Q(
√

3) : Q] = 2 · 2 = 4.



zu (d) Wir zeigen, dass L ein Zerfällungskörper des Polynoms g = (x2 − 2)(x2 − 3) über Q ist. Daraus

folgt, dass L|Q eine normale und insbesondere eine algebraische Erweiterung ist. Zu zeigen ist Q(N) = L,

also Q(N) = Q(
√

2,
√

3), wobei N die Menge der komplexen Nullstellen von g bezeichnet. Diese Menge ist

gegeben durch N = {±
√

2,±
√

3}, es ist also Q({±
√

2,±
√

3}) = Q(
√

2,
√

3) nachzuweisen. Die Inklusion

”
⊇“ ist wegen {

√
2,
√

3} ⊆ N erfüllt. Mit
√

2 und
√

3 sind auch −
√

2,−
√

3 im Teilkörper Q(
√

2,
√

3) von

R enthalten. Somit ist auch die Inklusion
”
⊆“ gültig.

Als algebraische Erweiterung von Q ist L|Q wegen char(Q) = 0 auch separabel, insgesamt eine Galois-

Erweiterung. Weil L|Q eine Galois-Erweiterung ist, ist die Ordnung der Galoisgruppe G = Gal(L|Q)

durch |G| = [L : Q] = 4 gegeben. Als Gruppe von Primzahlquadratordnung ist G abelsch, und als

endliche abelsche Gruppe ist G isomorph zu einem äußeren direkten Produkt zyklischer Gruppen. Damit

gilt entweder G ∼= Z/4Z oder G ∼= Z/2Z × Z/2Z. Wäre G zyklisch, also G ∼= Z/4Z, dann gäbe

es in G zu jedem Teiler der Gruppenordnung genau eine Untergruppe der entsprechenden Ordnung,

insbesondere genau eine Untergruppe U der Ordnung 2, die in G zugleich vom Index 2 ist, wegen

(G : U) = |G|
|U | = 4

2 = 2. Daraus wiederum folgt laut Galoistheorie, dass es genau einen Zwischenkörper

M von L|Q mit [M : Q] = 2 gibt.

Nach Teil (a) sind die Elemente
√

2,
√

3,
√

6 in L enthalten. Daraus folgt, dass Q(
√

2), Q(
√

3) und Q(
√

6)

Zwischenkörper von L|Q sind. Da es sich bei 2, 3 und 6 um verschiedene quadratfreie Zahlen in Z\{0, 1}
handelt, sind diese Zwischenkörper alle vom Grad 2 über Q und voneinander verschieden. Es gibt also

mehr als einen Zwischenkörper von L|Q vom Grad 2 über Q. Also ist G nicht isomorph zu Z/4Z, sondern

zu Z/2Z×Z/2Z.

zu (e) Nach dem Hauptsatz der Galoistheorie stimmt die Anzahl der Zwischenkörper von L|Q mit der

Anzahl der Untergruppen von G = Gal(L|Q) überein, wegen der Isomorphie also auch mit der Anzahl

der Untergruppen von Z/2Z×Z/2Z. Nach dem Satz von Lagrange ist die Ordnung jeder Untergruppe

ein Teiler von |Z/2Z × Z/2Z| = 4, also gleich 1, 2 oder 4. Die einzige Untergruppe der Ordnung 1 ist

{(0̄, 0̄)}, und die einzige Untergruppe der Ordnung 4 ist Z/2Z×Z/2Z. Jede Untergruppe der Ordnung

2 ist zyklisch, wird also von einem Element der Ordnung 2 erzeugt. Daraus folgt, dass Z/2Z × Z/2Z
genau drei Untergruppen der Ordnung 2 besitzt, nämlich 〈(1̄, 0̄)〉, 〈(0̄, 1̄)〉 und 〈(1̄, 1̄)〉. Insgesamt haben

Z/2Z × Z/2Z und G also genau fünf Untergruppen, und dementsprechend hat die Erweiterung L|Q
genau fünf Zwischenkörper.

Wie bereits in Teil (d) festgestellt wurde, gibt es drei verschiedene Zwischenkörper vom Grad 2 über

Q, nämlich Q(
√

2), Q(
√

3) und Q(
√

6). Hinzu kommen der Zwischenkörper Q mit [Q : Q] = 1 und der

Zwischenkörper L mit [L : Q] = 4. Damit haben wir alle fünf Zwischenkörper von L|Q bestimmt.



Aufgabe F22T3A1

Gegeben sei die Gruppe G = GL2(F2) der invertierbaren 2× 2-Matrizen mit Einträgen im Körper F2.

(a) Listen Sie alle Elemente von G auf.

(b) Zeigen Sie, dass die natürliche Operation von G auf dem Vektorraum F2
2 einen Isomorphismus

ϕ : G → Bij(F2
2 \ {0}) induziert. (Hierbei bezeichne Bij(M) die Gruppe der Bijektionen auf einer

Mengen M .) Zeigen Sie insbesondere, dass G isomorph ist zu S3, der symmetrischen Gruppe über

3 Elementen.

(c) Zeigen Sie, dass eine Gruppe der Ordnung 30 höchstens 6 Untergruppen der Ordnung 5 haben

kann.

Lösung:

zu (a) Eine 2× 2-Matrix über F2 ist genau dann invertierbar, liegt also in G, wenn die beiden Spalten-

vektoren v und w linear unabhängig sind. Die Ordnung von G ist also gleich der Anzahl der Paare (v, w)

mit linear unabhängigen v, w ∈ F2
2. Für v kann jeder Vektor aus F2

2 \ {(0̄, 0̄} gewählt werden; hierfür

gibt es genau drei Möglichkeiten. Ist v bereits gewählt, so ist (v, w) genau dann linear unabhängig, wenn

w ∈ F2
2 \ lin(v) gilt. Da lin(v) aus zwei Elementen besteht (nämlich v und dem Nullvektor), stehen für

w jeweils 22 − 2 = 2 Elemente zur Auswahl. Insgesamt ist damit gezeigt, dass die Ordnung von G gleich

2 · 3 = 6 ist. Offenbar sind die sechs Matrizen in der Menge{(
1̄ 0̄

0̄ 1̄

)
,

(
1̄ 1̄

0̄ 1̄

)
,

(
0̄ 1̄

1̄ 0̄

)
,

(
0̄ 1̄

1̄ 1̄

)
,

(
1̄ 1̄

1̄ 0̄

)
,

(
1̄ 0̄

1̄ 1̄

)}

alle invertierbar, denn die Determinante jeder Matrix ist gleich 1̄. Also enthält diese Menge genau die

Elemente der Gruppe G.

zu (b) Die natürliche Operation von G auf F2
2 ist gegeben durch G×F2

2 → F2
2, (A, v) 7→ Av. Setzen wir

X = F2
2 \ {0}, dann erhalten wir durch Einschränkung eine Abbildung · : G×X → F2

2. Für alle A ∈ G
und v ∈ X ist Av 6= 0F2

2
, also Av ∈ X, denn auf Grund der Invertierbarkeit von A besteht der Kern der

linearen Abbildung F2
2 → F2

2, v 7→ Av nur aus dem Nullvektor. Also kann · als Abbildung G×X → X

betrachtet werden.

Wir zeigen, dass durch diese Abbildung eine Gruppenoperation definiert ist. Für alle v ∈ X und alle

A,B ∈ G gilt E · v = Ev = v und A · (B · v) = A · (Bv) = A(Bv) = (AB)v = (AB) · v, wobei E die

2× 2-Einheitsmatrix über F2, also das Neutralelement von G, bezeichnet.

Also ist · tatsächlich eine Gruppenoperation von G auf X. Laut Vorlesung existiert somit ein Gruppen-

homomorphismus φ : G → Bij(X) mit φ(A)(v) = A · v = Av für alle v ∈ X. Zu zeigen ist, dass es

sich bei φ um einen Isomorphismus handelt. Ist A ∈ ker(φ), dann gilt Ae1 = φ(A)(e1) = idX(e1) = e1.

Die erste Spalte von A ist also der erste Einheitsvektor e1. Genauso zeigt man, dass die zweite Spal-

te von A gleich e2 ist. Insgesamt gilt also A = E. Damit ist nachgewiesen, dass φ injektiv ist. Aus

|X| = |F2
2 \ {0F2

2
} = 22 − 1 = 3 folgt außerdem Bij(X) ∼= S3 und somit |Bij(X)| = |S3| = 3! = 6 = |G|.

Als injektive Abbildung zwischen gleichmächtigen endlichen Mengen ist φ auch surjektiv, insgesamt ein

Isomorphismus. Also ist G isomorph zu Bij(X), und damit auch zu S3.

zu (c) Sei G eine Gruppe der Ordnung 30 = 2 · 3 · 5, und sei ν5 die Anzahl der 5-Sylowgruppen von G.

Auf Grund des Dritten Sylowsatzes gilt ν5 | 6. Es kann also in G höchstens sechs 5-Sylowgruppen geben.

Wegen 51 | 30, 52 - 30 sind die 5-Sylowgruppen von G genau die Untergruppen der Ordnung 5.



Aufgabe F22T3A2

(a) Bestimmen Sie a, b ∈ Z so, dass (1 + 2Z) ∩ (2 + 3Z) ∩ (3 + 5Z) = a+ bZ.

(b) Bestimmen Sie sämtliche ganzzahligen Lösungen (x, y) ∈ Z2 der Gleichung 221x+ 39y = 26.

(c) Sei n ≥ 2 und nehmen wir an, dass p = 2n + 1 eine Primzahl ist. Zeigen Sie, dass eine Restklasse

a ∈ (Z/pZ)× genau dann die Gruppe (Z/pZ)× erzeugt, wenn a kein Quadrat in Z/pZ ist.

Lösung:

zu (a) Eine Zahl z ∈ Z liegt genau dann in (1 + 2Z) ∩ (2 + 3Z) ∩ (3 + 5Z), wenn sie die Kongruenzen

z ≡ 1 mod 2, z ≡ 2 mod 3 und z ≡ 3 mod 5 erfüllt. Wegen 23 ≡ 1 mod 2, 23 ≡ 2 mod 3 und

23 ≡ 3 mod 5 (und weil Kongruenzrelationen Äquivalenzrelationen, also insbesondere transitiv, sind),

ist dies äquivalent zu z ≡ 23 mod n für n ∈ {2, 3, 5}, also zu n | (z − 23) für n ∈ {2, 3, 5}. Wegen

kgV(2, 3, 5) = 30 ist dies äquivalent zu 30 | (z − 23), also zu z ≡ 23 mod 30 und somit zu z ∈ 23 + 30Z.

Die Zahlen a = 23 und b = 30 haben also die gewünschte Eigenschaft.

zu (b) Für alle (x, y) ∈ Z2 ist die Gleichung 221x+39y = 26 äquivalent zu 17x+3y = 2. Dies wiederum

ist äquivalent zu (17x ≡ 2 mod 3) ∧ (y = 1
3 (2 − 17x)). Die Kongruenz ist äquivalent zur Gleichung

(2 + 3Z)(x+ 2Z) = 2 + 3Z in Z/3Z, somit auch zu x+ 2Z = 1 + 3Z, auf Grund der Invertierbarkeit von

2 + 3Z in diesem Ring. Dies wiederum ist äquivalent zur Aussage, dass x = 1 + 3z für ein z ∈ Z gilt. Die

Menge der ganzzahligen Lösungen der Gleichung ist also gegeben durch {(1 + 3z, 1
3 (2− 17(1 + 3z))) | z ∈

Z}, was zu {(1 + 3z,−5− 17z) | z ∈ Z} vereinfacht werden kann.

zu (c) Da p eine Primzahl ist, handelt es sich bei Z/pZ um einen Körper, und deshalb gilt (Z/pZ)× =

Z/pZ \ {0̄}. Somit gilt |(Z/pZ)×| = p − 1 = 2n. Laut Vorlesung ist die multiplikative Gruppe eines

endlichen Körpers zyklisch, es existiert also ein c ∈ (Z/pZ)× mit (Z/pZ)× = 〈c〉. Sei a ∈ (Z/pZ)×

beliebig vorgegeben. Dann existiert ein j ∈ {0, ..., p− 2} mit a = cj .

”
⇐“ Ist a kein Quadrat in Z/pZ, dann muss j ungerade sein, denn wäre j gerade, j = 2k für ein

k ∈ N0, dann würde a = c2k = (ck)2 folgen im Widerspruch zur Voraussetzung, dass a kein Quadrat

ist. Als ungerade Zahl ist j teilerfremd zur Gruppenordnung 2n. Daraus folgt laut Vorlesung, dass c und

a = cj dieselbe Ordnung haben. Es gilt also ord(a) = 2n = |(Z/pZ)×|, und daraus folgt 〈a〉 = (Z/pZ)×.

”
⇒“ Wenn a ein Quadrat ist, a = b2 für ein b ∈ Z/pZ, dann ist mit a auch b ungleich 0̄, also eine

Einheit. Weil 2 ein Teiler der Gruppenordnung 2n ist, gilt ord(a) = ord(b2) ≤ 1
2ord(b) = 1

2 |(Z/pZ)×|.
Wegen ord(a) < |(Z/pZ)×| kann a kein Erzeuger von (Z/pZ)× sein.



Aufgabe F22T3A3

Es sei R = Z[i] = {a+ ib | a, b ∈ Z} der Ring der ganzen Gauß’schen Zahlen.

(a) Bestimmen Sie die Einheitengruppe von R. Führen Sie einen expliziten und vollständigen Beweis

der Korrektheit Ihres Ergebnisses.

(b) Zeigen Sie, dass zwei Elemente w, z ∈ R genau dann assoziiert sind, wenn w4 = z4 gilt.

(c) Es sei (1− i) das von dem Element 1− i erzeugte Ideal von R. Bestimmen Sie das Ideal (1− i)∩Z.

Lösung:

zu (a) Sei N : C→ R+ die Normfunktion gegeben durch N(z) = zz̄ = |z|2 für alle z ∈ C. Diese Funktion

ist multiplikativ, denn für alle z, w ∈ C gilt N(zw) = |zw|2 = (|z||w|)2 = |z|2|w|2 = N(z)N(w). Die

Einschränkung von N auf Z[i] nimmt nur Werte in N0 an, denn für alle a, b ∈ Z gilt N(a + ib) =

|a + ib|2 = a2 + b2 ∈ N0. Ist nun ε = a + ib eine Einheit in Z[i], mit a, b ∈ Z, dann gilt N(ε)N(ε−1) =

N(εε−1) = N(1) = 1, und wegen N(ε), N(ε−1) ∈ N0 folgt daraus a2 +b2 = N(ε) = 1. Die Lösungsmenge

der Gleichung a2 + b2 = 1 in Z2 ist L = {(1, 0), (−1, 0), (0, 1), (0,−1)}. Aus (a, b) ∈ L wiederum folgt

ε = a+ib ∈ {1,−1, i,−i}. Damit ist Z[i]× ⊆ {±1,±i} nachgewiesen. Andererseits zeigen die Gleichungen

1 · 1 = (−1) · (−1) = i · (−i) = 1, dass alle vier Elemente der Menge {±1,±i} Einheiten sind. Also ist die

Einheitengruppe von Z[i] durch Z[i]× = {±1,±i} gegeben.

zu (b) Sind z, w ∈ Z[i] zueinander assoziiert, dann existiert ein ε ∈ Z[i]× mit w = εz. Nach Teil (a)

ist ε damit in der Menge {±1,±i} enthalten, und wegen 14 = (−1)4 = i4 = (−i)4 = 1 folgt ε4 = 1.

Damit wiederum erhalten wir w4 = ε4z4 = 1 · z4 = z4. Setzen wir umgekehrt w4 = z4 voraus, dann gilt

entweder w = z = 0 oder w, z 6= 0. Im ersten Fall sind w und z wegen 0 = 1 · 0 zueinander assoziiert.

Ansonsten kann die Gleichung z4 = w4 zu (wz )4 − 1 = 0 umgeformt werden. Die einzigen komplexen

Nullstellen des Polynoms x4 − 1 sind ±1,±i, also die Einheiten von Z[i]. Dies zeigt, dass w = w
z · z = εz

für ein ε ∈ Z[i]× erfüllt, die Elemente w, z also zueinander assoziiert sind.

zu (c) Wir zeigen, dass (1 − i) ∩ Z = 2Z gilt. Als Urbild des Ideals (1 − i) unter dem Inklusions-

homomorphismus Z → Z[i], a 7→ a ist (1 − i) ein Ideal in Z, und dieses enthält 2 wegen 2 ∈ Z

und 2 = (1 + i)(1 − i) ∈ (1 − i). Aus 2 ∈ (1 − i) ∩ Z und der Idealeigenschaft von (1 − i) ∩ Z folgt

2Z ⊆ (1− i)∩Z. Sei nun umgekehrt a ∈ (1− i)∩Z vorgegeben. Dann gilt a = γ · (1− i) für ein γ ∈ Z[i].

Wegen a2 = N(a) = N(γ)N(1− i) = 2N(γ) ist a2 gerade. Damit ist auch a gerade, also a ∈ 2Z.



Aufgabe F22T3A4

Es sei K ein Teilkörper von C, so dass K|Q eine Galois-Erweiterung vom Grad 4 mit zyklischer Galois-

gruppe Gal(K|Q) ist. Zeigen Sie, dass dann i /∈ K gilt.

Hinweis: Nehmen Sie an, dass i ∈ K gilt und betrachten Sie K|Q(i).

Lösung:

Sei G = Gal(K|Q), und nehmen wir an, es gilt i ∈ K. Dann ist Q(i) ein Zwischenkörper von K|Q. Weil

−1 eine quadratfreie Zahl in Z\{0, 1} ist, ist Q(i) = Q(
√
−1) eine Erweiterung von Q vom Grad 2. Laut

Galoistheorie ist U = Gal(K|Q(i)) damit eine Untergruppe vom Index 2, und wegen |U | = |G|
(G:U) = 4

2 = 2

ist diese auch von Ordnung 2. Weil G zyklisch ist, gibt es für jeden Teiler der Gruppenordnung 4 genau

eine Untergruppe der Ordnung 4. Daraus folgt, dass U die einzige Untergruppe der Ordnung 2 in G ist.

Sei nun ρ : K → C die Einschränkung der komplexen Konjugation z 7→ z̄ auf K. Diese Abbildung

ist ein Q-Homomorphismus, und weil K|Q als Galois-Erweiterung insbesondere normal ist, sogar ein Q-

Automorphismus von K, also ein Element der Galoisgruppe G. Für alle α ∈ K gilt ρ2(α) = ρ(ᾱ) = ¯̄α = α,

also ρ2 = idK . Wegen i ∈ K und ρ(i) = −i 6= i ist andererseits ρ 6= idK . Also ist ρ ∈ G ein Element

der Ordnung 2. Weil U die einzige Untergruppe der Ordnung 2 in G ist, muss 〈ρ〉 = U und insbesondere

ρ ∈ U gelten. Aber wegen U = Gal(K|Q(i)) folgt daraus ρ(i) = i, im Widerspruch zu ρ(i) = −i. Also ist

die Annahme i ∈ K falsch, und es folgt i /∈ K.



Aufgabe F22T3A5

Es sei K = Q( 3
√

2,
√

3, i).

(a) Bestimmen Sie den Grad der Körpererweiterung K|Q.

(b) Entscheiden und begründen Sie, ob es einen Q-Homomorphismus ϕ : K → C mit ϕ( 3
√

2) =
√

3

gibt.

(c) Entscheiden und begründen Sie, ob die Erweiterung K|Q galoissch ist.

Lösung:

zu (a) Das Polynom f = x3−2 ∈ Q[x] ist irreduzibel auf Grund des Eisenstein-Kriteriums (angewendet

auf die Primzahl 2), es ist normiert und erfüllt f( 3
√

2) = 0. Also ist f das Minimalpolynom von 3
√

2 über

Q, und wir erhalten [Q( 3
√

2) : Q] = grad(f) = 3. Weil 3 eine quadratfreie Zahl in Z \ {0, 1} ist, gilt laut

Vorlesung [Q(
√

3) : Q] = 2. Das Polynom g = x2 − 3 ∈ Q( 3
√

2)[x] ist normiert und erfüllt g(
√

3) = 0.

Wäre es in Q( 3
√

2)[x] reduzibel, dann müsste die Nullstelle
√

3 von g wegen grad(g) = 2 in Q( 3
√

2) liegen.

Es wäre dann Q(
√

3) ein Zwischenkörper von Q( 3
√

2)|Q, und die Gradformel würde

3 = [Q(
3
√

2) : Q] = [Q(
3
√

2) : Q(
√

3)] · [Q(
√

3) : Q] = [Q(
3
√

2) : Q(
√

3)] · 2

liefern. Es gilt aber 2 - 3, und somit ist g in Q( 3
√

2)[x] irreduzibel. Somit ist g das Minimalpolynom

von
√

3 über Q( 3
√

2), und es folgt [Q( 3
√

2,
√

3) : Q( 3
√

2)] = grad(g) = 2. Schließlich ist das Polynom

h = x2 + 1 ∈ Q( 3
√

2,
√

3)[x] normiert und erfüllt h(i) = 0. Wäre es über Q( 3
√

2,
√

3) reduzibel, dann

müsste wegen grad(h) = 2 die Nullstelle i in Q( 3
√

2,
√

3) liegen. Aber dies ist wegen Q( 3
√

2,
√

3) ⊆ R und

i /∈ R nicht der Fall. Also ist h in Q( 3
√

2,
√

3)[x] irreduzibel, insgesamt das Minimalpolynom von h über

Q( 3
√

2,
√

3). Daraus folgt

[Q(
3
√

2,
√

3, i) : Q(
3
√

2,
√

3)] = grad(h) = 2.

Mit der Gradformel erhalten wir nun

[Q(
3
√

2,
√

3, i) : Q] = [[Q(
3
√

2,
√

3, i) : [Q(
3
√

2,
√

3)] · [Q(
3
√

2,
√

3) : Q(
3
√

2)] · [Q(
3
√

2) : Q]

= 2 · 2 · 3 = 12.

zu (b) Nehmen wir an, ein Q-Homomorphismus ϕ wie angegeben existiert. Ist f ∈ Q[x] und α ∈ C eine

Nullstelle von f , dann muss laut Vorlesung ϕ(α) eine Nullstelle desselben Polynoms sein. Da nun 3
√

2

eine Nullstelle von f = x3 − 2 ist, müsste auch ϕ( 3
√

2) =
√

3 eine Nullstelle von f sein. Tatsächlich gilt

aber f(
√

3) 6= 0, denn die komplexen Nullstellen von f sind 3
√

2, ζ 3
√

2 und ζ2 3
√

2 mit ζ = − 1
2 + 1

2

√
−3,

insbesondere ist 3
√

2 die einzige reelle Nullstelle. Also existiert kein Q-Homomorphismus ϕ : K → C mit

ϕ( 3
√

2) =
√

3.

Anmerkung:

In der Orginalfassung der Aufgabenstellung war von einem Q-Automorphismus K → C die Rede. Das

ist natürlich nicht sinnvoll, denn bei einem Automorphismus (egal ob von Körpern, Ringen, Gruppen

oder Vektorräumen) müssen Definitions- und Wertebereich stets übereinstimmen.



zu (c) Wir zeigen, dass die Erweiterung K|Q normal ist, indem wir nachweisen, dass es sich bei K um

den Zerfällungskörper des Polynoms g = (x3 − 2)(x2 + 1) ∈ Q[x] über Q handelt. Wie bereits in Teil (b)

festgestellt, ist { 3
√

2, ζ 3
√

2, ζ2 3
√

2} mit ζ = − 1
2 + 1

2

√
−3 die Menge der komplexen Nullstellen von x3 − 2,

und ±i sind die komplexen Nullstellen von x2 + 1. Daraus folgt, dass N = { 3
√

2, ζ 3
√

2, ζ2 3
√

2, i,−i} die

Nullstellenmenge von g ist. Zu zeigen ist also

Q(N) = Q(
3
√

2,
√

3, i).

”
⊆“ Es genügt, N ⊆ Q( 3

√
2,
√

3, i) nachzuweisen. mit
√

3 und i ist auch
√
−3 = i

√
3 in Q( 3

√
2,
√

3, i)

enthalten, damit auch ζ = − 1
2 + 1

2

√
−3 und ζ2. Da auch 3

√
2 und ±i in Q( 3

√
2,
√

3, i) liegen, folgt insgesamt

N = { 3
√

2, ζ 3
√

2, ζ2 3
√

2, i,−i} ⊆ Q( 3
√

2,
√

3, i).

”
⊇“ Zu zeigen ist { 3

√
2,
√

3, i} ⊆ Q(N). Wegen 3
√

2, i ∈ N gilt 3
√

2, i ∈ Q(N). Mit 3
√

2 ∈ Q(N) und

ζ 3
√

2 ∈ Q(N) gilt auch ζ = ζ 3√2
3√2
∈ Q(N) und damit auch

√
−3 = 2ζ + 1 ∈ Q(N). Aus

√
−3 ∈ Q(N) und

i ∈ N ⊆ Q(N) folgt
√

3 = (−i)
√
−3 ∈ Q(N). Damit ist die Inklusion { 3

√
2,
√

3, i} ⊆ Q(N) vollständig

nachgewiesen.

Als normale Erweiterung ist K|Q insbesondere algebraisch, und wegen char(Q) = 0 damit auch separabel.

Insgesamt ist K|Q also tatsächlich eine Galois-Erweiterung.



Aufgabe H22T1A1

Gegeben sei die Gruppe

G =

{(
a b

0 c

)
∈M2,Q

∣∣∣∣ a, b, c ∈ Q, ac 6= 0

}

der invertierbaren oberen 2× 2-Dreiecksmatrizen über Q. Ferner seien

H =

{(
a b

0 c

)
∈ G

∣∣∣∣ c = a

}
und U =

{(
a b

0 c

)
∈ G

∣∣∣∣ b = 0

}
.

(a) Zeigen Sie, dass H ein Normalteiler von G ist und dass durch

ϕ : G/H → Q× mit ϕ

([(
a b

0 c

)])
=
a

c

ein wohldefinierter Gruppenisomorphismus gegeben ist.

(b) Zeigen Sie, dass U eine Untergruppe von G, aber kein Normalteiler ist.

(c) Betrachten Sie die Operation von U auf H durch Konjugation. Geben Sie ein Repräsentantensystem

der Bahnen dieser Gruppenoperation an.

Lösung:

zu (a) Wir beweisen die Existenz des angegebenen Isomorphismus durch Anwendung des Homomor-

phiesatzes für Gruppen. Sei ϕ̂ : G→ Q× gegeben durch

ϕ̂

((
a b

0 c

))
=

a

c
für a, c ∈ Q× und b ∈ Q.

Diese Abbildung ist ein Gruppenhomomorphismus, denn für alle a, a1, c, c1 ∈ Q× und alle b, b1 ∈ Q gilt

ϕ̂

((
a b

0 c

)(
a1 b1

0 c1

))
= ϕ̂

((
aa1 ab1 + bc1

0 cc1

))
=

aa1

cc1
(aa1)(cc1) =

a

c
· a1

c1

= ϕ̂

((
a b

0 c

))
ϕ̂

((
a1 b1

0 c1

))
.

Für alle a, c ∈ Q× und b ∈ Q gilt die Äquivalenz(
a b

0 c

)
∈ ker(ϕ̂) ⇔ ϕ̂

((
a b

0 c

))
= 1 ⇔ a

c
= 1 ⇔ c = a ⇔

(
a b

0 c

)
∈ H.

Dies zeigt, dass H = ker(ϕ̂) gilt. Als Kern eines Gruppenhomomorphismus G → Q× ist H ein Normal-

teiler von G. Darüber hinaus ist ϕ̂ surjektiv. Ist nämlich a ∈ Q× vorgegeben, dann gilt(
a 0

0 1

)
∈ G wegen a · 1 = a 6= 0 und außerdem ϕ̂

((
a 0

0 1

))
= a · 1 = a.

Damit ist nachgewiesen, dass ϕ̂ die Voraussetzungen des Homomorphiesatzes erfüllt. Auf Grund des

Satzes existiert ein wohldefinierter Isomorphismus G/H → Q× gegeben durch[(
a b

0 c

)]
7→ ϕ̂

((
a b

0 c

))
= ac



für alle a, c ∈ Q× und b ∈ Q. Dieser stimmt offenbar mit der in der Aufgabenstellung angegebenen

Abbildung überein.

zu (b) Zunächst zeigen wir, dass U eine Untergruppe von G ist. Das Neutralelement von G ist die

Einheitsmatrix E2, und diese ist offenbar in U enthalten (setze a = c = 1. Seien nun A,A1 ∈ U

vorgegeben. Dann sind auch AA1 und A−1 in U enthalten. Denn wegen A,A1 ∈ U gibt es a, a1, c, c1 ∈ Q×

mit

A =

(
a 0

0 c

)
und A1 =

(
a1 0

0 c1

)
,

und es folgt

AA1 =

(
aa1 0

0 cc1

)
∈ U und A−1

(
a−1 0

0 c−1

)
∈ U

wegen aa1, cc1 ∈ Q×. Wäre U ein Normalteiler, dann wäre wegen

B =

(
2 0

0 1

)
∈ U und T =

(
1 1

0 1

)
∈ G

auch TBT−1 in U enthalten. Tatsächlich aber gilt

TBT−1 =

(
1 1

0 1

)(
2 0

0 1

)(
1 1

0 1

)−1

=

(
1 1

0 1

)(
2 0

0 1

)(
1 −1

0 1

)

=

(
1 1

0 1

)(
2 −2

0 1

)
=

(
2 −1

0 1

)
/∈ U.

zu (c) Um zu erkennen, welche Gestalt die Bahnen der Gruppenoperation haben, wenden wir ein

beliebiges Element der Gruppe U auf ein beliebiges Element der Menge H an. Für alle a, a1, c ∈ Q× und

b1 ∈ Q gilt(
a 0

0 c

)
·

(
a1 b1

0 a1

)
=

(
a 0

0 c

)(
a1 b1

0 a1

)(
a 0

0 c

)−1

=

(
a 0

0 c

)(
a1 b1

0 a1

)(
a−1 0

0 c−1

)

=

(
aa1 ab1

0 ca1

)(
a−1 0

0 c−1

)
=

(
a1 ab1c

−1

0 a1

)
.

Ist b1 = 0, dann besteht die Bahn also nur aus der Diagonalmatrix a1E2, ansonsten durchläuft der

Eintrag rechts oben alle Elemente aus Q×. Dies führt uns zu der Behauptung, dass die Teilmenge R ⊆ H
gegeben durch

R =

{(
a1 ε1

0 a1

) ∣∣∣∣ a1 ∈ Q× , ε1 ∈ {0, 1}

}
ein Repräsentantensystem der Bahnen der Operation ist. Bezeichnet B die Menge der Bahnen, so müssen

wir nachweisen, dass die Abbildung φ : R→ B, A 7→ U(A) surjektiv und injektiv ist. Zum Nachweis der

Surjektivität sei U(A) ∈ B vorgegeben, mit

A =

(
a1 b1

0 a1

)
∈ H , a1 ∈ Q×, b1 ∈ Q.



Ist b1 = 0, dann liegt A selbst bereits in R, und es gilt φ(A) = U(A). Betrachten wir nun den Fall b1 6= 0.

Dann gilt (
a1 1

0 a1

)
∈ R und

(
1 0

0 b1

)
∈ U

wegen a1 ∈ Q× und 1, b1 ∈ Q×, und außerdem(
1 0

0 b1

)
·

(
a1 b1

0 a1

)
=

(
1 0

0 b1

)(
a1 b1

0 a1

)(
1 0

0 b1

)−1

=

(
1 0

0 b1

)(
a1 b1

0 a1

)(
1 0

0 b−1
1

)

=

(
1 0

0 b1

)(
aa1 1

0 a1b
−1
1

)
=

(
a1 1

0 a1

)
.

Es folgt (
a1 1

0 a1

)
∈ U

((
a1 b1

0 a1

))
und somit

φ

((
a1 1

0 a1

))
= U

((
a1 1

0 a1

))
= U

((
a1 b1

0 a1

))
.

Damit ist der Nachweis der Surjektivität abgeschlossen.

Zum Nachweis der Injektivität seien(
a ε

0 a

)
,

(
a1 ε1

0 a1

)
∈ R mit φ

((
a ε

0 a

))
= φ

((
a1 ε1

0 a1

))

vorgegeben, wobei a, a1 ∈ Q× und ε, ε1 ∈ {0, 1} sind. Nach Definition der Abbildung φ folgt

U

((
a ε

0 a

))
= U

((
a1 ε1

0 a1

))
und

(
a1 ε1

0 a1

)
∈ U

((
a ε

0 a

))
.

Es gibt also ein Element(
a2 0

0 c2

)
∈ U mit

(
a1 ε1

0 a1

)
=

(
a2 0

0 c2

)
·

(
a ε

0 a

)

und a2, c2 ∈ Q×. Es gilt also(
a1 ε1

0 a1

)
=

(
a2 0

0 c2

)
·

(
a ε

0 a

)
=

(
a2 0

0 c2

)(
a ε

0 a

)(
a2 0

0 c2

)−1

=

(
a2 0

0 c2

)(
a ε

0 a

)(
a−1

2 0

0 c−1
2

)
=

(
a2 0

0 c2

)(
aa−1

2 εc−1
2

0 ac−1
2

)
=

(
a a2εc

−1
2

0 a

)

Durch Vergleich der Einträge erhalten wir a1 = a und ε1 = a2εc
−1
2 . Wieder unterscheiden wir zwei Fälle.

Ist ε = 0, dann folgt ε1 = 0 und somit insgesamt(
a ε

0 a

)
=

(
a1 ε1

0 a1

)
.

Ist ε = 1, dann folgt ε1 = a2εc
−1
2 6= 0, wegen ε1 ∈ {0, 1} also ε1 = 1. Dies zeigt, dass die beiden Elemente

aus R auch in diesem Fall übereinstimmen.



Aufgabe H22T1A2

Sei R der Faktorring Q[x]/(x2 − 7x+ 12).

(a) Zeigen Sie, dass R als Ring isomorph zu Q×Q ist.

(b) Geben Sie explizit einen Ringisomorphismus ϕ : Q×Q→ R an.

(c) Bestimmen Sie alle Zahlen a ∈ Q, so dass die Restklasse von x+a in R eine Einheit ist, und finden

Sie jeweils das dazu inverse Element.

Lösung:

zu (a) Die p-q-Formel liefert für das Polynom f = x2 − 7x+ 12 die Nullstellen 3 und 4. Die Polynome

x−3 und x−4 sind als Polynome vom Grad 1 irreduzibel, und da sie nicht zueinander assoziiert sind, sind

sie teilerfremd. Der Chinesische Restsatz kann somit angewendet werden und liefert einen Isomorphismus

φ̄ : R = Q[x]/(f)→ Q[x]/(x− 3)×Q[x]/(x− 4) , g + (f) 7→ (g + (x− 3), g + (x− 4))

von Ringen. Für jedes a ∈ Q sei ρa : Q[x]→ g, g 7→ g(a) der Auswertungshomomorphismus an der Stelle

a. Dieser ist surjektiv, denn für vorgegebenes c ∈ Q gilt ρa(c) = c(a) = c. Es gilt ker(ρa) = (x− a), auf

Grund der Äquivalenz

g ∈ ker(ρa) ⇔ ρa(g) = 0 ⇔ g(a) = 0 ⇔ (x− a) | g ⇔ g ∈ (x− a)

für alle g ∈ Q[x]. Der Homomorphiesatz für Ringe ist also anwendbar und liefert für jedes a ∈ Q einen

Isomorphismus ρ̄a : Q[x]/(x− a)→ Q, g+ (x− a) 7→ g(a). Durch (g+ (x− 3), g+ (x− 4)) 7→ (g(3), g(4))

ist somit ein Isomorphismus ψ : Q[x]/(x− 3)×Q[x]/(x− 4)→ Q×Q definiert, und insgesamt ist φ̄ ◦ ψ
ein Isomorphismus zwischen R und Q×Q.

zu (b) Die Gleichung 1 · (x− 3) + (−1) · (x− 4) = 1 kann zu 1 + (3− x) = 4− x umgestellt werden und

liefert wegen φ̄(4− x+ (f)) = ((4− x) + (x− 3), (4− x) + (x− 4)) = (1 + (x− 3), 0 + (x− 4)) ein Urbild

von (1 + (x− 3), 0 + (x− 4)) ∈ Q[x]/(x− 3)×Q[x]/(x− 4) bezüglich φ̄. Ebenso überprüft man, dass der

Isomorphismus φ̄ das Element x− 3 + (f) auf (0 + (x− 3), 1 + (x− 4)) abbildet. Für alle h1, h2 ∈ Q[x]

gilt

φ̄((4− x)h1 + (x− 3)h2 + (f)) = φ̄(h1 + (f))φ̄(4− x+ (f)) + φ̄(h2 + (f))φ̄(x− 3 + (f))

= (h1 + (x− 3), h1 + (x− 4))(1 + (x− 3), 0 + (x− 4))+

(h2 + (x− 3), h2 + (x− 4))(0 + (x− 3), 1 + (x− 4)) =

(h1 + (x− 3), 0 + (x− 4)) + (0 + (x− 3), h2 + (x− 4)) = (h1 + (x− 3), h2 + (x− 4)).

Dies zeigt, dass die Umkehrabbildung von φ̄ durch φ̄−1(h1+(x−3), h2+(x−4)) = (4−x)h1+(x−3)h2+(f)

gegeben ist. Die Umkehrabbildung von ψ ist offenbar gegeben durch ψ−1(c, d) = (c+ (x− 3), d+ (x− 4))

für alle (c, d) ∈ Q×Q, denn es gilt jeweils ψ(c+(x−3), d+(x−4)) = (c(3), d(4)) = (c, d). Die Abbildung

φ̄−1 ◦ ψ−1 ist ein Isomorphismus Q×Q→ Q[x]/(f), und dieser ist explizit gegeben durch

(φ̄−1 ◦ ψ−1)(c, d) = φ̄−1(c+ (x− 3), d+ (x− 4)) = c(4− x) + d(x− 3) + (f)

= (d− c)x+ 4c− 3d+ (f)

für alle c, d ∈ Q.



zu (c) Sei a ∈ Q. Da es sich bei ψ ◦ φ̄ um einen Isomorphismus von Ringen handelt, ist das Element

x−a+(f) genau dann eine Einheit in R, wenn (ψ ◦ φ̄)(x−a+(f)) = ψ(x−a+(x−3), x−a+(x−4)) =

(3− a, 4− a) eine Einheit in Q ist. Wegen (Q×Q)× = Q× ×Q× = (Q \ {0})× (Q \ {0}) ist dies genau

dann der Fall, wenn 3− a 6= 0 und 4− a 6= 0 gilt, also genau dann, wenn a /∈ {3, 4} gilt.

Das Inverse von (ψ ◦ φ̄)(x− a+ (f)) = (3− a, 4− a) in Q×Q ist ( 1
3−a ,

1
4−a ). Das Inverse von x− a+ (f)

in R ist somit gegeben durch

(ψ ◦ φ̄)−1( 1
3−a ,

1
4−a ) = (φ̄−1 ◦ ψ−1)( 1

3−a ,
1

4−a ) = φ̄−1
(

1
3−a + (x− 3), 1

4−a + (x− 4)
)

=
4− x
3− a

+
x− 3

4− a
+ (f).

Anmerkung:

Dass dieses Element tatsächlich das Inverse von x− a+ (f) ist, kann auch durch eine direkte Rechnung

überprüft werden: Wegen (4− a)(3− a) = f(a) gilt(
4− x
3− a

+
x− 3

4− a
+ (f)

)
· (x− a+ (f)) =

(
(4− x)(4− a) + (x− 3)(3− a)

f(a)
+ (f)

)
· (x− a+ (f))

=
(
f(a)−1((16− 4x− 4a+ ax) + (3x− 9− ax+ 3a)) + (f)

)
· (x− a+ (f))

=
(
f(a)−1(−x+ 7− a) + (f)

)
· (x− a+ (f)) = f(a)−1(−x+ 7− a)(x− a) + (f)

= f(a)−1(−x2 + 7x+ a(a− 7)) + (f) = f(a)−1(−x2 + 7x+ a(a− 7) + f) + (f))

= f(a)−1(−x2 + 7x+ a(a− 7) + x2 − 7x+ 12) + (f) = f(a)−1(a(a− 7) + 12) + (f)

= f(a)−1(a2 − 7a+ 12) + (f) = f(a)−1f(a) + (f) = 1 + (f) = 1R.



Aufgabe H22T1A3

(a) Sei L|K eine endliche Galois-Erweiterung und sei a ∈ L. Zeigen Sie, dass a genau dann ein primitives

Element für L|K ist, wenn die Elemente σ(a) für alle σ ∈ Gal(L|K) paarweise verschieden sind.

(b) Beweisen Sie, dass Q(
√

3, i)|Q eine Galois-Erweiterung ist und bestimmen Sie die Elemente der

Galois-Gruppe.

(c) Zeigen Sie, dass für alle q ∈ Q \ {0} das Element a =
√

3 + qi ein primitives Element der Galois-

Erweiterung Q(
√

3, i)|Q ist.

Lösung:

zu (a)
”
⇒“ Nach Voraussetzung gilt L = K(a). Daraus folgt, dass jedes Element σ ∈ Gal(L|K) durch

das Bild σ(a) bereits eindeutig bestimmt ist. Sind also σ, τ ∈ Gal(L|K) mit σ(a) = τ(a), dann folgt

σ = τ . Setzen wir umgekehrt σ 6= τ voraus, dann muss also σ(a) 6= τ(a) gelten.

”
⇐“ Auf Grund der Voraussetzung folgt für jedes σ ∈ Gal(L|K) aus σ(a) = a = idL(a) bereits

σ = idL. Ist nun σ ∈ Gal(L|K(a)), dann gilt σ(γ) = γ für alle γ ∈ K(a), insbesondere also σ(a) = a und

somit σ = idL. Es gilt also Gal(L|K(a)) = {idL} = Gal(L|L). Nach dem Hauptsatz der Galoistheorie

ist M 7→ Gal(L|M) eine bijektive Korrespondenz zwischen den Zwischenkörpern von L|K und den

Untergruppen von Gal(L|K). Aus der Gleichheit Gal(L|K(a)) = Gal(L|L) folgt also L = K(a), d.h. a

ist ein primitives Element der Erweiterung L|K.

zu (b) Die Elemente
√

3 und i sind Nullstellen des Polynoms f = (x2 − 3)(x2 + 1) ∈ Q[x] und so-

mit algebraisch über Q. Daraus folgt, dass Q(
√

3, i)|Q eine algebraische Körpererweiterung ist. Wegen

char(Q) = 0 ist Q(
√

3, i)|Q als algebraische Erweiterung auch separabel. Darüber hinaus ist die Er-

weiterung normal. Um dies zu zeigen, weisen wir nach, dass Q(
√

3, i) in C der Zerfällungskörper von

f über Q ist. Offenbar sind die Elemente der Menge N = {±
√

3,±i} Nullstellen von f , und wegen

grad(f) = 4 = |N | kann es keine weiteren geben. Somit ist Q(N) der Zerfällungskörper von f über Q.

Wegen
√

3, i ∈ N gilt Q(
√

3, i) ⊆ Q(N). Umgekehrt enthält Q(
√

3, i) neben
√

3 und i auch −
√

3 und

−i (weil Q(
√

3, i) als Teilkörper von C abgeschlossen unter der Bildung von Negativen ist). Es gilt also

N ⊆ Q(
√

3, i), und weil Q(
√

3, i) ein Zwischenkörper von C|Q ist, folgt daraus auch Q(N) ⊆ Q(
√

3, i),

insgesamt also Q(N) = Q(
√

3, i).

Also handelt es sich bei Q(
√

3, i)|Q tatsächlich um eine Galois-Erweiterung. Sei G die zugehörige Galois-

Gruppe; laut Vorlesung ist die Ordnung dieser Gruppe durch |G| = [Q(
√

3, i) : Q] gegeben. Laut Vorle-

sung gilt [Q(
√

3) : Q] = 2, weil 3 eine quadratfreie ganze Zahl ungleich 0, 1 ist. Das Polynom g = x2 + 1

ist normiert und hat i als Nullstelle. Wäre es über Q(
√

3) reduzibel, dann wären wegen grad(g) die

beiden Nullstellen ±i in Q(
√

3) enthalten. Aber dies ist unmöglich, denn wegen
√

3 ∈ R gilt einerseits

Q(
√

3) ⊆ R, andererseits aber ±i ∈ C \R. Also ist g über Q(
√

3) irreduzibel, insgesamt das Minimalpo-

lynom von i über Q(
√

3). Es folgt

[Q(
√

3, i) : Q(
√

3)] = [Q(
√

3)(i) : Q(
√

3)] = grad(g) = 2 ,

und mit der Gradformel erhalten wir |G| = [Q(
√

3, i) : Q] = [Q(
√

3, i) : Q(
√

3)] · [Q(
√

3) : Q] = 2 · 2 = 4.



Weil das Polynom g über Q(
√

3) irreduzibel ist, und weil ±i Nullstellen von g sind, existiert auf Grund

des Fortsetzungssatzes ein Element τ ∈ Gal(Q(
√

3, i)|Q(
√

3)) mit τ(i) = −i. Insbesondere ist τ ein

Element der Gruppe G, mit τ(
√

3) =
√

3 und τ(i) = −i. Das Polynom h = x2 − 3 ist irreduzibel über

Q(i). Wäre es nämlich reduzibel, dann würden die beiden Nullstellen ±
√

3 bereits in Q(i) liegen, und

daraus würde Q(
√

3, i) = Q(i) folgen. Da −1 eine quadratfreie Zahl in Z \ {0, 1} ist, ergäbe sich daraus

[Q(
√

3, i) : Q] = [Q(i) : Q] = [Q(
√
−1) : Q] = 2. Aber dies steht Widerspruch zu unserer Feststellung

[Q(
√

3, i) : Q] = 4 von oben. Da ±
√

3 Nullstellen von h sind, liefert der Fortsetzungssatz ein Element

σ ∈ Gal(Q(
√

3, i)|Q(i)) mit σ(
√

3) = −
√

3, also ein Element σ ∈ G mit σ(
√

3) = −
√

3 und σ(i) = i.

Neben idQ(
√

3,i), σ und τ ist σ ◦ τ ein weiteres Element der Gruppe G. Dieses stimmt mit keinem der

drei anderen Elemente überein, denn es gilt einerseits (σ ◦ τ)(i) = σ(−i) = −σ(i) = −i und somit

σ ◦ τ 6= idQ(
√

3,i), σ (wegen idQ(
√

3,i)(i) = σ(i) = i), andererseits aber auch (σ ◦ τ)(
√

3) = σ(
√

3) = −
√

3

und somit σ ◦ τ 6= τ (wegen τ(
√

3) =
√

3). Wegen |G| = 4 ist damit insgesamt G = {idQ(
√

3,i), σ, τ, σ ◦ τ}
nachgewiesen.

zu (c) Sei q ∈ Q \ {0} und a =
√

3 + iq. Nach Teil (b) sind idQ(
√

3,i), σ, τ und σ ◦ τ die Elemente von

Gal(Q(
√

3, i)|Q), und es gilt idQ(
√

3,i)(a) =
√

3 + iq, σ(a) = −
√

3 + iq, τ(a) =
√

3− iq und (σ ◦ τ)(a) =

σ(
√

3− iq) = −
√

3− iq. Je zwei dieser komplexen Zahlen unterscheiden sich im Real- oder Imaginärteil.

Die vier Bilder von a unter den Elementen der Galois-Gruppe sind also paarweise verschieden. Nach Teil

(a) folgt daraus, dass a ein primitives Element der Erweiterung Q(
√

3, i)|Q ist.



Aufgabe H22T1A4

Betrachten Sie das Polynom f = x4 + 5x2 + 5 ∈ Q[x]. Es sei Z ⊆ C sein Zerfällungskörper in C und

α ∈ Z eine Nullstelle.

(a) Dividieren Sie das Polynom f durch x2 − α2 ∈ Q(α)[x], ohne die Nullstelle exiplizit zu berechnen.

(b) Zeigen Sie, dass die Gleichung (α3 + 3α)2 = −(5 + α2) gilt.

(c) Zeigen Sie, dass [Z : Q] = 4 und Gal(Z|Q) ∼= Z/4Z gilt.

Lösung:

zu (a) Entsprechend der Vorgehensweise bei der Polynomdivision berechnen wir zunächst die Differenz

f − x2(x2−α2) = f − x4 +α2x2 = (5 +α2)x2 + 5 und subtrahieren anschließend (5 +α2)(x2−α2). Wir

erhalten

(5 + α2)x2 + 5− (5 + α2)(x2 − α2) = 5x2 + α2x2 + 5− 5x2 − α2x2 + 5α2 + α4 =

5 + 5α2 + α4 = f(α) = 0.

Insgesamt gilt also

f − x2(x2 − α2)− (5 + α2)(x2 − α2) = 0

was zu f = (x2 + α2 + 5)(x2 − α2) umgeformt werden kann.

zu (b) Das Polynom f ∈ Z[x] ist auf Grund des Eisenstein-Kriteriums (angewendet auf die Primzahl 5)

irreduzibel über Z und damit auch über Q. Außerdem ist es normiert, und es gilt f(α) = 0. Insgesamt

handelt es sich also um das Minimalpolynom von α überQ. Laut Vorlesung folgt daraus, dass [Q(α) : Q] =

grad(f) = 4 und B = {1, α, α2, α3} eine Basis von Q(α) als Q-Vektorraum ist. Die Elemente (α3 + 3α)2

und −(5 + α)2 stimmen also genau dann überein, wenn ihre Darstellung als Linearkombination von B
übereinstimmt.

Nun gilt einerseits −(5 + α2) = (−5) + (−1)α2. Um auch (α3 + 3α)2 als Linearkombination von B
darzustellen, formen wir die Gleichung α4 + 5α2 + 5 = f(α) = 0 zunächst zu α4 = −5 − 5α2 um. Wir

erhalten dann α6 = α2 · α4 = α2(−5− α2) = −5α2 − 5α4 = −5α2 + 25 + 25α2 = 20α2 + 25. Es folgt

(α3 + 3α)2 = α6 + 6α4 + 9α2 = 20α2 + 25− 30α2 − 30 + 9α2 = (−5) + (−1)α2.

Also stimmen die Elemente tatsächlich überein.

zu (c) Bereits in Teil (b) wurde nachgewiesen, dass [Q(α) : Q] = 4 ist. Nun zeigen wir noch, dass Q(α)

mit dem Zerfällungskörper Z von f über Q übereinstimmt und erhalten somit die gewünschte Gleichung

[Z : Q] = 4. Nach Definition gilt Z = Q(N), wobei N die Menge der komplexen Nullstellen von f

bezeichnet. Zu zeigen ist also Q(α) = Q(N). Wegen f(α) = 0 gilt α ∈ N und somit Q(α) ⊆ Q(N). Für

die umgekehrte Inklusion genügt es, N ⊆ Q(α) zu Überprüfen. Die Zerlegung

f = (x2 + α2 + 5)(x2 − α2)

aus Teil (a) zeigt, dass ±α in N liegen.



Aus der Gleichung (α3 + 3α)2 = −(5 + α2) aus Teil (b) folgt, dass auch ±(3α + α3) Nullstellen von f

sind, denn es gilt

f(3α+ α3) = ((3α+ α3)2 + α2 + 5)((3α+ α3)2 − α2) =

(−(5 + α2) + α2 + 5)((3α+ α3)2 − α2) = 0 · ((3α+ α3)2 − α2) = 0 ,

und ebenso erhält man f(−3α−α3) = 0. Die Elemente ±α und ±(3α+α3) sind paarweise verschieden,

denn wie in Teil (b) gezeigt wurde, ist B = {1, α, α2, α3} eine vierelementige Basis von Q(α) als Q-

Vektorraum, und für beliebige b0, b1, b2, b3 ∈ Q und c0, c1, c2, c3 ∈ Q gilt somit

b0 + b1α+ b2α
2 + b3α

3 = c0 + c1α+ c2α
2 + c3α

3

dann und nur dann, wenn bj = cj für 0 ≤ j ≤ 3 erfüllt ist. Da f als Polynom vom Grad 4 nicht mehr

als vier komplexe Nullstellen besitzen kann, muss N = {±α,±(3α + α3)} gelten. Dies zeigt, dass N

tatsächlich in Q(α) enthalten ist.

Als Zerfällungskörper des Polynoms f ∈ Q[x] über Q ist Z ein normaler Erweiterungskörper von

Q. Insbesondere ist die Erweiterung Z|Q algebraisch, und wegen char(Q) = 0 somit auch separa-

bel. Insgesamt handelt es sich bei Z|Q um eine Galois-Erweiterung, und laut Vorlesung folgt daraus

|Gal(f |Q)| = Gal(Z|Q) = [Z : Q] = 4. Für den Isomorphismus Gal(f |Q) ∼= Z/4Z genügt es somit

zu zeigen, dass in Gal(f |Q) ein Element der Ordnung 4 existiert. Weil f irreduzibel ist und α und

3α+α3 Nullstellen von f sind, existiert auf Grund des Fortsetzungssatzes ein Element σ ∈ Gal(f |Q) mit

σ(α) = 3α+α3. Wegen |Gal(f |Q)| = 4 ist nur ord(σ) ∈ {1, 2, 4} möglich. Um zu zeigen, dass ord(σ) = 4

gilt, genügt es somit σ2 6= idZ nachzuweisen, und hierfür wiederum ist σ2(α) 6= α hinreichend. Mit Hilfe

der Gleichungen α4 = −5− 5α2, α6 = 20α2 + 25 und (3α+ α3)2 = −5− α2 aus Teil (b) erhalten wir

(3α+ α3)3 = (3α+ α3)2(3α+ α3) = (−5− α2)(3α+ α3) = −15α− 3α3 − 5α3 − α5

= −15α− 8α3 − α4α = −15α− 8α3 + (5 + 5α2)α

= −15α− 8α3 + 5α+ 5α3 = −10α− 3α3

und somit

σ2(α) = σ(σ(α)) = σ(3α+ α3) = 3σ(α) + σ(α)3 = 3(3α+ α3) + (3α+ α3)3

= 9α+ 3α3 − 10α− 3α3 = −α.

Also gilt tatsächlich σ2(α) 6= α.



Aufgabe H22T1A5

Sei Φn ∈ Q[x] das n-te Kreisteilungspolynom über Q. Zeigen Sie:

(a) Es gilt xn − 1 = (x− 1)h mit einem Polynom h ∈ Q[x] mit h(1) = n.

(b) Ist n = pk für eine Primzahl p und k ≥ 1, so gilt Φn(1) = p.

(c) Hat n mindestens zwei Primzahlen p 6= q als Teiler, so ist Φn(1) = 1.

Lösung:

zu (a) Bekanntlich gilt xn − 1 = (x− 1)h mit h =
∑n−1
k=0 x

k, und es ist h(1) =
∑n−1
k=0 1k =

∑n−1
k=0 1 = n.

zu (b) Laut Vorlesung ist das Kreisteilungspolynom zu einer Primzahlpotenz pk (mit k ≥ 1) gegeben

durch Φpk =
∑p−1
j=0 x

jpk−1

. Folglich gilt Φpk(1) =
∑p−1
j=0 1jp

k−1

=
∑p−1
j=0 1 = p.

zu (c) Wir beweisen die folgenden beiden Aussagen.

(i) Ist n ∈ N und sind p, q zwei verschiedene Primteiler von n, dann gilt Φn(1) | n,

aber p - Φn(1) und q - Φn(1).

(ii) Es gilt Φn(1) > 0 für alle n ∈ N mit n ≥ 2.

Aus Teil (i) folgt, dass Φn(1) keine Primteiler hat, sobald n mindestens zwei verschiedene Primteiler

besitzt, in diesem Fall also Φn(1) ∈ {±1} gilt. Zusammen mit (ii) folgt dann Φn(1) = 1, wie gewünscht.

zu (i) Aus der Vorlesung ist bekannt, dass xn − 1 =
∏
d|n Φd gilt, wobei d die Teiler von n in N

durchläuft. Nach Teil (a) existiert ein Polynom hn ∈ Z[x] mit xn − 1 = (x − 1)hn und hn(1) = n. Wir

erhalten

(x− 1)hn = xn − 1 = (x− 1)
∏
d | n
d 6= 1

Φd ,

und die Anwendung der Kürzungsregel im Integritätsbereich Q[x] liefert hn =
∏
d|n,d 6=1 Φd = Φn ·∏

d|n,d6=1,n Φd. Dies zeigt, dass Φn(1) ein Teiler von hn(1) = n ist. Seien nun a, b ∈ N so gewählt, dass

n = paqbm gilt, mit einem zu p und q teilerfremden m, und setzen wir S = {d ∈ N | d | n, d - pa, d -
qb, d 6= n}. Dann können wir das Polynom hn in der Form

hn =

a∏
k=1

Φpk ·
b∏
`=1

Φq` · Φn · r

mit r =
∏
d∈S Φd ∈ Z[x] schreiben. Mit Hilfe der Ergebnisse von Teil (a) und (b) erhalten wir

paqbm = n = hn(1) = pa · qb · Φn(1) · r(1)

und somit m = Φn(1) · r(1). Es folgt Φn(1) | m. Wegen ggT(m, pq) = 1 ergibt sich daraus wiederum

p - Φn(1) und q - Φn(1).

zu (ii) Diese Aussage beweisen wir durch vollständige Induktion über n. Für n = 2 ist sie offenbar

erfüllt, denn es gilt Φ2 = x+ 1 und Φ2(1) = 1 + 1 = 2 > 0. Sei nun n ∈ N mit n > 2, und setzen wir die

Aussage für natürliche Zahlen kleiner als n voraus. Wie oben gezeigt, gilt hn = Φn ·
∏
d|n,d6=1,n Φd und

somit auch hn(1) = Φn(1) ·
∏
d|n,d6=1,n Φd(1). Es ist hn(1) = n > 0, und nach Induktionsvoraussetzung

gilt Φd(1) > 0 für alle Teiler d ∈ N von n mit d 6= 1, n. Auf Grund der obigen Gleichung muss somit

auch Φn(1) > 0 gelten.



Aufgabe H22T2A1

Eine affine Ebene in R3 ist die Menge aller Punkte (x, y, z) ∈ R3, die eine Gleichung der Form ax+ by+

cz + d = 0 erfüllen mit fest vorgegebenen Zahlen a, b, c, d ∈ R und (a, b, c) 6= (0, 0, 0).

(a) Für j = 1, 2, 3, 4 seien vier Punkte Pj = (xj , yj , zj) ∈ R3 gegeben. Zeigen Sie, dass P1, P2, P3, P4

genau dann in einer affinen Ebene liegen, wenn gilt∣∣∣∣∣∣∣∣∣∣
x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣
= 0.

(b) Sei C = {(t, t2, t3) ∈ R3 | t ∈ R}, und sei E ⊆ R3 eine affine Ebene. Zeigen Sie, dass C ∩ E
höchstens drei Elemente hat.

Lösung:

zu (a) Seien a, b, c, d ∈ R mit (a, b, c) 6= (0, 0, 0). Es liegen P1, P2, P3, P4 genau dann auf der Ebene

Ea,b,c,d = {(x, y, z) ∈ R3 | ax+ by + cz + d = 0} ,

wenn axj + byj + czj + d = 0 für j = 1, 2, 3, 4 gilt. Die Punkte liegen also genau dann auf einer affinen

Ebene, wenn das linearen Gleichungssystem

xja+ yjb+ zjc+ d = 0 (1 ≤ j ≤ 4)

eine Lösung (a, b, c, d) ∈ R4 mit (a, b, c) 6= (0, 0, 0) besitzt. Dies ist genau dann der Fall, wenn das lineare

Gleichungssystem Ax = 0R4 mit der Matrix

A =


x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1


eine Lösung dieser Form besitzt. Wir zeigen, dass dies genau dann der Fall ist, wenn detA = 0 gilt.

”
⇒“ Existiert eine Lösung der angegebenen Form, dann ist insbesondere kerA 6= {0R4} und dim kerA ≥

1. Mit dem Dimensionssatz für lineare Abbildungen folgt daraus 4 − rg(A) ≥ 1, was zu rg(A) < 4 und

detA = 0 äquivalent ist.
”
⇐“ Aus detA = 0 folgt rg(A) < 4, was auf Grund der Dimensionssatzes

zu dim kerA ≥ 1 und kerA 6= {0R4} äquivalent ist. Sei (a, b, c, d) ∈ R4 ein Element des Kerns ungleich

null. Wäre (a, b, c) = (0, 0, 0), dann würde wegen
0

0

0

0

 =


x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1




0

0

0

d

 =


d

d

d

d


auch d = 0 und somit (a, b, c, d) = (0, 0, 0, 0) folgen, im Widerspruch zur Voraussetzung. Also ist (a, b, c, d)

eine Lösung des LGS mit (a, b, c) 6= (0, 0, 0).



zu (b) Sei p ∈ R3 und E = Ea,b,c eine affine Ebene. Dann gilt die Äquivalenz

p ∈ E ∩ C ⇔ p ∈ E und p ∈ C ⇔ p ∈ E und ∃ t ∈ R : p = (t, t2, t3)

⇔ ∃ t ∈ R : p = (t, t2, t3) und at+ bt2 + ct3 + d = 0.

Also gilt p ∈ E ∩ C genau dann, wenn ein t ∈ R mit p = (t, t2, t3) existiert, das Nullstelle des Polynoms

fa,b,c = cx3 + bx2 +ax+d ∈ R[x] ist. Wegen (a, b, c) 6= (0, 0, 0) ist fa,b,c nicht das Nullpolynom. Da es als

Polynom ungleich null vom Grad ≤ 3 höchstens drei Nullstellen besitzt (und jeder Schnittpunkt p ∈ R3

durch die zugehörige Nullstelle t ∈ R eindeutig festgelegt ist) gibt es höchstens drei Schnittpunkte von

E und C.



Aufgabe H22T2A2

Sei K ein Körper, sei K[x] der Polynomring über K in einer Unbestimmten, und sei L = K(x) der

Quotientenkörper von K[x]. Sei weiter

R =

{
a

b

∣∣∣∣ a, b ∈ K[x] , ggT(a, b) = 1 , b(0) 6= 0

}
⊆ L.

Zeigen Sie:

(a) Die Menge R ist ein Teilring von L.

(b) Sei I ein Ideal von R. Dann ist I ∩K[x] ein Ideal von K[x].

(c) Der Ring R ist ein Hauptidealring.

Lösung:

zu (a) Zu überprüfen ist, dass 1K(x) ∈ R gilt, und dass mit u, v ∈ R auch u− v und uv in R liegen. Da

K ein Teilring von K[x] und K[x] ein Teilring von K(x) ist, ist K ein Teilring von K(x). Sei a = b = 1K .

Dann gilt a, b ∈ K[x] und b(0K) = 1K 6= 0K , außerdem ggT(a, b) = ggT(1K , 1K) = 1K . Insgesamt

erhalten wir 1K(x) = 1K = 1K
1K
∈ R.

Seien u, v ∈ R. Dann gibt es a1, a2, b1, b2 ∈ K[x] mit u = a1
b1

, v = a2
b2

und b1(0K) 6= 0K , b2(0K) 6= 0K . Es

folgt

uv =
a1a2

b1b2
mit a1a2, b1b2 ∈ K[x] und (b1b2)(0K) = b1(0K)b2(0K) 6= 0 ,

da b1(0K), b2(0K) 6= 0K und K ein Körper ist. Sei nun d ∈ R ein größter gemeinsamer Teiler von a1a2

und b1b2. Dann gibt es teilerfremde a3, b3 ∈ K[x] mit a1a2 = da3 und b1b2 = db3. Es folgt

uv =
a1a2

b1b2
=

da3

db3
=

a3

b3

und außerdem b3(0K) 6= 0, da ansonsten (b1b2)(0K) = d(0K)b3(0K) gleich 0K wäre. Insgesamt ist damit

uv ∈ R nachgewiesen. Ebenso gilt

u− v =
a1

b1
− a2

b2
=

a1b2 − a2b1
b1b2

mit a1b2−a2b1 ∈ K[x], b1b2 ∈ K[x] und (b1b2)(0K) 6= 0K . Sei d′ ∈ R ein größter gemeinsamer Teiler von

a1b2− a2b1 und b1b2. Dann gibt es teilerfremde a4, b4 ∈ K[x] mit a1b2− a2b1 = d′a4 und b1b2 = d′b4. Es

folgt

u− v =
a1b2 − a2b1

b1b2
=

d′a4

d′b4
=

a4

b4
.

Dabei ist b4(0K) 6= 0, da ansonsten (b1b2)(0K) = d′(0K)b4(0K) gleich 0K wäre. Insgesamt zeigt dies, dass

auch u− v in R liegt.

zu (b) Sei I ein Ideal in R. Zu zeigen ist, dass I ∩K[x] ein Ideal in K[x] ist. Wir betrachten dazu die

Abbildung φ : K[x]→ K(x), f 7→ f
1K

. Für jedes f ∈ K[x] gilt ggT(f, 1K) = 1K und 1K(0K) = 1K 6= 0K ,

also f = f
1 ∈ R. Dies zeigt, dass φ als Abbildung K[x]→ R aufgefasst werden kann. Diese Abbildung ist

ein Ringhomomorphismus, denn es gilt φ(1K[x]) = φ(1K) = 1K
1K

= 1R und für alle f, g ∈ K[x] außerdem

φ(f + g) =
f + g

1K
=

f

1K
+

g

1K
= φ(f) + φ(g)

und

φ(fg) =
fg

1K
=

f

1K
· g

1K
= φ(f)φ(g).



Es ist I ∩K[x] = φ−1(I), denn für alle f ∈ K[x] gilt die Äquivalenz

f ∈ φ−1(I) = φ(f) ∈ I =
f

1K
∈ I = f ∈ I = f ∈ I ∩K[x].

Als Urbild eines Ideals in R unter einem Ringhomomorphismus K[x]→ R ist I ∩K[x] ein Ideal in K[x].

zu (c) Wir müssen überprüfen, dass R ein Integritätsbereich und jedes Ideal in R ein Hauptideal ist.

Ersteres ist der Fall, weil R nach Teil (a) Teilring eines Körpers, nämlich K(x), ist. Für den Nachweis

der zweiten Aussage sei I ein Ideal in R. Nach Teil (b) ist I ∩ K[x] ein Ideal in K[x]. Da es sich bei

K[x] (als Polynomring über einem Körper) um einen Hauptidealring handelt, existiert ein f ∈ K[x] mit

I ∩K[x] = fK[x]. (Wir verwenden die Notation fK[x] an Stelle der üblichen Schreibweise (f) für das

von f erzeugte Ideal, um deutlich zu machen, dass hier das Erzeugnis von f im Ring K[x] gemeint ist.)

Wir zeigen nun, dass auch I ein Hauptideal ist, indem wir die Gleichung

I = fR überprüfen.

”
⊇“ Es gilt f ∈ K[x]∩I, damit insbesondere f ∈ I. Weil I ein Ideal in R ist, folgt daraus fR ⊆ I.

”
⊆“

Sei u ∈ I vorgegeben. Dann liegt u insbesondere in R, es gibt also a, b ∈ K[x] mit u = a
b , b(0K) 6= 0K und

ggT(a, b) = 1K . Das Element bu = a ist dann in K[x] ∩ I enthalten. Wegen K[x] ∩ I = fK[x] existiert

ein r ∈ K[x] mit bu = a = rf . Sei d ∈ K[x] ein größter gemeinsamer Teiler von b und r. Dann gibt es

teilerfremde Elemente b1, r1 ∈ K[x] mit b = db1 und r = dr1, und es folgt db1u = dr1f . Weil K[x] ein

Integritätsbereich ist, dann die Kürzungsregel angewendet werden, und wir erhalten b1u = r1f . Es folgt

u = f r1b1 , wegen r1
b1
∈ R also u ∈ fR.



Aufgabe H22T2A3

(a) Es ist 337 = 2 ·3 ·5 ·11+7 = 13 ·17+22 ·29. Erklären Sie, dass daraus folgt, dass 337 eine Primzahl

ist.

(b) Sei p eine Primzahl und n ≥ 1. Zeigen Sie, dass die Gleichung xn = 1̄ in Fp genau ggT(n, p − 1)

verschiedene Lösungen besitzt.

(c) Ermitteln Sie alle positiven ganzen Zahlen n, für die die Gleichung xn = 1 im Ring Z/2022Z genau

n Lösungen hat.

Lösung:

zu (a) Wäre 337 keine Primzahl, dann gäbe es einen Primteiler p von 337 mit p ≤
√

337. Wegen
√

337 < 19 ist 17 die größte Primzahl ≤
√

337. Es genügt deshalb zu zeigen, dass 337 keinen Primteiler

≤ 17 besitzt, mit anderen Worten, die Zahlen 2, 3, 5, 7, 11, 13 und 17 müssen als Teiler von 337

ausgeschlossen werden. Wäre eine der Zahlen 2, 3, 5 oder 11 ein Teiler von 337, dann müsste diese Zahl

auf Grund der Gleichung 337 = 2 · 3 · 5 · 11 + 7 auch ein Teiler von 7 sein, was aber unmöglich ist, da

es sich um eine von 7 verschiedene Primzahl handelt. Ebenso zeigt die Gleichung, dass 7 kein Teiler von

337 ist. Denn andernfalls wäre 7 auch ein Teiler von 2 · 3 · 5 · 11, was nicht der Fall ist, denn die einzigen

Primteiler dieses Produkts sind 2, 3, 5 und 11. Wären 13 oder 17 Teiler von 337, dann müsste 13 oder

17 auf Grund der Gleichung 337 = 13 · 17 + 22 · 29 auch Teiler von 22 · 29 sein, was ebenfalls nicht erfüllt

ist, denn die einzigen Primteiler dieser Zahl sind 2 und 29. Insgesamt wird 337 also von keiner Primzahl

p ≤ 17 geteilt.

zu (b) Wegen 0̄n = 0̄ 6= 1̄ ist jede Lösung von xn = 1̄ in Fp auch in F×p enthalten. Die Ordnung jedes

Elements α ∈ F×p ist auf jeden Fall ein Teiler von |F×p | = p− 1. Darüber hinaus gilt die Äquivalenz

αn = 1̄ ⇔ ord(α) | n ⇔ ord(α) | n ∧ ord(α) | (p− 1) ⇔ ord(α) | ggT(n, p− 1) = 1

⇔ αggT(n,p−1) = 1̄.

Allgemein gilt: Ist G eine zyklische Gruppe der Ordnung m, g ∈ G ein erzeugendes Element und d ein

Teiler von m, dann ist 〈gd〉 die eindeutig bestimmte Untergruppe von G mit Ordnung m
d , und jedes

Element h mit hm/d = eG ist in dieser Untergruppe enthalten. Daraus folgt, dass es in G genau m
d

Elemente h gibt, die die Gleichung hm/d = eG erfüllen. Wenden wir dies auf G = F×p , m = p − 1 und

d = p−1
ggT(n,p−1) an, so kommen wir zu dem Ergebnis, dass in F×p genau ggT(n, p − 1) Elemente α mit

αggT(n,p−1) = 1̄ gibt, auf Grund der Äquivalenz also ebenso viele Elemente α mit αn = 1̄.

zu (c) Die Primfaktorzerlegung von 2022 ist gegeben durch 2 · 3 · 337. Auf Grund des Chinesischen

Restsatzes existiert also ein Isomorphismus

φ : Z/2022Z −→ Z/2Z×Z/3Z×Z/337Z

von Ringen. Seien a ∈ Z/2022Z und (b, c, d) = φ(a). Dann gilt für jedes n ∈ N auf Grund der Bijektivität

von φ die Äquivalenz

an = 1̄ ⇔ φ(an) = φ(1̄) ⇔ φ(a)n = (1̄, 1̄, 1̄) ⇔ (bn, cn, dn) = (1̄, 1̄, 1̄)

⇔ bn = 1̄ ∧ cn = 1̄ ∧ dn = 1̄.



Definieren wir für jedes m ∈ N die Menge Lm = {a ∈ Z/mZ | an = 1̄}, dann ist durch φ also eine

Bijektion zwischen L2022 und L2 × L3 × L337 gegeben. Nach Teil (b) gilt |Lp| = ggT(n, p − 1) für jede

Primzahl p. Insgesamt erhalten wir also

|L2022| = |L2 × L3 × L337| = |L2| · |L3| · |L337| = ggT(n, 1) · ggT(n, 2) · ggT(n, 336)

= ggT(n, 2) · ggT(n, 336).

Gesucht werden also alle n ∈ N mit der Eigenschaft n = ggT(n, 2) ·ggT(n, 336). Die Primfaktorzerlegung

von 336 ist 24 · 3 · 7. Weil ggT(n, 2) ein Teiler von 2 und ggT(n, 2) ein Teiler von 336 ist, kann n =

ggT(n, 2) · ggT(n, 336) also nur dann erfüllt sein, wenn n ein Teiler von 25 · 3 · 7 ist, also die Form

n = 2a · 3b · 7c mit 0 ≤ a ≤ 5 und b, c ∈ {0, 1} hat. Weiter gilt die Äquivalenz

ggT(n, 2) · ggT(n, 336) = n ⇔ 2min{a,1} · 2min{a,4} · 3min{b,1} · 7min{c,1} = 2a · 3b · 7c

⇔ 2min{a,1}+min{a,4} · 3min{b,1} · 7min{c,1} = 2a · 3b · 7c

⇔ min{a, 1}+ min{a, 4} = a ∧ min{b, 1} = b ∧ c = min{c, 1}
b,c∈{0,1}⇔ min{a, 1}+ min{a, 4} = a

a∈{0,1,...,5}⇔ a ∈ {0, 5}

⇔ n ∈ {2a · 3b · 7c | a ∈ {0, 5}, b, c ∈ {0, 1}} ⇔ n ∈ {1, 3, 7, 21, 32, 96, 224, 672}.

Es gibt also genau acht natürliche Zahlen n mit der Eigenschaft, dass die Gleichung xn = 1̄ genau n

Lösungen in Z/2022Z besitzt.



Aufgabe H22T2A4

Sei f = x6 + 3 ∈ Q[x], sei α ∈ C eine Nullstelle von f , und sei K = Q(α) ⊆ C. Zeigen Sie:

(a) Das Polynom f ist über Q irreduzibel.

(b) Die Zahl ζ = 1
2 (1 + α3) ∈ K ist eine primitive sechste Einheitswurzel.

(c) Der Körper K ist eine Galois-Erweiterung von Q.

(d) Die Galois-Gruppe Gal(K|Q) ist nicht abelsch.

Lösung:

zu (a) Auf Grund des Eisenstein-Kriteriums, angewendet auf die Primzahl p = 3, ist f irreduzibel in

Z[x], und auf Grund des Gauß’schen Lemmas auch in Q[x].

zu (b) Zu zeigen ist, dass es sich bei ζ um ein Element der Ordnung 6 in der multiplikativen Gruppe

C× handelt. Dafür müssen wir überprüfen, dass ζ2 6= 1, ζ3 6= 1 und ζ6 = 1 gilt. Zunächst bemerken

wir, dass wegen f(α) = 0 die Gleichung α6 = −3 gilt. Da f normiert und über Q irreduzibel ist und

f(α) = 0 gilt, handelt es sich bei f um das Minimalpolynom von α über Q. Laut Vorlesung folgt daraus

[Q(α) : Q] = grad(f) = 6, und {1, α, ..., α5} ist eine 6-elementige Basis von Q(α) als Q-Vektorraum.

Dies bedeutet, dass zwei Elemente
∑5
j=0 bjα

j und
∑5
j=0 cjα

j mit bj , cj ∈ Q für 0 ≤ j ≤ 5 genau dann

übereinstimmen, wenn bj = cj für 0 ≤ j ≤ 5 gilt.

Die Rechnungen ζ2 = 1
4 (1 + α3)2 = 1

4 (1 + 2α3 + α6) = 1
4 (1 + 2α3 + (−3)) = − 1

2 + 1
2α

3 und ζ3 = ζ · ζ2 =
1
2 (1 + α3) · 1

2 (−1 + α3) = 1
4 (−1− α3 + α3 + α6) = 1

4 (−1− 3) = −1 zeigen also, dass ζ2 und ζ3 ungleich

1 sind. Andererseits gilt ζ6 = (ζ3)2 = (−1)2 = 1.

zu (c) Die Erweiterung K|Q ist algebraisch, weil das Element α als Nullstelle des Polynoms 0 6= f ∈
Q[x] algebraisch über Q ist und weil K der vom algebraischen Element α erzeugte Zwischenkörper der

Erweiterung C|Q ist. Wegen char(K|Q) = 0 ist diese algebraische Erweiterung auch separabel. Nun zeigen

wir noch, dass K|Q normal ist, indem wir nachweisen, dass K in C mit dem Zerfällungskörper von f über

Q übereinstimmt. Wegen f(0) 6= 0 ist α 6= 0. Weil ζ nach Teil (b) eine primitive sechste Einheitswurzel ist,

sind die Elemente ζj für 0 ≤ j ≤ 5 paarweise verschieden, und wegen α 6= 0 gilt dasselbe für die Elemente

ζjα mit 0 ≤ j ≤ 5. Für diese j gilt jeweils f(ζjα) = (ζjα)6 + 3 = (ζ6)jα6 + 3 = α6 + 3 = f(α) = 0, die

Elemente sind also Nullstellen von f . Wegen grad(f) = 6 kann es keine weiteren Nullstellen geben.

Dies zeigt, dass durch N = {ζjα | 0 ≤ j ≤ 5} die Menge aller komplexen Nullstellen von f gegeben und

Q(N) somit der Zerfällungskörper von f über Q ist. Wegen α ∈ N gilt K = Q(α) ⊆ Q(N). Andererseits

liegen die Elemente ζjα für 0 ≤ j ≤ 5 wegen ζ = 1
2 (1 + α3) alle in K = Q(α). Aus N ⊆ K folgt

Q(N) ⊆ K, insgesamt also Q(N) = K.

zu (d) 1. Möglichkeit: Angabe einer nicht-normalen Teilerweiterung

Wäre die Gruppe Gal(K|Q) abelsch, dann wäre jede Untergruppe von Gal(K|Q) ein Normalteiler. Nach

den Sätzen der Galoistheorie würde daraus folgen, dass jeder Zwischenkörper M von K|Q normal über

Q ist.

Wir führen die Annahme zu einem Widerspruch, indem wir zeigen, dass es sich bei M = Q( 3
√

3) um

einen Zwischenkörper von K|Q handelt, der nicht normal über Q ist. Wegen α6 = −3 gilt (α2)3 = −3,

das Element α2 ist also eine Nullstelle des Polynoms g = x3 + 3 ∈ Q[x]. Weil ζ eine primitive sechste

Einheitswurzel ist, ist ζ2 eine primitive dritte Einheitswurzel. Die Elemente 1, ζ2, ζ4 sind somit paarweise



verschieden, und wegen α2 6= 0 gilt dasselbe für die Elemente α2, ζ2α2 und ζ4α2. Diese drei Elemente

sind die komplexen Nullstellen des Polynoms g, denn es gilt g(ζ2jα2) = (ζ2j)3(α2)3 + 3 = (ζ6)jα6 + 3 =

1j · (−3) + 3 = 0 für j = 0, 1, 2. Da offenbar − 3
√

3 ∈ R eine Nullstelle von g ist, stimmt diese mit einem

der drei Elemente α2, ζ2α2 und ζ4α2 überein.

Es gilt also 3
√

3 ∈ K, und somit ist M = Q( 3
√

3) tatsächlich ein Zwischenkörper von K|Q. Auf Grund

des Eisenstein-Kriteriums (angwendet auf die Primzahl 3) und des Gauß’schen Lemmas ist das Polynom

g irreduzibel über g, und es besitzt in M die Nullstelle 3
√

3. Wäre M |Q eine normale Erweiterung, dann

müsste g über M in Linearfaktoren zerfallen und somit auch die beiden anderen komplexen Nullstellen

in M liegen. Aber dies ist nicht der Fall. Denn wegen 3
√

3 ∈ R ist M ein Teilkörper von R. Die beiden von
3
√

3 verschiedenen Nullstellen des Polynoms g sind aber ζ2 3
√

3 und ζ4 3
√

3, und diese sind nicht reell, weil

die beiden primitiven dritten Einheitswurzeln, also die Elemente der Menge {ζ2, ζ4} = {− 1
2 ±
√

12
√
−3},

nicht in R liegen. Also ist M |Q keine normale Erweiterung.

2. Möglichkeit: direkter Nachweis der Nicht-Kommutativität

Nach Teil (a) ist f irreduzibel über Q, und wie in Teil (c) festgestellt wurde, sind unter anderen ±α und

ζ2α Nullstellen von f in K. Auf Grund des Fortsetzungssatzes gibt es somit Elemente σ, τ ∈ Gal(K|Q)

mit σ(α) = −α und τ(α) = ζα. In Teil (b) hatten wir nachgerechnet, dass ζ2 = − 1
2 + 1

2α
3 und ζ3 = −1

gilt. Wegen ζ = 1
2 (1 + α3) erhalten wir damit

σ(ζ) = σ( 1
2 (1 + α3)) = 1

2 (1 + σ(α)3) = 1
2 (1 + (−α)3) = 1

2 (1− α3) = −ζ2

und ebenso

τ(ζ) = τ( 1
2 (1 + α3)) = 1

2 (1 + τ(α)3) = 1
2 (1 + (ζα)3) = 1

2 (1− α3) = −ζ2.

Damit erhalten wir einerseits

(σ ◦ τ)(α) = σ(τ(α)) = σ(ζα) = σ(ζ)σ(α) = (−ζ2)(−α) = ζ2α

andererseits aber

(τ ◦ σ)(α) = τ(σ(α)) = τ(−α) = −τ(α) = −ζα = ζ4α.

Weil ζ nach Teil (b) eine primitive sechste Einheitswurzel ist, gilt ζ2 6= ζ4 und somit auch (σ ◦ τ)(α) 6=
(τ ◦ σ)(α) und σ ◦ τ 6= τ ◦ σ. Dies zeigt, dass die Gruppe Gal(K|Q) tatsächlich nicht kommutativ ist.



Aufgabe H22T2A5

Sei G eine Gruppe der Ordnung 2022.

(a) Nennen Sie vier paarweise nicht isomorphe Beispiele von Gruppen der Ordnung 2022 und begründen

Sie, dass die Gruppen paarweise nicht isomorph sind.

(b) Zeigen Sie, dass G auflösbar ist.

(c) Beweisen Sie, dass G einen Normalteiler vom Index 2 besitzt.

Lösung:

zu (a) Sei G1 = Z/2022Z, G2 = D1011 (die Diedergruppe mit 2 · 1011 = 2022 Elementen), G3 =

S3 × Z/337Z und G4 = Z/3Z × D337. Weil S3, D337 und D1011 nicht-abelsche Gruppen sind, gilt

dasselbe für G2, G3 und G4. Weil die Gruppe G1 abelsch ist, ist sie zu keiner der drei anderen Gruppen

isomorph. Die Gruppe D1011 besitzt genau 1011 Elemente der Ordnung 2. (Dies sind die Spiegelungen

in der Symmetriegruppe des regelmäßigen 1011-Ecks. Es gibt keine Drehung von Ordnung 2, weil 1011

ungerade ist.)

Wir zeigen nun, dass G3 genau drei und G4 genau 337 Elemente der Ordnung 2 besitzt. Weil die An-

zahlen der Elemente der Ordnung 2 in den drei Gruppen G2, G3, G4 nicht übereinstimmen, sind auch

diese paarweise nicht-isomorph. Für jedes Element (σ, a) ∈ G3 (mit σ ∈ S3 und a ∈ Z/337Z) gilt die

Äquivalenz

ord(σ, a) = 2 ⇔ (σ, a)2 = eG3
∧ (σ, a) 6= eG3

⇔ (σ2, 2̄a) = (id, 0̄) ∧ (σ, a) 6= (id, 0̄)

⇔ (σ2, a) = (id, 0̄) ∧ (σ, a) 6= (id, 0̄) ⇔ a = 0̄ ∧ σ ∈ {(1 2), (2 3), (1 3)}

⇔ (σ, a) ∈ {((1 2), 0̄), ((2 3), 0̄), ((1 3), 0̄)}.

Dabei wurde im dritten Schritt verwendet, dass 2̄ wegen ggT(2, 337) = 1 in Z/337Z invertierbar ist und

somit 2̄a = 0̄ äquivalent zu a = 0̄ ist. Im vierten Schritt haben wir verwendet, dass die Elemente σ ∈ S3

mit σ2 = id und σ 6= id durch (1 2), (2 3), (1 3) gegeben sind. Insgesamt zeigt die Rechnung, dass es in

G3 tatsächlich genau drei Elemente der Ordnung 2 gibt.

Für alle (a, σ) ∈ G4 mit a ∈ Z/3Z und σ ∈ D337 gilt die Äquivalenz

ord(a, σ) = 2 ⇔ (a, σ)2 = (0̄, id) ∧ (a, σ) = (0̄, id) ⇔ (2̄a, σ2) = (0̄, id) ∧ (a, σ) = (0̄, id)

⇔ (a, σ2) = (0̄, id) ∧ (a, σ) = (0̄, id) ⇔ a = 0̄ ∧ σ2 = id ∧ σ 6= id ⇔ a = 0̄ ∧ ord(σ) = 2.

In D337 gibt es genau 337 Elemente der Ordnung 2. Also zeigt die Rechnung, dass es ebenso viele

Elemente der Ordnung 2 in G4 gibt.

zu (b) Sei G eine Gruppe der Ordnung 2022 = 2 · 3 · 337. (Die Zahl 337 ist eine Primzahl.) Für

jede Primzahl p sei νp die Anzahl der p-Sylowgruppen von G. Auf Grund des Dritten Sylowsatzes gilt

ν337 | 2 · 3, also ν337 ∈ {1, 2, 3, 6}. Außerdem gilt ν337 ≡ 1 mod 337. Wegen 2, 3, 6 6≡ 1 mod 337 folgt

ν337 = 1. Sei N die einzige 337-Sylowgruppe von G. Wegen ν337 = 1 gilt N � G. Laut Vorlesung ist G

auflösbar, wenn N und G/N beide auflösbar sind. Die Gruppe N ist auf Grund der Primzahlordnung

|N | = 337 zyklisch, damit auch abelsch und auflösbar. Es bleibt zu zeigen, dass G/N eine auflösbare

Gruppe ist.



Auf Grund des Satzes von Lagrange gilt |G/N | = (G : N) = |G|
|N | = 2022

337 = 6. Sei P̄ ein beliebige 3-

Sylowgruppe von Ḡ = G/N . Dann gilt |P̄ | = 3 und (Ḡ : P̄ ) = 6
3 = 2. Als Untergruppe vom Index 2 ist P̄

ein Normalteiler von Ḡ. Als Gruppen der Primzahlordnungen |P̄ | = 3 und |Ḡ/P̄ | = (Ḡ : P̄ ) = 2 sind P̄

und Ḡ/P̄ beide zyklisch und damit auch auflösbar. Dies zeigt, dass auch Ḡ eine auflösbare Gruppe ist.

zu (c) In Teil (b) wurde gezeigt, dass G einen Normalteiler N von Ordnung 337 besitzt. Sei πN :

G → G/N der kanonische Epimorphismus. Aus der Korrespondenzsatz für Gruppen folgt: Ist Ū eine

Untergruppe von G/N vom Index d ∈ N, dann ist U = π−1
N (Ū) eine Untergruppe vom Index d von G

mit U ⊇ N . In Teil (b) haben wir auch gezeigt, dass in G/N eine Untergruppe P̄ vom Index 2 existiert.

Also ist P = π−1
N (P̄ ) eine Untergruppe vom Index 2 von G. Wegen (G : P ) = 2 handelt es sich darüber

hinaus um einen Normalteiler.



Aufgabe H22T3A1

Gegeben sei eine endliche Körpererweiterung L|K. Weiterhin sei TrL|K : L → K die Abbildung, die

jeden Element a ∈ L die Spur der Multiplikation ma : L→ L, b 7→ ab zuordnet. Dabei ist die Spur einer

K-linearen Abbildung ϕ : L→ L definiert als die Summe der Hauptdiagonalelemente einer Darstellungs-

matrix.

(a) Zeigen Sie, dass TrL|K eine K-lineare Abbildung ist.

(b) Nun sei {a1, ..., an} eine K-Basis von L. Beweisen Sie, dass sich die Diskriminante

∆L|K(a1, ..., an) = det(Tr(αiαj)ij) um einen Faktor aus (K×)2 ändert, wenn man die Basis wech-

selt.

(c) Seien p, q ∈ Q so gewählt, dass f = x2 +px+ q ein irreduzibles Polynom ist. Finden Sie ∆L|K(1, α)

für K = Q und L = K[x]/(f), wobei α die Restklasse von x in L bezeichne.

Lösung:

zu (a) Sei n = [L : K] = dimK L und B = (α1, ..., αn) eine geordnete Basis von L als K-Vektorraum.

Für jedes φ ∈ EndK(L) sei MB(φ) die Darstellungsmatrix von φ bezüglich B. Für jede Matrix A =

(aij) ∈ Mn,K sei Tr(A) =
∑n
i=1 aii die Spur. Nach Definition gilt TrL|K(a) = Tr(MM(ma)) für alle

a ∈ L. Für den Nachweis, dass TrL|K : L→ K eine lineare Abbildung ist, genügt es zu überprüfen

(1) Die Abbildung L→ EndK(L), a 7→ ma ist linear.

(2) Die Abbildung EndK(L)→Mn,K , φ 7→ MB(φ) ist linear.

(3) Die Abbildung Tr :Mn,K → K, A 7→ Tr(A) ist linear.

zu (1) Seien a, a′ ∈ L und λ ∈ K vorgegeben. Zu überprüfen sind die beiden Gleichungen ma+a′ =

ma +ma′ und mλa = λma in EndK(L). Sei dazu b ein beliebiges Element aus L. Es gilt

ma+a′(b) = (a+ a′)b = ab+ a′b = ma(b) +ma′(b) = (ma +ma′)(b)

und ebenso mλa(b) = (λa)b = λ(ab) = λma(b) = (λma)(b). Damit sind die beiden Gleichungen in

EndK(L) verifziert.

zu (2) Laut Vorlesung gilt: Sind V,W zwei K-Vektorräume der endlichen Dimensionen n = dimV

und m = dimW , ist A eine geordnete Basis von V und B eine geordnete Basis von W , dann ist durch

HomK(V,W ) → Mm×n,K , φ 7→ MAB (φ) ein Isomorphismus von K-Vektorräumen definiert, insbeson-

dere eine linearen Abbildung. Anwendung dieser Aussage auf V = W = L und die Basis B liefert die

angegebene Behauptung.

zu (3) Seien A = (aij) und B = (bij) Elemente des K-Vektorraums Mn,K , und sei λ ∈ K. Dann gilt

Tr(A+B) =

n∑
i=1

(aii + bii) =

n∑
i=1

aii +

n∑
i=1

bii = Tr(A) + Tr(B)

und ebenso Tr(λA) =
∑n
i=1(λaii) = λ

∑n
i=1 aii = λTr(A).



zu (b) Diese Aussage beweisen wir durch Anwendung des Satzes vom Basiswechsel für Bilinearformen.

Zunächst überprüfen wir, dass durch b : L×L→ K, (α, β) 7→ TrL|K(αβ) eine Bilinearform auf L definiert

ist. Seien α, α′, β, β′ ∈ L und λ ∈ K vorgegeben. Dann gilt

b(α+ α′, β) = TrL|K((α+ α′)β) = TrL|K(αβ + α′β) = TrL|K(αβ) + TrL|K(α′β) = b(α, β) + b(α′, β)

b(α, β + β′) = TrL|K(α(β + β′)) = TrL|K(αβ + αβ′) = TrL|K(αβ′) + TrL|K(αβ′) = b(α, β) + b(α, β′)

b(λα, β) = TrL|K(λαβ) = λTrL|K(αβ) = λb(α, β)

b(α, λβ) = TrL|K(λαβ) = λTrL|K(αβ) = λb(α, β).

Also ist durch b tatsächlich eine Bilinearform auf dem K-Vektorraum L definiert. Seien A = (α1, ..., αn)

und A′ = (α′1, ..., α
′
n) zwei geordnete Basen von L. Dann sind die Darstellungsmatrizen von b bezüglich

A und A′ gegeben durch

MA(b) = (TrL|K(αiαj))ij und MA′(b) = (TrL|K(α′iα
′
j))ij .

Nach dem Satz vom Basiswechsel für Bilinearformen gilt

MA′(b) = tT A
′

A · MA(b) · T A
′

A

wobei T A′A die Matrix des Basiswechsels von A′ nach A bezeichnet. Sei c = det T A′A ∈ K. Weil die Matrix

T A′A invertierbar ist, liegt c ∈ K×. Die zu beweisende Aussage aus der Aufgabenstellung ergibt sich nun

durch die Rechnung

∆L|K(A′) = det
(
TrL|K(α′iα

′
j)
)

= detMA′(b) = det
(

tT A
′

A MA′(b)T A
′

A

)
= (det T A

′

A )2 · detMA(b) = c2 det
(
TrL|K(αiαj)

)
= c2∆L|K(A).

zu (c) Wir berechnen die Darstellungsmatrizen Aβ von mβ bezüglich der Basis B = (1, α) des K-

Vektorraums L, für β ∈ {1, α, α2}. Zur Vorbereitung berechnen wir

α2 = (x+ (f))2 = x2 + (f) = x2 − f + (f) = x2 − (x2 + px+ q) + (f)

= −px− q + (f) = (−p+ (f))(x+ (f))− (q + (f)) = −pα− q

α3 = α · α2 = α(−pα− q) = −pα2 − qα = −p(−pα− q)− qα = (p2 − q)α+ pq

Nun gilt m1(1) = 1 · 1 = 1 · 1 + 0 · α, m1(α) = α = 0 · 1 + 1 · α. Dies liefert die Darstellungsmatrix

A1 =

(
1 0

0 1

)

und TrL|Q(1) = Tr(A1) = 1 + 1 = 2. Die Gleichungen mα(1) = α = 0 · 1 + 1 · α und mα(α) = α2 =

(−q) · 1 + (−p) · α liefern die Darstellungsmatrix

Aα =

(
0 −q
1 −p

)

und TrL|Q(α) = Tr(Aα) = 0 + (−p) = −p. Die Gleichungen mα2(1) = α2 = (−q) · 1 + (−p) · α und

mα2(α) = α3 = (pq) · 1 + (p2 − q) · α liefern schließlich die Darstellungsmatrix

Aα2 =

(
−q pq

−p p2 − q

)

und TrL|Q(α2) = Tr(Aα2) = (−q) + (p2 − q) = p2 − 2q.



Für die Diskriminante erhalten wir nun

∆L|Q(1, α) = det

(
TrL|Q(1) TrL|Q(α)

TrL|Q(α) TrL|Q(α2)

)
= det

(
2 −p
−p p2 − 2q

)

= 2(p2 − 2q)− (−p)2 = p2 − 4q.



Aufgabe H22T3A2

(a) Geben Sie eine vollständige Definition des kleinsten gemeinsamen Vielfachen zweier ganzer

Zahlen an.

(b) Beweisen Sie mit Hilfe Ihrer Definition aus (a), dass für a, b, c, d ∈ Z die folgende Formel gilt:

kgV(kgV(a, b), kgV(c, d)) , kgV(kgV(a, c), kgV(b, d)).

Lösung:

zu (a) Seien a, b ∈ Z. Dann ist kgV(a, b) die eindeutig bestimmte Zahl d ∈ N0 mit den folgenden beiden

Eigenschaften.

(i) a | d und b | d

(ii) Für alle d′ ∈ N0 folgt aus a | d′ und b | d′ jeweils d | d′.

Damit ist die Zahl eindeutig bestimmt. Erfüllen nämlich d und d′ aus N0 beide die Bedingungen (i) und

(ii), dann gilt d | d′ und d′ | d, und wegen d, d′ ∈ N0 folgt daraus d = d′.

zu (b) Seien a, b, c, d ∈ Z vorgegeben, und sei r = kgV(kgV(a, b), kgV(c, d)). Wir zeigen, dass r die

definierenden Bedingungen (i) und (ii) des kgV von kgV(a, c) und kgV(b, d) erfüllt. Es gilt kgV(a, b) | r
und kgV(c, d) | r. Daraus wiederum folgt a | r, b | r, c | r und d | r. Aus a | r und c | r folgt kgV(a, c) | r,
und aus b | r und d | r folgt ebenso kgV(b, d) | r. Damit ist Bedingung (i) verifiziert.

Sei nun s ∈ N0 mit kgV(a, c) | s und kgV(b, d) | s. Dann folgt a | s, c | s, b | s und d | s. Aus a | s und b | s
folgt kgV(a, b) | s. Aus c | s und d | s folgt kgV(c, d) | s. Aus kgV(a, b) | s und kgV(c, d) | s wiederum

folgt r | s, auf Grund von Bedingung (ii) für das kleinste gemeinsame Vielfache von kgV(a, b) und

kgV(c, d). Damit ist Bedingung (ii) für das kleinste gemeinsame Vielfache von kgV(a, c) und kgV(b, d)

nachgewiesen.

Anmerkung:

Für a, b ∈ Z gilt kgV(a, b) = 0 genau dann, wenn a = 0 oder b = 0 ist. Ist nämlich a = 0 und setzen

wir und setzen wir d = kgV(a, b), so gilt a | d, also d = ka für ein k ∈ Z. Es folgt d = k · 0 = 0. Ebenso

folgt aus b = 0, dass kgV(a, b) = 0 ist. Sind andererseits a und b beide ungleich null, dann ist |ab| ∈ N
ein gemeinsames Vielfaches von a und b. Also muss d = kgV(a, b) ein Teiler von |ab| sein. Dies ist nur

möglich, wenn d ungleich null ist, denn 0 ist kein Teiler einer ganzen Zahl ungleich 0.

Weder in Teil (a) noch in Teil (b) ist es notwendig, die Situation, dass eine der Zahlen a, b, c, d gleich 0

ist, als Sonderfall zu betrachten.



Aufgabe H22T3A3

Seien p, q, r Primzahlen mit p < q < r, und sei G eine Gruppe der Ordnung pqr. Für i ∈ {p, q, r}
bezeichne νi die Anzahl der verschiedenen i-Sylowgruppen von G. Beweisen Sie:

(a) Besitzt G keine normale Sylowgruppe, so gilt νp ≥ q und νq ≥ r und νr = pq.

(b) Die Gruppe G besitzt eine normale Sylowgruppe.

(c) Eine Gruppe der Ordnung 2022 ist nicht einfach.

Lösung:

zu (a) Nach dem Dritte Sylowsatz gilt νp | (qr), also νp ∈ {1, q, r, qr}. Da G keine normale p-Sylowgruppe

besitzt, ist νp = 1 ausgeschlossen. Wegen r > q und qr > q folgt aus νp ∈ {q, r, qr} direkt νp ≥ q.

Ebenso gilt νq | (pr) auf Grund des Dritten Sylowsatzes, also νq ∈ {1, p, r, pr}. Da es keine normale

q-Sylowgruppe in G gibt, gilt νq 6= 1. Nehmen wir an, es ist νq = p. Wegen νq ≡ 1 mod q folgt dann

p ≡ 1 mod q, also q | (p − 1) und insbesondere q < p. Aber dies steht zur Voraussetzung q > p im

Widerspruch. Also gilt νq ∈ {r, pr}, und wegen pr > r folgt νq ≥ r.

Eine erneute Anwendung des Dritten Sylowsatzes liefert νr | (pq), also νr ∈ {1, p, q, pq}. Da G keine

normale r-Sylowgruppe besitzt, gilt νr 6= 1. Aus νr = p oder νr = q würde p ≡ 1 mod r oder q ≡ 1 mod r

folgen, also auch r|(p− 1) oder r|(q− 1) bzw. r < p oder r < q, im Widerspruch zu den Voraussetzungen

r > q > p. Also ist νr = pq die einzige verbleibende Möglichkeit.

zu (b) Nehmen wir an, G besitzt keine normale Sylowgruppe. Nach Teil (a) gilt dann νp ≥ q, νq ≥ r

und νr = pq. Wegen |G| = p1 ·q1 ·r1 sind die p- bzw. q- bzw. r-Sylowgruppen genau die Untergruppen der

Ordnung p bzw. q bzw. r von G. Jedes Element g ∈ G der Ordnung r liegt genau in einer r-Sylowgruppe

von G, nämlich 〈g〉. Umgekehrt ist jede r-Sylowgruppe als Untergruppe der Primzahlordnung r zyklisch

und enthält somit genau ϕ(r) = r−1 Elemente der Ordnung r−1. Insgesamt zeigt dies, dass die Anzahl

der Elemente der Ordnung r in G genau (r − 1)-mal so groß ist wie die Anzahl νr der r-Sylowgruppen.

Es gibt also genau pq(r − 1) Elemente der Ordnung r in G.

Genauso folgt aus νp ≥ q, dass es in G mindestens (p − 1)q Elemente der Ordnung p, und aus νq ≥ r,

dass es in G mindestens (q − 1)r Elemente der Ordnung q gibt. Insgesamt enthält G also mindestens

pq(r − 1) + (p− 1)q + (q − 1)r Elemente ungleich dem Neutralelement. Wegen |G| = pqr folgt

pq(r − 1) + (p− 1)q + (q − 1)r + 1 ≤ pqr ⇔ −pq + (p− 1)q + (q − 1)r + 1 ≤ 0 ⇔

−q + (q − 1)r + 1 ≤ 0 ⇔ qr + 1 ≤ q + r ⇔ q(r − 1) + 1 ≤ r.

Wegen q ≥ 3 folgt daraus 3(r − 1) + 1 ≤ r, was zu 3r + 1 ≤ r + 3 und r ≤ 1 umgeformt werden kann.

Aber dies steht im Widerspruch dazu, dass r eine Primzahl ist. Dies zeigt, dass es in G eine normale

Sylowgruppe geben muss.

zu (c) Sei G eine Gruppe der Ordnung 2022 = 2·3·337. Die Zahl 337 ist eine Primzahl, also ist |G| = pqr

mit den Primzahlen p = 2 < q = 3 < r = 337 erfüllt. Nach Teil (b) besitzt G also eine normale p-, q-

oder r-Sylowgruppe. Wegen 1 < p, q, r < |G| handelt es sich dabei um einen nichttrivialen Normalteiler

von G. Dies zeigt, dass G keine einfache Gruppe ist.



Aufgabe H22T3A4

Sei K = Z[x]/(x5 + 2, x4 + x3 + x2 + x+ 1).

(a) Beweisen Sie, dass 3 ∈ (x5 + 2, x4 + x3 + x2 + x+ 1) gilt.

(b) Zeigen Sie, dass K ein Körper ist.

(c) Beweisen Sie, dass K eine Galois-Erweiterung seines Primkörpers F3 ist, und bestimmen Sie die

Galoisgruppe von K|F3.

(d) Sei α die Restklasse von x in K. Zeigen Sie, dass {1, α, α2, α3} eine F3-Basis von K ist, und

bestimmen Sie die Darstellungsmatrizen der Elemente der Galoisgruppe Gal(K|F3) bezüglich dieser

Basis.

Lösung:

zu (a) Setzen wir I = (f, g) mit f = x5 +2 und g = x4 +x3 +x2 +x+1, dann ist auch (x−1)g = x5−1

in I enthalten, und damit auch 3 = (x5 + 2)− (x5 − 1) = f + (1− x)g.

zu (b) Wir beweisen zunächst mit Hilfe des Homomorphiesatzes für Ringe, dass K = Z[x]/I isomorph

zu F3[x]/(f̄) ist, wobei f̄ das Bild von f in F3[x] bezeichnet. Auf Grund der universellen Eigenschaft

gibt es einen eindeutig bestimmten Ringhomomorphismus π1 : Z[x]→ F3[x], h 7→ h̄ der den kanonischen

Epimorphismus Z → F3 auf Z[x] fortsetzt und dabei x ∈ Z[x] auf x ∈ F3[x] abbildet. Dabei entsteht

das Polynom h̄ ∈ F3[x] jeweils durch Anwendung des kanonischen Epimorphismus auf die Koeffizienten

von h. Diese Abbildung ist surjektiv. Ist nämlich h̄ =
∑m
i=0 āix

i mit m ∈ N0 und ā0, ..., ām ∈ F3 und ist

ai ∈ Z jeweils ein Urbild von āi ∈ F3 für 0 ≤ i ≤ m, dann ist durch h =
∑n
i=0 aix

i ∈ Z[x] offenbar ein

Element mit π1(h) = h̄ gegeben.

Bezeichnen wir den kanonischen Epimorphismus F3[x] → F3[x]/(f̄) mit π2, dann ist durch π2 ◦ π1 ein

Ringhomomorphismus Z[x] → F3[x]/(f̄) gegeben. Als Komposition zweier surjektiver Abbildungen ist

dieser ebenfalls surjektiv. Außerdem gilt ker(π2 ◦ π1) = I, denn für alle h ∈ Z[x] gilt die Äquivalenz

h ∈ ker(π2 ◦ π1) ⇔ (π2 ◦ π1)(h) = 0F3[x]/(ḡ) ⇔ π2(h̄) = 0̄ + (ḡ) ⇔ h̄+ (ḡ) = 0̄ + (ḡ)

⇔ h̄ ∈ (ḡ) ⇔ ∃ ū ∈ F3[x] : h̄ = ū · ḡ ⇔ ∃u ∈ Z[x] : h ≡ ug mod (3)

⇔ ∃u, v ∈ Z[x] : h = ug + 3v ⇔ ∃u, v ∈ Z[x] : h = ug + v(f + (1− x)g)

⇔ ∃u, v ∈ Z[x] : h = vf + (u+ (1− x)v)g ⇔ ∃u′, v′ ∈ Z[x] : h = u′f + v′g

⇔ h ∈ (f, g) ⇔ h ∈ I.

(Im drittletzten Schritt erhält man die Richtung
”
⇒“ mit u′ = v, v′ = u + (1 − x)v, und die Richtung

”
⇐“ mit v = u′, u = v′ − (1 − x)u′.) Auf Grund des Homomorphiesatzes für Ringe existiert also ein

Isomorphismus φ̄ : K → F3[x]/(f̄), gegeben durch φ̄(h + I) = h̄ + (f̄) für alle h ∈ Z[x]. Auf Grund der

Isomorphie genügt es zu zeigen, dass F3[x]/(f̄) ein Körper ist. Als Polynomring über einem Körper ist

F3[x] ein Hauptidealring. In einem solchen Ring sind die von irreduziblen Elementen erzeugte Hauptideale

maximale Ideale. Ist f̄ also irreduzibel, dann ist (f̄) ein maximales Ideal in F3[x], und daraus wiederum

folgt, dass F3[x]/(f̄) ein Körper ist.



Für den Nachweis der Irreduzibilität stellen wir zunächst fest, dass f̄ ∈ F3[x] im Körper F3 keine

Nullstelle besitzt, denn es ist f(0̄) = 1̄ 6= 0̄, f(1̄) = 5̄ = 2̄ 6= 0̄ und f(2̄) = 16 + 8̄ + 4̄ + 2̄ + 1̄ = 31 = 1̄ 6= 0̄.

Wäre f̄ dennoch reduzibel, dann müsste f̄ Produkt zweier irreduzibler Polynome ḡ, h̄ ∈ F3[x] vom Grad

2 sein. Man kann durch direktes Nachrechnen überprüfen, dass keine Zerlegung von f der Form

x4 + x3 + x2 + x+ 1̄ = (x2 + ax+ b)(x2 + cx+ d)

mit a, b, c, d ∈ F3 existiert. Wir wählen hier aber einen anderen Weg: Sei α eine Nullstelle von ḡ in einem

algebraischen Abschluss Falg
3 von F3. Weil ḡ das Minimalpolynom von α über F3 ist, gilt [F3(α) : F3] =

grad(ḡ) = 2. Als zweidimensionaler F3-Vektorraum besteht F3(α) aus 32 = 9 Elementen, stimmt also mit

dem Zwischenkörper F9 von Falg
3 |F3 überein. Wegen f̄(0̄) 6= 0̄ und f̄ = ḡ · h̄ gilt auch ḡ(0̄) 6= 0̄. Daraus

folgt α ∈ F×9 . Wegen |F×9 | = 9 − 1 = 8 ist die Ordnung ord(α) von α in der multiplikativen Gruppe

F×9 ein Teiler von 8. Andererseits ist α als Nullstelle von f̄ auch eine Nullstelle von x5 − 1̄ = (x − 1̄)f̄ .

Es gilt also α5 = 1̄; wegen α 6= 1̄ folgt daraus ord(α) = 5. Weil aber 5 kein Teiler von 8 ist, hat unsere

Annahme, das Polynom f̄ sei reduzibel in F3[x], zu einem Widerspruch geführt.

zu (c) Wie wir bereits in Teil (b) festgestellt haben, ist K isomorph zu F3[x]/(f̄). Weil f̄ ein irreduzibles

Polynom vom Grad 4 ist, ist dieser Körper wiederum isomorph zu F81, dem eindeutig bestimmten

Zwischenkörper von Falg
3 |F3 mit 34 = 81 Elementen. Für jedes m ∈ N gilt [F3m : F3] = m, insbesondere

also [F81 : F3] = 4. Laut Vorlesung ist jede endliche Erweiterung E|F bestehend aus endlichen Körpern

E und F eine Galois-Erweiterung. Die Galoisgruppe G = Gal(E|F ) ist jeweils zyklisch von Ordnung

[E : F ] und wird vom Frobenius-Automorphismus ϕq : E → E, γ 7→ γq erzeugt, wobei q = |F | ist.

Insbesondere ist Gal(K|F3) = Gal(F81|F3) also die vierelementige Gruppe 〈ϕ3〉 = {idK , ϕ3, ϕ
2
3, ϕ

3
3}, mit

ϕ3 : K → K, γ 7→ γ3.

zu (d) Die Darstellungmatrix der Abbildung idV auf einem n-dimensionalen F3-Vektorraum V bezüglich

einer beliebigen Basis ist immer die Einheitsmatrix En ∈Mn,F3
. Somit ist E4 die Darstellung von idK .

Für die Darstellungsmatrix von ϕ3 bemerken wir zunächst, dass α = x+(f̄) laut Vorlesung eine Nullstelle

von f̄ ist und somit α4 = −1̄−α−α2−α3 = 2̄+2̄α+2̄α2 +2̄α3 gilt. Wie wir bereits in Teil (b) festgestellt

haben, ist α5 = 1̄ und somit α6 = α. Damit erhalten wir ϕ3(1̄) = 1̄, ϕ3(α) = α3 = 0̄+0̄ ·α+0̄ ·α2 +1̄ ·α3,

ϕ3(α2) = ϕ3(α)2 = (α3)2 = α6 = α = 0̄ + 1̄ · α + 0̄ · α2 + 0̄ · α3 und ϕ3(α3) = ϕ3(α)3 = (α3)3 = α9 =

α5 · α4 = α4 = 2̄ + 2̄α + 2̄α2 + 2̄α3. Jede dieser Gleichungen liefert eine Spalte der Darstellungsmatrix

A ∈M4,F3 , insgesamt ist diese gegeben durch

A =


1̄ 0̄ 0̄ 2̄

0̄ 0̄ 1̄ 2̄

0̄ 0̄ 0̄ 2̄

0̄ 1̄ 0̄ 2̄

 .

Die Darstellungsmatrizen von ϕ2
3 bzw. ϕ3

3 sind gegeben durch

A2 =


1̄ 2̄ 0̄ 0̄

0̄ 2̄ 0̄ 0̄

0̄ 2̄ 0̄ 1̄

0̄ 2̄ 1̄ 0̄

 bzw. A3 =


1̄ 0̄ 2̄ 0̄

0̄ 0̄ 2̄ 1̄

0̄ 1̄ 2̄ 0̄

0̄ 0̄ 2̄ 0̄

 .



Aufgabe H22T3A5

Sei R ein kommutativer Ring mit Einselement, und sei I der Durchschnitt der maximalen Ideale von R.

(a) Zeigen Sie, dass I ein Ideal von R ist.

(b) Beweisen Sie, dass ein Element a ∈ R genau dann in I liegt, wenn für alle b ∈ R das Element ab−1

eine Einheit von R ist.

Lösung:

zu (a) Wir müssen überprüfen, dass 0R ∈ I gilt, und dass mit a, b ∈ I und r ∈ R auch die Elemente a+b

und ra in I enthalten sind. Das Nullelement 0R ist in jedem Ideal des Rings R enthalten, insbesondere

in jedem maximalen Ideal, und damit auch im Durchschnitt I aller maximalen Ideale.

Die Elemente a und b sind in jedem maximalen Ideal m von R enthalten (weil I der Durchschnitt aller

maximalen Ideale ist). Weil m ein Ideal ist, liege auch die Elemente a+ b und ra jeweils in m. Weil I der

Durchschnitt aller maximalen Ideale m von R ist, zeigt dies, dass a+ b und ra auch in I enthalten sind.

zu (b) Die Implikation
”
⇒“ beweisen wir durch Kontraposition. Sei a ∈ R, und nehmen wir an,

dass ab − 1R für ein b ∈ R keine Einheit von R ist. Zu zeigen ist, dass a dann nicht im Durchschnitt

aller maximalen Ideale von R liegt. Aus ab − 1R /∈ R× folgt, dass das Hauptideal (ab − 1R) nicht das

Einheitsideal ist. Sei m ein maximales Ideal mit m ⊇ (ab−1R) und nehmen wir an, dass a im Durchschnitt

aller maximalen Ideale liegt. Dann gilt insbesondere a ∈ m, und damit auch ab ∈ m. Aus ab − 1R ∈ m

folgt dann 1R− ab ∈ m und 1R = (1R− ab) + ab ∈ m. Aber dies ist unmöglich, denn da m ein maximales

Ideal von R ist, gilt 1R /∈ m.

”
⇐“ Nehmen wir an, dass ab− 1R für alle b ∈ R eine Einheit ist, a aber nicht in I liegt. Dann existiert

ein maximales Ideal m mit a /∈ m, und auf Grund der Maximalität von m muss (a) + m = (1R) gelten.

Insbesondere ist also das Einselement 1R in (a) + m enthalten. Es gibt also ein b ∈ R und ein m ∈ m

mit 1R = ab+m. Auf Grund unserer Annahme ist −m = ab− 1R eine Einheit. Aber dies ist unmöglich,

denn −m liegt auch in m, und im maximalen Ideal m sind keine Einheiten enthalten.



Aufgabe F23T1A1

(a) Es sei (A, · ) eine abelsche Gruppe. Zeigen Sie, das die Abbildung φ : A → A, a 7→ a−1 ein

Gruppenhomomorphismus ist.

(b) Geben Sie ein Gegenbeispiel an, welches zeigt, dass die entsprechende Aussage für beliebige Grup-

pen im Allgemeinen falsch ist.

(c) Mit A4 werde die alternierende Gruppe über vier Buchstaben bezeichnet. Bestimmen Sie diejenigen

n ∈ N0, für die es einen surjektiven Gruppenhomomorphismus φ : A4 → Z/(n) gibt.

Lösung:

zu (a) Seien a, b ∈ A. Dann gilt φ(ab) = (ab)−1 = b−1a−1 = a−1b−1 = φ(a)φ(b).

zu (b) Wir betrachten in der symmetrischen Gruppe S3 die beiden Elemente σ = (1 2) und τ = (1 3). Für

die Abbildung φ : S3 → S3, ρ 7→ ρ−1 gilt dann φ(σ◦τ) = φ((1 2)◦(1 3)) = φ((1 3 2)) = (1 3 2)−1 = (1 2 3),

aber φ(σ) ◦ φ(τ) = (1 2)−1 ◦ (1 3)−1 = (1 2) ◦ (1 3) = (1 3 2), und somit φ(σ ◦ τ) 6= φ(σ) ◦ φ(τ).

zu (c) Allgemein gilt: Ist n ∈ N, φ : G→ H ein Gruppenhomomorphismus und g ∈ G ein Element der

Ordnung n, dann ist ord(φ(g)) ein Teiler von n. In A4 gibt es bekanntlich nur Elemente der Ordnung 1

(das Neutralelement id), der Ordnung 3 (die 3-Zykel) und der Ordnung 2 (die Doppeltranspositionen).

In Z/(n) ist 1 + nZ ein Element der Ordnung n. Ist φ : A4 → Z/(n) ein surjektiver Homomorphismus,

dann gibt es ein Element σ ∈ A4 mit φ(σ) = 1 + nZ. Auf Grund der Vorbemerkung muss ord(σ) ein

Vielfaches von n sein. Wegen ord(σ) ∈ {1, 2, 3} ist dies nur für n ∈ {1, 2, 3} möglich.

Die Gruppe Z/(1) besteht aus nur einem Element (nämlich 0+1Z). Daraus folgt, dass für jede Gruppe G

ein surjektiver Homomorphismus φ : G→ Z/(1) existiert, der durch g 7→ 0+1Z gegeben ist. Insbesondere

gibt es einen surjektiven Homomorphismus A4 → Z/(1).

Aus der Vorlesung ist bekannt, dass die Kleinsche Vierergruppe V4 ein Normalteiler von A4 (und S4)

ist. Die Faktorgruppe A4/V4 ist eine Gruppe der Ordnung (A4 : V4) = |A4|/|V4| = 12
4 = 3. Als Gruppe

der Primzahlordnung 3 ist A4/V4 zyklisch, und weil zwei zyklische Gruppen derselben Ordnung zyklisch

sind, existiert ein Isomorphismus φ̄ : A4/V4 → Z/(3). Bezeichnet π : A4 → A4/V4 den kanonischen

Epimorphismus, dann erhalten wir durch φ = φ̄ ◦ π einen surjektiven Homomorphismus A4 → Z(3).

Nehmen wir nun an, dass ein surjektiver Homomorphismus φ : A4 → Z/(2) existiert. Sei N = ker(φ).

Auf Grund des Homomorphiesatzes für Gruppen gilt A4/N ∼= Z/(2). Es folgt

12

|N |
=

|A4|
|N |

= |A4/N | = |Z/(2)| = 2

und somit |N | = 6. Es wäre N also eine Untergruppe der Ordnung 6 von A4. Aber aus der Vorlesung

ist bekannt, dass in A4 keine solche Untergruppe existiert. Die einzigen n ∈ N, für die ein surjektiver

Homomorphismus φ : A4 → Z/(n) existiert, sind also 1 und 3.



Aufgabe F23T1A2

(a) Geben Sie die Definition von Nullteilerfreiheit eines kommutativen Rings an.

(b) Bestimmen Sie alle Nullteiler und Einheiten sowie die Inklusionen aller Ideale des kommutativen

Rings Z/(27).

Lösung:

zu (a) Ein kommutativer R wird als nullteilerfrei bezeichnet, wenn für alle a, b ∈ R aus ab = 0R

jeweils a = 0R oder b = 0R folgt. Ist R darüber hinaus ein Ring mit 1 und gilt außerdem 1R 6= 0R, dann

spricht man von einem Integritätsbereich. (Die erste Bedingung besagt genau genommen, dass es in R mit

eventueller Ausnahme der 0R keine Nullteiler in R gibt. Die Bezeichnung
”
nullteilerfrei“ ist so gesehen

ein wenig irreführend. Wir hatten die Bezeichnung deshalb in der Vorlesung auch nicht verwendet.)

zu (b) Ist a ∈ Z mit ggT(a, 27) = 1, was zu ggT(a, 3) = 1 äquivalent ist, dann ist a+27Z laut Vorlesung

eine Einheit in Z/(27). Die Einheiten in Z/(27) sind also gegeben durch

1̄, 2̄, 4̄, 5̄, 7̄, 8̄, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26.

Ist die Bedingung ggT(a, 3) = 1 nicht erfüllt, dann ist a ein Vielfaches von 3. In diesem Fall ist a+ 27Z

in Z/(27) ein Nullteiler, denn es ist 9 + 27Z 6= 0̄ und (a + 27Z)(9 + 27Z) = 9a + 27Z = 0 + 27Z = 0̄,

weil 9a ein Vielfaches von 27 ist. (Man kann leicht zeigen, dass in einem endlichen Ring jedes Element

entweder eine Einheit oder ein Nullteiler ist.) Also sind

3̄, 6̄, 9̄, 12, 15, 18, 21, 24

die Nullteiler in Z/(27).

Jedes Ideal in Z hat bekanntlich die Form (n) mit n ∈ N0, und für m,n ∈ N gilt (m) ⊇ (n) genau

dann, wenn m ein Teiler von n ist. Die Ideale, die (27) als Teilmenge enthalten, sind also genau die

Ideale der Form (m), wobei m ∈ N die Teiler von 27 durchläuft. Dies sind 1, 3, 9 und 27. Auf Grund

des Korrespondenzsatzes für Ringe existiert eine bijektive Korrespondenz zwischen diesen Idealen von Z

und den Idealen von Z/(27), und diese ist gegeben durch (m) 7→ (m+ 27Z). Die Inklusion bleibt unter

dieser Korrespondenz erhalten, d.h. für zwei Teiler m,n ∈ N von 27 gelten die Äquivalenzen

m | n ⇔ (m) ⊇ (n) ⇔ (m+ 27Z) ⊇ (n+ 27Z).

Das Hauptideal (27 + 27Z) = (0̄) = {0̄} ist in jedem der Ideale (27 + 27Z), (9 + 27Z), (3 + 27Z) und

(1+27Z) enthalten. Das Hauptideal (9+27Z) liegt in (9+27Z), (3+27Z) und (1+27Z). Das Hauptideal

(3 + 27Z) ist enthalten in (3 + 27Z) und (1 + 27Z), und es gilt offenbar (1 + 27Z) ⊆ (1 + 27Z). Darüber

hinaus gibt es keine Inklusionsbeziehungen zwischen den Idealen von Z/(27).



Aufgabe F23T1A3

(a) Zeigen Sie, dass jeder irreduzible Faktor von f = x4 − 25 ∈ Q[x] separabel über Q ist.

(b) Bestimmen Sie ein primitives Element eines Zerfällungskörpers L von f über Q und die Dimension

von L über Q.

(c) Berechnen Sie die Automorphismengruppe von L über Q.

(d) Bestimmen Sie alle Zwischenkörper Q ⊆ K ⊆ L und ihre Inklusionen.

Lösung:

zu (a) Jeder irreduzible Faktor von x4 − 25 in Q[x] ist insbesondere ein irreduzibles Polynom in Q[x].

Wegen char(Q) = 0 ist laut Vorlesung jedes irreduzible Polynom über Q separabel.

zu (b) Die Zerlegung f = (x2 − 5)(x2 + 5) = (x −
√

5)(x +
√

5)(x − i
√

5)(x + i
√

5) zeigt, dass N =

{±
√

5,±i
√

5} die Menge der komplexen Nullstellen von f über Q und Q(N) somit der Zerfällungskörper

von f über Q in C ist. Wir zeigen, dass

Q(N) = Q(i+
√

5)

gilt und i +
√

5 somit ein primitives Element von L über Q ist. Wegen
√

5, i
√

5 ∈ N gilt erst recht
√

5, i
√

5 ∈ Q(N) und somit auch i = i
√

5√
5
∈ Q(N) und i +

√
5 ∈ Q(N). Dadurch ist

”
⊇“ nachgewiesen.

Für den Nachweis von
”
⊆“ bemerken wir, dass mit i +

√
5 auch (i +

√
5)−1 = 1

6 (i −
√

5) in Q(i +
√

5)

enthalten ist, damit auch die Elemente i−
√

5, i = 1
2 (i+

√
5) + 1

2 (i−
√

5),
√

5 = (i+
√

5)− i, i
√

5, −
√

5

und −i
√

5. Insgesamt gilt also N ⊆ Q(i+
√

5) und damit auch Q(N) ⊆ Q(i+
√

5).

Sei nun L = Q(N). Die Dimension von L als Q-Vektorraum ist nach Definition nichts anderes als

der Erweiterungsgrad [L : Q]. Wie wir bereits gesehen, erhält der Körper Q(i,
√

5) die Menge N , und

umgekehrt gilt N ⊆ Q(i,
√

5). Es gilt also L = Q(i,
√

5). Das Polynom g = x2 − 5 ist normiert, besitzt
√

5 als Nullstelle und ist auf Grund des Eisenstein-Kriteriums in Z[x] und Q[x] irreduzibel. Es handelt

sich also um das Minimalpolynom µ√5,Q von
√

5 über Q, und daraus folgt [Q(
√

5) : Q] = grad(g) = 2.

Das Polynom h = x2 + 1 liegt in Q[x] und damit auch in Q(
√

5)[x], es ist normiert, und es besitzt i als

Nullstelle. Wäre es über Q(
√

5) reduzibel, dann wären wegen grad(h) = 2 die beiden Nullstellen ±i in

Q(
√

5) enthalten. Aber dies ist wegen Q(
√

5) ⊆ R und ±i /∈ R nicht der Fall. Es gilt also h = µi,Q(
√

5)

und [L : Q(
√

5)] = [Q(
√

5)(i) : Q(
√

5)] = grad(h) = 2. Mit der Gradformel erhalten wir

[L : Q] = [L : Q(
√

5)] · [Q(
√

5) : Q] = 2 · 2 = 4.

zu (c) Die Erweiterung L|Q ist normal, weil L der Zerfällungskörper von f über Q ist, damit auch

algebraisch, und wegen char(Q) = 0 ist jede algebraische Erweiterung von Q auch separabel. Insgesamt

ist L|Q damit eine Galois-Erweiterung, und laut Vorlesung folgt daraus |AutQ(L)| = |Gal(L|Q)| = [L :

Q] = 4. Für jedes σ ∈ AutQ(L) ist mit
√

5 auch σ(
√

5) eine Nullstelle von x2−5, es gilt also σ(
√

5) = ε1

√
5

für ein ε1 ∈ {±1}. Ebenso ist mit i auch σ(i) eine Nullstelle von x2 + 1 und somit σ(i) = ε2i für ein

ε2 ∈ {±1}. Wegen L = Q(
√

5, i) ist σ durch die Bilder σ(
√

5) und σ(i) eindeutig bestimmt. Wegen

|AutQ(L)| = 4 existiert für jedes Paar (ε1, ε2) ∈ {±1}2 genau ein σ ∈ AutQ(L) mit σ(
√

5) = ε1

√
5 und

σ(i) = ε2i. Insgesamt gilt also

AutQ(L) = {σ+1,+1 , σ+1,+1 , σ−1,+1 , σ+1,−1} ,

wobei jedes σε1,ε2 jeweils durch σ(
√

5) = ε1

√
5 und σ(i) = ε2i festgelegt ist.



zu (d) Zunächst bestimmen wir die Anzahl der Zwischenkörper von L|Q. Nach dem Hauptsatz der

Galoistheorie stimmt diese überein mit der Anzahl der Untergrupppen von Gal(L|Q). Als Gruppe der

Ordnung |Gal(L|Q)| = [L : Q] = 4 ist Gal(L|Q) isomorph zu Z/4Z oder zu Z/2Z×Z/2Z. Jedes Element

in Gal(L|Q) ist von Ordnung 1 oder 2. Denn für alle (ε1, ε2) ∈ {±1}2 gilt σ2
ε1,ε2(

√
5) = σε1,ε2(ε1

√
5) =

ε1σε1,ε2(
√

5) = ε2
1

√
5 =
√

5, und ebenso erhält man σ2
ε1,ε2(i) = i. Weil jedes Element von Gal(L|Q) durch

die Bilder von
√

5 und i eindeutig bestimmt ist, folgt daraus σ2
ε1,ε2 = idL. Weil also in Gal(L|Q) keine

Elemente der Ordnung 4 existieren, muss Gal(L|Q) ∼= Z/2Z×Z/2Z gelten.

Die Ordnung jeder Untergruppe ist ein Teiler von 4, also gleich 1, 2 oder 4. Die Untergruppen der Ordnung

2 sind zyklisch, werden also durch ein Element der Ordnung 2 erzeugt. In Z/2Z×Z/2Z gibt es genau drei

Elemente der Ordnung 2 (nämlich (1̄, 0̄), (0̄, 1̄) und (1̄, 1̄), und diese drei Elemente liefern drei verschiedene

Untergruppen der Ordnung 2. Daneben gibt es noch die Untergruppe {(0̄, 0̄)} der Ordnung 1 und die

Untergruppe Z/2Z×Z/2Z der Ordnung 4. Insgesamt besitzt also Z/2Z×Z/2Z genau fünf Untergruppen,

und dasselbe gilt für Gal(L|Q). Die Erweiterung L|Q besitzt also genau fünf Zwischenkörper. Es ist Q

ein Zwischenkörper von L|Q mit [Q : Q] = 1, und L ist ein Zwischenkörper mit [L : Q] = 4. Außerdem

sind Q(
√

5), Q(i) = Q(
√
−1) und Q(i

√
5) = Q(

√
−5) drei verschiedene Zwischenkörper vom Grad 2 über

Q, denn aus der Vorlesung ist bekannt, dass [Q(
√
d) : Q] = 2 für jede quadratfreie Zahl d ∈ Z \ {0, 1}

gilt, und dass verschiedene quadratfreie Zahlen jeweils unterschiedliche Zwischenkörper liefern. Insgesamt

haben wir damit alle fünf Zwischenkörper der Erweiterung L|Q bestimmt.



Aufgabe F23T1A4

(a) Zeigen Sie, dass die Charakteristik eines endlichen Körpers eine Primzahl ist.

(b) Zeigen Sie, dass die Anzahl der Elemente eines endlich-dimensionalen Vektorraums V über einem

endlichen Körper K eine Potenz der Charakteristik von K ist.

(c) Sei K ein endlicher Körper mit q Elementen; die Charakteristik von K sein ungleich 2. Berechnen

Sie die Mächtigkeit der Bahn des Elements

A =

(
0 1

1 0

)
∈ GL2(K)

unter der Operation von GL2(K) durch Konjugation.

Lösung:

zu (a) Sei K ein endlicher Körper und nehmen wir an, dass char(K) keine Primzahl ist. Dann gilt

char(K) ∈ {0, 1}, oder es gibt m,n ∈ N mit char(K) = mn und m,n > 1. Im Fall char(K) = 0 wären

durch m · 1K mit m ∈ N unendlich viele verschiedene Elemente gegeben, was der Endlichkeit von K

widerspricht. Im Fall char(K) = 1 wäre K ein Nullring (also 0K das einzige Element von K), was bei

einem Körper ausgeschlossen ist. Nehmen wir nun an, es existieren m,n ∈ N mit den angegebenen

Eigenschaften. Dann würde m · 1K 6= 0K und n · 1K 6= 0K , andererseits aber (m · 1K) · (n · 1K) =

(mn) · 1K = 0K gelten. Es wäre also m · 1K ein Nullteiler ungleich 0K , was ebenfalls im Widerspruch zur

Körpereigenschaft stehen würde.

zu (b) Nach Teil (a) ist p = char(K) eine Primzahl. Sei P der Primkörper von K und d = dim(V ) (mit

d ∈ N0). Laut Vorlesung gilt p = char(K) = |P |. Weil K endlich ist, muss auch der Erweiterungsgrad

n = [K : P ] endlich sein. Als P -Vektorraum ist K isomorph zu Pn, woraus |K| = |P |n = pn folgt.

Außerdem ist V als K-Vektorraum isomorph zu Kd. Damit erhalten wir |V | = |K|d = (pn)d = pnd. Dies

zeigt, dass |V | eine Primzahlpotenz ist.

zu (c)



Aufgabe F23T1A5

Seien K ein Körper und f : V → W eine lineare Abbildung zwischen endlich-dimensionalen K-

Vektorräumen V und W . Seien

V ∗ = HomK(V,K) und W ∗ = HomK(W,K)

die Dualräume, sowie f∗ : W ∗ → V ∗, ϕ 7→ ϕ ◦ f , die duale Abbildung.

(a) Sei v1, ..., vn eine K-Basis von V . Zeigen Sie, dass f genau dann injektiv ist, wenn f(v1), ..., f(vn)

linear unabhängig sind.

(b) Zeigen Sie: Ist f injektiv, dann ist f∗ surjektiv.

(c) Zeigen Sie: Ist f∗ surjektiv, dann ist f injektiv.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T2A1

(a) Es seien a, b ∈ Z. Zeigen Sie: 7 | (10a+ b)⇔ 7 | (a− 2b).

(b) Bestimmen Sie, für welche r ∈ R das folgende lineare Gleichungssystem (i) keine, (ii) genau eine,

(iii) unendlich viele Lösungen hat.

rx + y + z = 1

x + ry + z = 1

x + y + rz = 1

(c) Geben Sie ein externes direktes Produkt zyklischer Gruppen an, das isomorph ist zur Einheiten-

gruppe (Z/40Z)×.

Hinweis: Hauptsatz über endliche abelsche Gruppen

(d) Bestimmen Sie eine Orthonormalbasis des R3 aus Eigenvektoren des Endomorphismus

ϕ : R3 −→ R3 ,


x

y

z

 7→


x− 2z

0

−2x+ 4z

 .

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T2A2

Es sei G eine Gruppe der Ordnung 30. Es bezeichnen U3 und U5 jeweils eine 3- und eine 5-Sylowgruppe

von G. Zeigen Sie:

(a) Mindestens eine der Gruppen U3 und U5 ist ein Normalteiler von G.

(b) Ist U3 normal, so hat G/U3 eine Untergruppe vom Index 2. Ist U5 normal, so hat G/U5 eine

Untergruppe vom Index 2.

(c) Die Gruppe G hat eine Untergruppe U15 vom Index 2.

(d) Zeigen Sie, dass alle 3-Sylowgruppen und alle 5-Sylowgruppen von G in U15 enthalten sind.

(e) Folgern Sie, dass G genau eine 3-Sylowgruppe und genau eine 5-Sylowgruppe hat.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T2A3

Es sei R = {x+ y
√
−31 | x, y ∈ Z} ⊆ C.

(a) Begründen Sie, dass R ein Ring ist.

(b) Zeigen Sie, dass R nicht faktoriell ist.

Hinweis: Beachten Sie 32 = (1 +
√
−31)(1−

√
−31).

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T2A4

Seien p und q zwei Primzahlen. Bestimmen Sie den Zerfällungskörper des Polynoms xp − q ∈ K[x] für

die Grundkörper K = Q, R und C.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T2A5

Es sei F625 der endliche Körper mit 625 Elementen mit Primkörper P . Bestimmen Sie die Anzahl der

Elemente a ∈ F625 mit P (a) = F625.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T3A1

Es seien G die multiplikative Gruppe (R+, · ) und X = R3 der dreidimensionale R-Vektorraum mit

skalarer Multiplikation R×X → X, (λ, x) 7→ λx. Weiter sei die folgende Abbildung gegeben:

· : G×X → X , (g, x) 7→ g · x = gx.

(Das ist die skalare Multiplikation, eingeschränkt auf G×X.)

(a) Zeigen Sie, dass · eine Operation von G auf X ist.

(b) Bestimmen Sie die Menge F der Fixpunkte der Operation.

(c) Zeigen Sie, dass R = {x ∈ R3 | ‖x‖ = 1}∪{0} ein Repräsentantensystem der Bahnen der Operation

ist.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T3A2

Es seien n ∈ N und V der R-Vektorraum Mn,R der reellen n× n-Matrizen. Für A ∈ V sei tA die zu A

transponierte Matrix. Weiter seien

U = {A ∈ V | tA = A} und W = {A ∈ V | tA = −A}.

Zeigen Sie:

(a) Die Teilmengen U und W sind Untervektorräume von V .

(b) Es gilt V = U ⊕W .

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T3A3

Bestimmen Sie bis auf Isomorphie alle Gruppen der Ordnung 2023 = 7 · 172.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T3A4

Es sei ζ ∈ C eine primitive 7-te Einheitswurzel, und es seien a = ζ + ζ−1 und b = ζ + ζ2 + ζ4.

(a) Geben Sie einen konkreten Isomorphismus zwischen der Einheitengruppe von Z/7Z und der Ga-

loisgruppe von Q(ζ)|Q an.

(b) Zeigen Sie, dass die Körpererweiterungen Q(a)|Q und Q(b)|Q galois’sch sind, und bestimmen Sie

die zugehörigen Galois-Gruppen bis auf Isomorphie.

(c) Bestimmen Sie die Minimalpolynome von a und b über Q.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T3A5

Für einen kommutativen Ring R definieren wir S(R) = {r2
1 + r2

2 | r1, r2 ∈ R}.

(a) Zeigen Sie: Sind r, r′ ∈ S(R), dann gilt auch rr′ ∈ S(R).

(b) Bekanntlich sind die normierten irreduziblen Polynome in R[x] genau die Polynome der Form x−r
oder (x− a)2 + b2 mit r, a ∈ R, b ∈ R+.

Zeigen Sie: S(R[x]) = {f ∈ R[x] | ∀ ξ ∈ R : f(ξ) ≥ 0}

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T1A1

(a) Sei n ≥ 1 eine natürliche Zahl und p 6= 2 eine Primzahl. Zeigen Sie:

p | (1 + 2 + ...+ (n− 1) + n) ⇔ p | n oder p | (n+ 1).

(b) Bestimmen Sie die Anzahl der Elemente der Einheitengruppe (Z[x]/(2, x3 + x2 + x))× des angege-

benen Quotientenrings.

(c) Bestimmen Sie mit Hilfe des Chinesischen Restsatzes und unter vollständiger Angabe des Lösungs-

wegs die kleinste natürliche Zahl n ≥ 1, die die Kongruenzen n ≡ 1 mod 3, n ≡ 2 mod 5 und

n ≡ 0 mod 8 erfüllt.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T1A2

Im Folgenden sei Sn die symmetrische Gruppe.

(a) Sei σ ∈ Sn ein Produkt σ = ζ1 · ... · ζm von paarweise disjunkten Zyklen ζj der Längen `j . Zeigen

Sie, dass die Ordnung von σ gleich dem kleinsten gemeinsamen Vielfachen von `1, ..., `m ist.

(b) Bestimmen Sie die maximale Ordnung eines Elements (i) der S6; (ii) der S7.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T1A3

(a) Sei G eine einfache Gruppe mit |G| > 2, die auf der endlichen Menge X operiere, und ρ : G →
Σ(X) ∼= Sn (mit n = |X|) der zugehörige Homomorphismus in die symmetrische Gruppe von X.

Zeigen Sie, dass ρ(G) in der alternierenden Gruppe An enthalten ist.

(b) Sei G eine nicht-abelsche einfache Gruppe, H ⊆ G eine Untergruppe sowie n = (G : H) ≥ 2. Zeigen

Sie, dass G isomorph zu einer Untergruppe von An ist, und dass n ≥ 5 gilt.

(c) Zeigen Sie, dass keine endliche einfache Gruppe der Ordnung 80 existiert.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T1A4

Sei R ein kommutativer Ring (mit 1). Sei weiter I ⊆ R ein Ideal. Wir definieren das Radikal von I als

rad(I) = {r ∈ R | rn ∈ I für ein n ∈ N}.

Zeigen Sie:

(a) Die Teilmenge rad(I) ⊆ R ist ebenfalls ein Ideal von R.

(b) Ist I ein Primideal, dann gilt rad(I) = I.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T1A5

(a) Zeigen Sie, dass der Kreisteilungskörper Q(ζ8) genau drei quadratische Teilkörper besitzt, d.h.

Zwischenkörper Q ⊆ K ⊆ Q(ζ8) mit [K : Q] = 2.

(b) Bestimmen Sie in Teil (a) drei Elemente α1, α2, α3 ∈ Q so, dass die Zwischenkörper Ki = Q(
√
αi)

genau die quadratischen Teilkörper sind.

(c) Zeigen Sie, dass das Polynom x4 + x+ 1̄ ∈ F2[x] irreduzibel ist.

(d) Nach Teil (c) gilt F16 = F2(α) für ein α ∈ Falg
2 mit α4 + α + 1̄ = 0̄. Bestimmen Sie die Grade

[F2(β) : F2] in den beiden Fällen β = α+ 1̄ und β = α3 + 1̄.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T2A1

Sei ω ∈ C eine primitive dritte Einheitswurzel.

(a) Zeigen Sie, dass Q ⊆ Q( 3
√

2, ω) eine Galois-Erweiterung ist.

(b) Bestimmen Sie den Grad [Q( 3
√

2, ω) : Q] dieser Erweiterung.

(c) Sei G die Menge der invertierbaren 2× 2-Matrizen der Form

(
a b

0̄ 1̄

)
mit Einträgen in F3. Zeigen

Sie, dass G eine Untergruppe der Gruppe der invertierbaren 2× 2-Matrizen über F3 ist, und geben

Sie einen Isomorphismus G
∼→ Gal(Q( 3

√
2, ω)|Q) an.

Lösung:

zu (a) zu (b) zu (c)



Aufgabe H23T2A2

(a) Geben Sie die Definition einer auflösbaren Gruppe an.

(b) Bestimmen Sie alle endlichen einfachen auflösbaren Gruppen.

Lösung:

zu (a) zu (b)



Aufgabe H23T2A3

(a) Seien G1 und G2 endliche Gruppen und |G1| teilerfremd zu |G2|. Sei weiter H ⊆ G1 × G2 eine

Untergruppe. Zeigen Sie, dass es Untergruppen H1 ⊆ G1 und H2 ⊆ G2 gibt mit H = H1 ×H2.

(b) Geben Sie zwei Gruppen G1 und G2 an sowie eine Untergruppe H ⊆ G1×G2, so dass H nicht von

der Form H1 ×H2 für zwei Untergruppen H1 ⊆ G1 und H2 ⊆ G2 ist.

(c) Sei G eine endliche Gruppe der Ordnung n mit folgenden Eigenschaften.

(i) Für jeden Teiler k > 0 von n gibt es eine Untergruppe U von G der Ordnung k.

(ii) Die Gruppe G ist nicht abelsch.

Zeigen Sie, dass G nicht einfach ist.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T2A4

Es seien x = (x1, x2, x3, x4), y = (y1, y2, y3, y4), z = (z1, z2, z3, z4) ∈ R4 beliebig und

f : R4 −→ R , (u1, u2, u3, u4) 7→ det


x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

u1 u2 u3 u4

 .

(a) Zeigen Sie, dass f eine lineare Abbildung ist.

(b) Zeigen Sie, dass x, y, z Elemente des Kerns von f sind.

(c) Zeigen Sie, dass der Kern von f genau dann der von x, y, z aufgespannte Untervektorraum ist,

wenn diese Vektoren linear unabhängig sind.

(d) Bestimmen Sie den Kern von f in dem Fall, dass x, y, z linear abhängig sind.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T2A5

Sei R ein kommutativer Ring mit 1.

(a) Sei x ∈ R ein Element mit xm = 0 für ein m > 0. Zeigen Sie, dass dann 1 + x ∈ R multiplikativ

invertierbar ist.

(b) Sei I ⊆ R ein Ideal. Zeigen Sie, dass dann auch

√
I = {x ∈ R | xm ∈ I0 für ein m > 0}

ein Ideal in R ist.

(c) Zeigen Sie, dass N(R) = {x ∈ R | xm = 0 für ein m > 0} ein Ideal in R ist.

(d) Geben Sie ein Beispiel für einen (nicht kommutativen) Ring R′ an, in dem N(R′) ⊆ R′ (wie in Teil

(c)) kein (Links-)Ideal ist.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T3A1

Sei G eine Gruppe und H eine Untergruppe von G.

(a) Geben Sie die Definition des Index (G : H) an. (Die Gruppe G braucht nicht endlich zu sein.)

(b) Zeigen Sie, dass (G : H) ein Teiler von 168 ist, wenn H der Kern eines Homomorphismus f : G→
GL3(F2) in die Gruppe der invertierbaren 3× 3-Matrizen über dem Körper F2 ist.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T3A2

Es seien α =
√√

12 + 3, β = i
√√

12− 3 ∈ C und L = Q(α, β) ⊆ C.

(a) Bestimmen Sie das Minimalpolynom f = mα,Q von α über Q, und zeigen Sie, dass auch β eine

Nullstelle von f ist.

(b) Begründen Sie, warum L|Q eine Galois-Erweiterung ist.

(c) Zeigen Sie, dass L = Q(α, i) gilt, und bestimmen Sie den Grad [L : Q].

(d) Zeigen Sie, dass die Galois-Gruppe Gal(L|Q) einen Normalteiler der Ordnung 2 enthält.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T3A3

Sei L ein Zerfällungskörper des Polynoms f = x4 − x3 + 2x2 − 2 über Q. Bestimmen Sie

(a) für eine Nullstelle 1 6= α ∈ L von f das Minimalpolynom von α über Q,

(b) den Grad [L : Q].

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T3A4

(a) Sei p eine ungerade Primzahl und n ≥ 1. Zeigen Sie, dass die Gleichung x2 = 1̄ in R = Z/pnZ

genau zwei Lösungen hat.

(b) Bestimmen Sie alle Lösungen der Gleichung x2 = 1̄ im Ring Z/2023Z.

Hinweis: 2023 = 7 · 172

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe H23T3A5

Seien R 6= 0 ein kommutativer Ring und F,G ∈ R[x] Polynome, wobei G als normiert angenommen

sei. Dann (das sollen Sie nicht beweisen) existieren eindeutig bestimmte A,B ∈ R[x] so, dass gelten

F = AG + B und deg(B) < deg(G) (hierbei ist deg(0) = −∞). (Das ist Division mit Rest durch ein

normiertes Polynom.)

(a) Seien f : R→ S 6= 0 ein Ringhomomorphismus und f [x] : R[x]→ S[x] der Ringhomomorphismus,

der auf R ⊆ R[x] mit f übereinstimmt und außerdem f [x](x) = x erfüllt. Zeigen Sie, dass in S[x]

gilt f [x](F ) = f [x](A) · f [x](G) + f [x](B), und dass diese Gleichung die Division mit Rest von

f [x](F ) durch f [x](G) ist.

(b) Zeigen Sie, dass genau ein Ideal I ⊆ R existiert, so dass für jeden Ringhomomorphismus f : R →
S 6= 0 äquivalent sind:

(i) f [x](G) teilt f [x](F ) in S[x]

(ii) f(I) = 0

(c) Bestimmen Sie das Ideal I ⊆ R aus Teil (b) in den beiden folgenden Fällen:

(i) R = Z, F = x3 − 1, G = x2 + 1

(ii) R = Z[y], F = x2 + y, G = x− 1

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F24T1A1

Sei n > 0 und Mn = (mij) die reelle n× n-Matrix mit mij = 0, falls j < i− 1 oder j > i+ 1, mij = 1,

falls j = i− 1, mij = 3, falls j = i, und mij = 2, falls j = i+ 1. Also ist beispielsweise

M5 =



3 2 0 0 0

1 3 2 0 0

0 1 3 2 0

0 0 1 3 2

0 0 0 1 3


.

Sei dn die Determinante von Mn.

(a) Berechnen Sie d1 und d2.

(b) Zeigen Sie, dass für alle n ≥ 3 gilt dn = 3dn−1 − 2dn−2.

(c) Zeigen Sie, dass dn = 2n+1 − 1 gilt.

Lösung:

zu (a) zu (b) zu (c)



Aufgabe F24T1A2

(a) Bestimmen Sie alle n ∈ {1, 2, 3, ...}, für die die Gruppe Z/nZ außer der Identität keinen weiteren

Gruppenautomorphismus besitzt.

(b) Sei nun G eine endliche Gruppe der Ordnung ≥ 2 mit der Eigenschaft, dass die Identität der einzige

Gruppenautomorphismus ist. Zeigen Sie, dass G eine abelsche Gruppe ist.

(c) Zeigen Sie, dass G ∼= Z/2Z gilt.

Lösung:

zu (a) zu (b) zu (c)



Aufgabe F24T1A3

(a) Sei R ein kommutativer Ring. Ein Element x ∈ R heißt nilpotent, falls es ein k ∈ {1, 2, 3, ...} gibt

mit xk = 0. Sei I ⊆ R ein Primideal und x ∈ R nilpotent. Zeigen Sie: x ∈ I

(b) Sei I = (1 + i) das von 1 + i erzeugte Ideal im Ring Z[i]. Zeigen Sie, dass der Ring Z[i]/I genau

zwei Elemente hat.

(c) Seien R ein Integritätsbereich und a, b, c ∈ R. Zeigen Sie: Erzeugen a und b in R das Einheitsideal

und ist a ein Teiler von bc, so ist a ein Teiler von c.

Lösung:

zu (a) zu (b) zu (c)



Aufgabe F24T1A4

Sei p eine Primzahl mit der Eigenschaft, dass p−1 = p1 · ... ·pn das Produkt der paarweise verschiedenen

Primzahlen p1, ..., pn ist.

(a) Zeigen Sie, dass es genau 2n verschiedene Untergruppen in G = (Z/pZ)× gibt.

(b) Sei ζp ∈ C eine primitive p-te Einheitswurzel. Bestimmen Sie die Anzahl der Zwischenkörper in

der Erweiterung Q(ζp)|Q.

Lösung:

zu (a) zu (b)



Aufgabe F24T1A5

Sei α =
√

10− 5
√

2 ∈ R.

(a) Bestimmen Sie das Minimalpolynom von α über Q.

(b) Zeigen Sie, dass Q(α)|Q eine Galois-Erweiterung ist.

(c) Zeigen Sie, dass die Galois-Gruppe von Q(α)|Q zu Z/4Z isomorphi ist.

Lösung:

zu (a) zu (b) zu (c)



Aufgabe F24T2A1

(a) Bestimmen Sie eine Zerlegung des Elements z = 29 ∈ Z[i] in Primelemente.

(b) Es sei p > 3 eine Primzahl. Zeigen Sie, dass es in der multiplikativen Gruppe F×p2 ein Element a

der Ordnung 12 gibt.

(c) Entscheiden Sie, ob 437 ∈ Z/911Z invertierbar ist. Bestimmen Sie gegebenenfalls das Inverse.

(d) Entscheiden Sie begründet, ob R eine algebraische Erweiterung vom Grad 4 hat.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F24T2A2

Es sei N = an−1an−2 · · · a1a0 mit ai ∈ {0, 1, ..., 9}, an−1 6= 0 die dezimale Zifferndarstellung einer Zahl

N .

(a) Die Wechselsumme von N ist durch

W (N) =

n−1∑
i=0

(−1)iai

gegeben. (Beispiel: W (123456) = 6− 5 + 4− 3 + 2− 1)

(b) Wir nennen N palindromisch, wenn die Ziffernzahl n gerade ist und

an−1an−2 · · · a1a0 = N = a0a1 · · · an−2an−1

gilt. (Beispiel: 493394 ist palindromisch.)

Bestimmen Sie alle palindromischen Primzahlen.

(c) Sei die Folge (Un)n∈N mit U1 = 1, U2 = 11, U3 = 111, U4 = 1111, gegeben. Zeigen Sie

(i) Im Fall k | n gilt Uk | Un.

(ii) Ist n = k · ` mit k, ` ∈ {2, 3, 4, ...}, so ist Un keine Primzahl.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F24T2A3

(a) Entscheiden Sie und begründen Sie, ob es eine Gruppe gibt, die außer dem neutralen Element vier

Elemente der Ordnung 5, sechs Elemente der Ordnung 2 und keine weiteren Elemente enthält.

(b) Entscheiden und begründen Sie, ob es eine abelsche Gruppe ist, die nur Elemente mit den Ord-

nungen 1, 2 und 4 enthält, wobei die Anzahl der Elemente durch

Ordnung 1 2 4

Anzahl 1 3 12

gegeben ist. Entscheiden Sie begründet, ob die abelsche Gruppe durch diese Angabe bis auf Iso-

morphie eindeutig bestimmt ist.

(c) Beweisen oder widerlegen Sie die folgende Aussage: Ist G eine endliche Gruppe und d ein Teiler

der Gruppenordnung |G|, so hat G eine Untergruppe U mit |U | = d.

Lösung:

zu (a) Eine Gruppe mit diesen Eigenschaften existiert nicht. Denn nehmen wir an, dass es sich bei

G um eine solche Gruppe handelt. Die Gesamtzahl der Gruppenelemente, also die Ordnung von G, ist

gleich 1 + 4 + 6 = 11. Nach dem Satz von Lagrange ist ord(g) für jedes g ∈ G also ein Teiler von 11,

also ord(g) ∈ {1, 11} für alle g ∈ G. Somit kann es in G keine Elemente der Ordnung 2 oder 5 geben, im

Widerspruch zur Annahme.

zu (b) Nehmen wir an, G ist eine Gruppe mit diesen Eigenschaften. Dann ist |G| = 1 + 3 + 12 = 16.

Nach dem Hauptsatz über endliche abelsche Gruppen gibt es ein r ∈ N und d1, ..., dr ∈ N, d1 ≥ d2 ≥
... ≥ dr ≥ 2 mit

G ∼= Z/d1Z×Z/d2Z× ...×Z/drZ

und d1 ·d2 ·...·dr = 16. Wegen dj | 16 gilt jeweils dj ∈ {2, 4, 8, 16}. Da es in G keine Elemente der Ordnung

8 oder 16 gibt, ist jewiels nur dj ∈ {2, 4} möglich. Die einzigen Möglichkeiten für solche Produkte sind

4 · 4 oder 4 · 2 · 2. Also gilt

G ∼= Z/4Z×Z/4Z oder G ∼= Z/4Z×Z/2Z×Z/2Z.

In Z/4Z × (Z/2Z)2 gibt es wegen 2 · (2̄, 0̄, 0̄) = 2 · (0̄, 1̄, 0̄) = 2 · (0̄, 0̄, 1̄) = 2 · (2̄, 1̄, 0̄) = (0̄, 0̄, 0̄) (und

weil keines dieser Elemente mit dem Neutralelement (0̄, 0̄, 0̄) übereinstimmt) mehr als drei Elemente der

Ordnung 2. Also bleibt G ∼= (Z/4Z)2 also einzige Möglichkeit. Wir überprüfen nun, dass es in (Z/4Z)2

tatsächlich genau drei Elemente der Ordnung 2 und genau 12 Elemente der Ordnung 4 gibt.

Die drei Elemente (0̄, 2̄), (2̄, 0̄) und (2̄, 2̄) sind von Ordnung 2, denn keines von ihnen stimmt mit dem

Neutralelement (0̄, 0̄) überein, aber wenn man sie mit 2 multipliziert, dann erhält man (0̄, 0̄). Sei nun

(a, b) ∈ (Z/4Z)2 ein beliebiges Element der Ordnung 2. Dann gilt (2ā, 2b̄) = (0̄, 0̄); dies ist nur möglich,

wenn a, b ∈ {0̄, 2̄} erfüllt ist. Weil (a, b) ungleich dem Neutralelement ist (dies ist von Ordnung 1),

muss (a, b) ∈ {(0̄, 2̄), (2̄, 0̄), (2̄, 2̄)} gelten. Nun gibt es G neben den Elementen der Ordnung 2 und dem

Neutralelement noch 12 weitere Elemente, wegen |G| − 3 − 1 = 16 − 3 − 1 = 12. Ist (c, d) ein solches

Element, dann gilt 4 · (c, d) = (4c̄, 4d̄) = (0̄, 0̄), also ord((c, d)) | 4 und somit ord((c, d)) ∈ {1, 2, 4}. Da wir

die Ordnungen 1 und 2 ausgeschlossen hatten, muss (c, d) ein Element der Ordnung 4 sein. Dies zeigt,

dass es in G genau 12 Elemente der Ordnung 4 gibt.

zu (c) Diese Aussage ist im Allgemeinen falsch, denn bekanntlich ist die alternierende Gruppe A4 von

Ordnung 12, diese enthält aber keine Untergruppe der Ordnung 6, obwohl 6 ein Teiler von 12 ist. Um



dies nachzuweisen, nehmen wir an, U wäre eine Untergruppe mit |U | = 6. Da 3 ein Primteiler von |U | ist,
existiert nach dem Lemma von Cauchy ein σ ∈ U mit ord(σ) = 3. Die Elemente der Ordnung 3 in A4 sind

genau die 3-Zykel; es gibt somit drei verschiedene Zahlen i, j, k in M4 = {1, 2, 3, 4}mit σ = (i j k). Ebenso

existiert in U ein Element τ mit ord(τ) = 2, und wegen τ ∈ A4 ist dies eine Doppeltransposition. Sei ` das

eindeutig bestimmte Element in M4 \ {i, j, k}. Die folgenden Gleichungen zeigen, dass die Untergruppe

U alle Doppeltranspositionen enthält, sobald zumindest eine Doppeltransposition in U liegt:

(i j k)−1 ◦ (i j)(k `) ◦ (i j k) = (k j i) ◦ (i j)(k `) ◦ (i j k) = (i k)(j `)

(i j k) ◦ (i j)(k `) ◦ (i j k)−1 = (i j k) ◦ (i j)(k `) ◦ (k j i) = (i `)(j k).

Also enthält U mindestens (i j k), das Inverse (i j k)−1 = (i k j), die drei Doppeltransposition, die

Identität, und außerdem noch das Element

(i j)(k `) ◦ (i j k) ◦ (i j)(k `) = (i ` j).

Damit wäre dann |U | ≥ 7, im Widerspruch zu |U | = 6.



Aufgabe F24T2A4

(a) Entscheiden Sie begründet, ob ein Ring R existiert, der unendlich viele Einheiten u ∈ R× endlicher

multiplikativer Ordnung hat.

(b) Entscheiden Sie begründet, ob ein Ring R existiert, der unendlich viele Einheiten endlicher additiver

Ordnung hat.

(c) Entscheiden Sie begründet, ob ein Ring R existiert, der nur endlich viele Einheiten hat und in dem

die multiplikative Ordnung einer Einheit u ∈ R× unendlich ist.

Lösung:

zu (a) zu (b) zu (c)



Aufgabe F24T2A5

Es seien a1, ..., an ∈ Q und das Polynom f ∈ Q[x] vom Grad 2n durch

f = x2n + a1x
2n−1 + ...+ an−1x

n+1 + anx
n + an−1x

n−1 + ...+ a1x+ 1

gegeben. Sei K der Zerfällungskörper von K über Q. Zeigen Sie:

(a) Ist r eine Nullstelle von f , so ist auch 1
r eine Nullstelle von f .

(b) Es ist |Gal(K|Q)| ≤ 2n · n!.

Lösung:

zu (a) zu (b)



Aufgabe F24T3A1

(a) Es sei F3 der endliche Körper mit drei Elementen. Bestimmen Sie die Anzahl der Elemente des

Kerns U der linearen Abbildung

ϕ : F3
3 → F2

3 , v 7→

(
1̄ 2̄ 1̄

2̄ 1̄ 2̄

)
v.

(b) Bestimmen Sie eine Zerlegung des Polynoms f = 2x3 + 4x2 − 2x über Z in irreduzible Faktoren.

(c) Bestimmen Sie ein f ∈ R[x] mit (f) = (x2 − 1, x3 − 1) und begründen Sie, warum Ihre Wahl diese

Gleichheit erfüllt.

(d) Zeigen Sie, dass das Element 2 ∈ Z[
√
−13] irreduzibel ist.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F24T3A2

(a) Ermitteln Sie die Anzahl der Lösungen der folgenden Gleichungen in Z/8Z.

x5 = 0̄, x5 = 1̄, x5 = 2̄, x5 = 3̄

(b) Ermitteln Sie die Anzahl der Lösungen der folgenden Gleichungen in Z/2024Z. (2024 = 8 · 11 · 23)

x5 = 0̄, x5 = 1̄, x5 = 2̄, x5 = 3̄

(c) Bestimmen Sie, wieviele fünfte Potenzen es in Z/2024Z gibt.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F24T3A3

Für eine Primzahl p sei Fp der endliche Körper mit |Fp| = p; weiter sei

R =

{(
a b

0̄ a

) ∣∣∣∣ a, b ∈ Fp
}

(a) Zeigen Sie, dass R ein Teilring des Rings der 2× 2-Matrizen ist.

(b) Zeigen Sie, dass die Einheitengruppe R× im Fall p 6= 2 nicht einfach ist.

(c) Nun sei p = 257. Entscheiden Sie begründet, ob die Einheitengruppe R× in diesem Fall auflösbar

ist.

Lösung:

zu (a) zu (b) zu (c)



Aufgabe F24T3A4

(a) Seien K ein Körper und f ∈ K[x] ein irreduzibles Polynom. Begründen Sie, warum die Ordnung

der Galoisgruppe von f über K durch den Grad von f teilbar ist.

(b) Geben Sie ein Beispiel an, wieso die Aussage im Allgemeinen falsch wird, wenn f nicht mehr als

irreduzibel vorausgesetzt wird.

(c) Begründen Sie, warum es zu jeder natürlichen Zahl n ≥ 1 eine Galois-Erweiterung E|F von Körpern

E,F gibt, deren Galoisgruppe die Ordnung n hat.

(d) Zeigen Sie, dass die Aussage (c) im Allgemeinen falsch wird, wenn der Körper F fest vorgegeben

wird.

Lösung:

zu (a) zu (b) zu (c) zu (d)



Aufgabe F24T3A5

(a) Geben Sie eine explizite Darstellung der primitiven fünften Einheitswurzeln mithilfe von Quadrat-

wurzeln an. (Tipp: Wenn α4 + α3 + α2 + α + 1̄ = 0̄ ist, welche Polynomgleichung erfüllt dann

β = α+ α−1?)

(b) Folgern Sie aus Ihrer Lösung der Teilaufgabe (a) eine Konstruktionsvorschrift eines regelmäßigen

Fünfecks mit Zirkel und Lineal.

(c) Geben Sie eine Konstruktionsvorschrift eines regelmäßigen Zwanzigecks mit Zirkel und Lineal an.

Lösung:

zu (a) zu (b) zu (c)



Aufgabe H24T1A1

Sei H die Menge aller reellen 2× 2-Matrizen der Form(
a b

−b a

)
mit a2 + b2 6= 0.

(a) Zeigen Sie, dass H eine Untergruppe der Gruppe GL2(R) der invertierbaren reellen 2× 2-Matrizen

ist.

(b) Seien A,B,C ∈ H. Zeigen Sie, dass die Gleichung AY B = C eine eindeutige Lösung Y in H hat.

(c) Lösen Sie die Gleichung (
4 3

−3 4

)
Y

(
6 2

−2 6

)
=

(
1 3

−3 1

)
.

Lösung:

zu (a) Das Nentralelement von GL2(R) ist die Einheitsmatrix E. Es muss also gezeigt werden, dass

E in H liegt, und dass für alle A,B ∈ H auch AB ∈ H und A−1 ∈ H erfüllt ist. Offenbar gilt E ∈ H,

denn E kommt dadurch zu Stande, dass man in der Matrix der angegebenen Form a = 1 und b = 0 setzt

(und es ist 12 + 02 = 1 6= 0). Seien nun A,B ∈ H vorgegeben. Dann gibt es Paare (a, b), (c, d) ∈ R2 mit

a2 + b2 6= 0, c2 + d2 6= 0.

A =

(
a b

−b a

)
und B =

(
c d

−d b

)
.

Es ist dann

AB =

(
a b

−b a

)(
c d

−d c

)
=

(
ac− bd ad+ bc

−(ad+ bc) ac− bd

)
Wegen det(A) = a2 + b2 6= 0 und det(B) = c2 + d2 6= 0 muss auch det(AB) = det(A) det(B) ungleich

null sein. Es gilt also (ac− bd)2 + (ad+ bc)2 6= 0. Damit ist insgesamt AB ∈ H nachgewiesen. Weiter gilt

A−1 =

(
a

a2+b2 − b
a2+b2

−(− b
a2+b2 ) a

a2+b2

)
=

(
u v

−v u

)

mit u = a
a2+b2 , v = b

a2+b2 . Aus det(A) 6= 0 folgt det(A−1) 6= 0 und somit u2 + v2 6= 0. Dies zeigt, dass

auch A−1 in H liegt.

zu (b) Wegen A,B ∈ H sind A und B invertierbar. Sei Y1 = A−1CB−1. Wegen A,B,C ∈ H und der

Untergruppen-Eigenschaft ist auch Y1 in H enthalten, und Y1 ist eine Lösung der angegebenen Gleichung,

denn es gilt

AY1B = A(A−1CB−1)B = ECE = C.

Bezeichnet Y ′1 ∈ H eine beliebige Lösung der Gleichung, dann folgt Y ′1 = A−1(AY ′1B)B−1 = A−1CB−1 =

A−1(AY1B)B−1 = Y1. Dies zeigt, dass Y1 die einzige Lösung der Gleichung ist.

zu (c) Nach Teil (b) erhalten wir eine Lösung der Gleichung durch

Y1 =

(
4 3

−3 4

)−1(
1 3

−3 1

)(
6 2

−2 6

)−1

= 1
25

(
4 −3

3 4

)
·

(
1 3

−3 1

)
· 1

40

(
6 −2

2 6

)

= 1
1000

(
13 9

−9 13

)(
6 −2

2 6

)
= 1

1000

(
96 28

−28 96

)
= 1

250

(
24 7

−7 24

)



Wir überprüfen die Korrektheit der Lösung.(
4 3

−3 4

)
Y1

(
6 2

−2 6

)
= 1

250

(
4 3

−3 4

)(
24 7

−7 24

)(
6 2

−2 6

)

= 1
250

(
75 100

−100 75

)(
6 2

−2 6

)
= 1

250

(
250 750

−750 250

)
=

(
1 3

−3 1

)
.



Aufgabe H24T1A2

Sei G eine Gruppe der Ordnung 2024 (= 23 · 11 · 23). Zeigen Sie:

(a) G hat einen Normalteiler H der Ordnung 23.

(b) H operiert transitiv durch Konjugation auf den Untergruppen der Ordnung 11.

(c) G hat einen Normalteiler der Ordnung 253.

(d) G ist auflösbar.

Lösung:

zu (a) Für jede Primzahl p sei νp die Anzahl der p-Sylowgruppen von G. Auf Grund der Sylowsätze

gilt ν23 | 23 · 11, also ν23 ∈ {1, 2, 4, 8, 11, 22, 44, 88}, außerdem ν23 ≡ 1 mod 23. Wegen 2, 4, 8, 11, 22 6≡
1 mod 23, 44 ≡ 21 6≡ 1 mod 23 und 88 ≡ 19 6≡ 1 mod 23 folgt ν23 = 1. Wiederum auf Grund der

Sylowsätze ist die einzige 23-Sylowgruppe H ein Normalteiler von G, und wegen |G| = 23 · 111 · 231 gilt

|H| = 23.

zu (b) Sei • die Operation der Gruppe H operiert auf der Menge M11 den Untergruppen von G der

Ordnung 11 durch Konjugation. Für beliebiges U ∈ M11 ist die Bahnlänge |H(U)| ein Teiler von 23,

also (da 23 eine Primzahl ist) entweder |H(U)| = 1 oder |H(U)| = 23. Im zweiten Fall ist die Operation

transitiv; nehmen wir also an, es gilt |H(U)| = 1 und somit H(U) = {U}.

Aus dieser Annahme folgt hUh−1 = h • U = U für alle h ∈ H, d.h. H ist ist im Normalisator NG(U)

von U enthalten. Somit ist |H| = 23 nach dem Satz von Lagrange ein Teiler von |NG(U)|. Wegen

U ⊆ NG(U) ist auch |U | = 11 ein Teiler von |NG(U)|. Insgesamt ist also kgV(11, 23) = 253 ein Teiler

von |NG(U)|, und insbesondere |NG(U)| ≥ 253. Weil G auf der Menge der 11-Sylowgruppen transitiv

operiert, NG(U) der Stabilisator von U bezüglich dieser Operation und ν11 = |G(U)| die Bahnlänge ist,

gilt ν11 = (G : NG(U)), und wir erhalten

ν11 =
|G|

|NG(U)|
=

2024

|NG(U)|
≤ 2024

253
= 8.

Auf Grund der Sylowsätze gilt außerdem ν11 | (23 · 23), insgesamt folgt aus der Annahme also ν11 | 8

und ν11 ∈ {1, 2, 4, 8}. Zusammen mit ν11 ≡ 1 mod 11 und 2, 4, 8 6≡ 1 mod 11 folgt ν11 = 1. Die Menge

M11 ist dann einelementig. Wegen {U} = H(U) ⊆ M11 folgt daraus M11 = H(U), d.h. die Operation

von H auf M11 ist auch in diesem Fall transitiv.

zu (c) Sei Ḡ = G/H; dies ist eine Gruppe der Ordnung |Ḡ| = (G : H) = |G|
|H| = 2024

23 = 88. Für jede

Primzahl p sei ν̄p die Anzahl der p-Sylowgruppen von Ḡ. Auf Grund der Sylowsätze gilt ν̄11 | 8, also

ν̄11 ∈ {1, 2, 4, 8}, und ν̄11 ≡ 1 mod 11. Wegen 2, 4, 8 6≡ 1 mod 11 folgt ν̄11 = 1. Sei N̄ die einzige 11-

Sylowgruppe von Ḡ und N = π−1(N̄) das Urbild von N̄ unter dem kanonischen Epimorphismus π : G→
Ḡ. Wegen dem Zweiten Sylowsatz ist N̄ ein Normalteiler von Ḡ, und auf Grund des Korrespondenzsatzes

gilt N �G.

Sei nun M = NH, das Komplexprodukt von N und H. Mit N und H ist auch M ein Normalteiler

von G. Darüber hinaus ist M ein inneres direktes Produkt von N und H. Denn wegen ggT(|N |, |H|) =

ggT(11, 23) = 1 gilt N ∩H = {eG}, und wegen N,H �G sind N und H auch Normalteiler von M . Weil

M ein inneres direktes Produkt von N und H ist, gilt M ∼= N ×H und |M | = |N | · |H| = 11 · 23 = 253.

Insgesamt ist M also ein Normalteiler von G der Ordnung 253.



zu (d) Wegen M �G genügt es zu zeigen, dass M und G/M auflösbare Gruppen sind. Wegen |G/M | =
(G : M) = |G|

|M | = 2024
253 = 8 = 23 ist G/M eine Gruppe von Primzahlpotenzordnung und also solche

auflösbar. Nun beweisen wir noch die Auflösbarkeit von M . Als Normalteiler von G ist H ⊆M auch ein

Normalteiler von M . Als Gruppe von Primzahlordnung ist |H| = 23 zyklisch und damit auch auflösbar.

Auch die Faktorgruppe M/H ist wegen |M/H| = (M : H) = |M |
|H| = 253

23 = 11 von Pirmzahlordnung und

damit auflösbar. Aus der Auflösbarkeit von H und M/H folgt die Auflösbarkeit von M .



Aufgabe H24T1A3

Sei K ein Körper und sei

R =

{
n∑
i=0

aix
i ∈ K[x]

∣∣∣∣ a1 = 0

}
.

(a) Zeigen Sie, dass R ein Teilring (mit Eins) des Polynomrings K[x] über K ist.

(b) Entscheiden Sie begründet, ob f = x3 ∈ R irreduzibel ist, und ob f = x3 ∈ R prim ist.

(c) Entscheiden Sie begründet, ob R ein faktorieller Ring ist.

(d) Geben Sie ein a ∈ R an, so dass das Ideal (x3, a) von R kein Hauptideal ist, und begründen Sie

Ihre Wahl.

Lösung:

zu (a) Zu zeigen ist, dass 1 ∈ R gilt, und dass für alle f, g ∈ R auch f − g ∈ R und fg ∈ R erfüllt

sind. Offenbar ist 1 tatsächlich in R enthalten, denn dieses Element hat die Form
∑n
i=0 aix

i mit n = 1,

a0 = 1 und a1 = 0. Seien nun f, g ∈ R vorgegeben, f =
∑m
i=0 aix

i, g =
∑n
j=0 bjx

j mit m,n ∈ N,

a0, ..., am, b1, ..., bn ∈ K und a1 = b1 = 0. Setzen wir r = max{m,n}, ai = 0 für alle i ∈ N mit i > m und

bj = 0 für alle j ∈ N mit j > n und anschließend cj = aj−bj für alle j ∈ N0, dann gilt f−g =
∑r
j=0 cjx

j

sowie c1 = a1 − b1 = 0− 0 = 0. Dies zeigt, dass f − g in R enthalten ist.

Weiter gilt fg =
∑m+n
j=0 djx

j mit dj =
∑j
i=0 aj−ibi. Insbesondere ist d1 = a1b0 +a0b1 = 0 · b0 +a0 ·0 = 0.

Dies zeigt, dass fg in R enthalten ist.

zu (b) Um zu zeigen, dass x3 tatsächlich irreduzibel ist, überprüfen wir, dass x3 6= 0 und x3 /∈ R× gilt,

und dass für alle f, g ∈ R aus x3 = fg jeweils f ∈ R× oder g ∈ R× folgt. Die Ungleichung x3 6= 0 ist

offensichtlich erfüllt. Wäre x3 in R eine Einheit, dann gäbe es ein f ∈ R mit x3 ·f = 1. Insbesondere wäre

x3 dann eine Einheit im Polynomring K[x]. Aus der Vorlesung ist aber bekannt, dass im Polynomring

K[x] die Menge der Einheiten mit K× übereinstimmt. Somit wäre x3 in K[x] eine Konstante (ungleich

null), was offensichtlich nicht der Fall ist.

Seien nun f, g ∈ R mit x3 = fg gegeben und nehmen wir an, dass weder f noch g in R eine Einheit ist.

Dann gilt auch f, g /∈ K[x]×, also f, g /∈ K×. Denn wäre f ∈ K×, dann wäre auch der Kehrwert f−1 in R

enthalten, und wegen f · f−1 = 1 wäre f in R eine Einheit. Ebenso kann g ∈ K× ausgeschlossen werden.

Aus f, g /∈ K[x]× folgt grad(f), grad(g) > 0. Wegen grad(f)+grad(g) = grad(fg) = grad(x3) = 3 können

wir, nach eventueller Vertauschung von f und g, grad(f) = 1 und grad(g) = 2 annehmen. Als Polynom

vom Grad 1 ist f in K[x] ein irreduzibles Element. Weil K[x] ein faktorieller Ring ist, muss f als Teiler

von x3 in K[x] zu einem der irreduziblen Faktoren von x3 assoziiert sein. Bis auf Assoziierte ist x der

einzige irreduzible Faktor von x3 (mit Vielfachheit 3). Es gilt folglich f = cx für ein c ∈ K×. Schreiben

wir nun f in der Form f =
∑n
j=0 ajx

j mit n ∈ N und a0, ..., an ∈ K, dann folgt a1 = c 6= 0. Dies zeigt,

dass f nicht in R enthalten ist, im Widerspruch zur Annahme. Der Nachweis der Irreduzibilität von x3

ist damit abgeschlossen.

Die Gleichung x3 ·x3 = x2 ·x4 zeigt, dass x3 in R ein Teiler von x2 ·x4 ist. Wäre x3 in R ein Primelement,

dann müsste x3 folglich ein Teiler von x2 oder von x4 sein. Im ersten Fall würde x2 = f ·x3 für ein f ∈ R
gelten, und daraus würde 2 = grad(x2) = grad(f) + grad(x3) ≥ 3 folgt, im Widerspruch zu 2 < 3. Im

zweiten Fall wäre x4 = f ·x3 für ein f ∈ R. Da K[x] ein Integritätsbereich ist, dürfen wir auf x·x3 = f ·x3

die Kürzungsregel anwenden und erhalten f = x. Aber wie bereits oben festgestellt, ist kein Polynom

der Form cx mit c ∈ K× in R enthalten. Also ist x3 kein Primelement in R.



zu (c) Laut Vorlesung stimmt in einem faktoriellen Ring die Menge der irreduziblen Elemente mit

der Menge der Primelemente überein. Da x3 nach Teil (b) irreduzibel, aber nicht prim ist, kann R kein

faktorieller Ring sein.

zu (d) Offenbar ist x2 in R enthalten; wir zeigen, dass I = (x3, x2) kein Hauptideal in R ist. Nehmen

wir an, dass (x3, x2) = (f) für ein f ∈ R gilt. Wegen x3, x2 ∈ (f) gibt es dann g, h ∈ R mit x3 = fg

und x2 = fh. Auf Grund der Eindeutigkeit der Primfaktorzerlegung in K[x] ist f entweder eine Einheit

oder assoziiert zu einem Produkt von Primfaktoren von x2 in K[x]. Da x bis auf Assoziierte der einzige

Primfaktor ist, muss also f = cxm gelten, für ein c ∈ K× und m ∈ {0, 1, 2}. Der Fall m = 1 ist

ausgeschlossen, denn aus x2 = cx · h würde dann c−1x = h ∈ R folgen, im Widerspruch zu unserer

Feststellung aus Teil (b). Ebenso ist m = 2 unmöglich, denn dann wäre x3 = cx2 · g und c−1x = g ∈ R.

Also bleibt nur m = 0 und f = c ∈ K×. Aber dann wäre f auch eine Einheit in R und I = (f) in R

das Einheitsideal, also insbesondere 1 ∈ (x3, x2). Dies ist ebenfalls unmöglich, denn jedes Element u in

(x3, x2) hat die Form u = x3 · v + x2 · w mit v, w ∈ R, und somit u(0) = 03 · v(0) + 02 · w(0) = 0 6= 1.



Aufgabe H24T1A4

(a) Sei K|Q eine Körpererweiterung. Zeigen Sie, dass jeder Körperautomorphismus von K ein Q-

Automorphismus ist.

(b) Sei K eine endliche Körpererweiterung von Q und sei ϕ : K → K ein Körperhomomorphismus.

Zeigen Sie, dass ϕ bijektiv ist.

(c) Geben Sie eine Körpererweiterung K von Q und einen Körperhomomorphismus ϕ : K → K an,

der nicht bijektiv ist. Begründen Sie dabei Ihre Aussagen.

Lösung:

zu (a) Sei σ : K → K ein Körperautomorphismus. Dann ist σ insbesondere ein Ringhomomorphismus,

und somit σ(0) = 0 und σ(1) = 1. Durch vollständige Induktion folgt daraus σ(m) = m für alle m ∈ N0.

Denn für m ∈ {0, 1} haben wir die Gleichung gerade überprüft, und setzen wir sie für ein m ∈ N0 voraus,

dann erhalten wir durch die Homomorphismus-Eigenschaft auch σ(m+ 1) = σ(m) + σ(1) = m+ 1.

Aus der Vorlesung ist bekannt, dass σ als Körperhomomorphismus auch die Gleichung σ(−α) = −σ(α)

für alle α ∈ K erfüllt, also insbesondere σ(−1) = −σ(1) = −1, und darüber hinaus σ(α−1) = σ(α)−1 für

alle α ∈ K×. Sei nun r ∈ Q beliebig vorgegeben. Dann gibt es ein ε ∈ {±1}, ein m ∈ N0 und ein n ∈ N
mit r = ε ·m · n−1. Die Homomorphismus-Eigenschaft von σ liefert

σ(r) = σ(ε ·m · n−1) = σ(ε) · σ(m) · σ(n−1) = ε ·m · σ(n)−1 = ε ·m · n−1 = r.

Dies zeigt, dass durch σ ein Q-Homomorphismus K → K gegeben ist. Als Körperautomorphismus ist σ

außerdem bijektiv, insgesamt also ein Q-Automorphismus von K.

zu (b) Aus der Vorlesung ist bekannt, dass Körperhomomorphismen stets injektiv sind. Insbesondere ist

ϕ : K → K also eine injektive Abbildung. Da für alle c ∈ Q und alle α, β ∈ K auch ϕ(α+β) = ϕ(α)+ϕ(β)

und ϕ(cα) = ϕ(c)ϕ(α) = cϕ(α) gilt (wobei wir im letzten Schritt das Ergebnis aus Teil (a) verwendet

haben, dass jeder Körperhomomorphismus K → K ein Q-Homomorphismus ist), ist ϕ darüber hinaus

ein Endomorphismus des Q-Vektorraums K. Nun ist n = dimK = [K : Q] laut Angabe eine (endliche)

natürliche Zahl. Der Dimensionssatz für lineare Abbildungen liefert

n = dim ker(ϕ) + dim im(ϕ) ,

wobei ker(ϕ) den Kern und im(ϕ) das Bild der linearen Abbildung ϕ bezeichnet. Da ϕ injektiv ist, gilt

dim ker(ϕ) = dim{0} = 0 und somit dim im(ϕ) = n−0 = n. Aus im(ϕ) ⊆ K und dim im(ϕ) = n = dimK

folgt im(ϕ) = K. Also ist ϕ auch surjektiv, insgesamt eine bijektive Abbildung.

zu (c) SeiK = Q(t) der rationale Funktionenkörper überQ, also der Quotientenkörper des Polynomrings

Q[t]. Auf Grund der universellen Eigenschaft des Polynomrings gibt es einen Ringhomomorphismus

ψ : Q[t] → Q(t) mit ψ(c) = c für alle c ∈ Q und ψ(t) = t2. Ein beliebiges Element f ∈ Q[t] wird

durch ψ offenbar auf das Polynom f(t2) abgebildet. Dies zeigt insbesondere, dass ψ die Elemente aus

Q[t]\{0} auf Einheiten des Rings Q(t) abbildet, denn Q(t) ist ein Körper, und die Einheiten in Q(t) sind

somit genau die Elemente ungleich null. Auf Grund der universellen Eigenschaft des Quotientenkörpers

existiert damit ein Ringhomomorphismus ϕ : Q(t) → Q(t) mit ϕ(f/g) = ψ(f)ψ(g)−1 für alle f ∈ Q[t]

und g ∈ Q[t] \ {0}. Als Ringhomomorphismus zwischen Körpern ist ϕ ein Körperhomomorphismus.



Wir zeigen nun, dass ϕ nicht surjektiv, und damit auch nicht bijektiv ist. Wäre ϕ surjektiv, dann gäbe

es ein Element u ∈ Q(t) mit ϕ(u) = t. Schreiben wir u = f/g mit f ∈ Q[t] und g ∈ Q[t] \ {0}, dann folgt

t = ϕ(u) = ϕ(f/g) = ψ(f)ψ(g)−1 =
f(t2)

g(t2)

und somit tg(t2) = f(t2). Aber der Grad des Polynoms tg(t2) ist ungerade, und der Grad von f(t2) ist

gerade, wodurch eine solche Gleichung ausgeschlossen ist.



Aufgabe H24T1A5

(a) Zeigen Sie: Ist L|K eine Körpererweiterung von Grad 2 und ist char(K) 6= 2, so ist L|K eine

Galois-Erweiterung.

(b) Geben Sie begründet eine Körpererweiterung L|K vom Grad 2 an, die nicht galois’sch ist.

(c) Geben Sie für jedes n ∈ N mit n ≥ 3 eine Körpererweiterung K|Q vom Grad n an, die nicht

galois’sch ist, und geben Sie für Ihre Beispiele die Anzahl der Körperautomorphismen von K an.

Begründen Sie dabei Ihre Aussagen.

Lösung:

zu (a) Sei L|K eine Körpererweiterung mit [L : K] = 2. Dann ist L|K normal. Ist nämlich f ∈ K[x]

ein über K irreduzibles Polynom mit einer Nullstelle α ∈ L, dann ist K(α) ein Zwischenkörper von L|K,

und folglich

2 = [L : K] = [L : K(α)] · [K(α) : K] = [L : K(α)] · grad(f).

Daraus folgt grad(f) ∈ {1, 2}. Wegen f(α) = 0 ist x−α ein Teiler von f in L[x]. Es gilt also f = (x−α)·g
für ein g ∈ L[x]. Wegen grad(f) ∈ {1, 2} gilt grad(g) ∈ {0, 1}. Dies zeigt, dass f über L in Linearfaktoren

zerfällt. Damit ist insgesamt nachgewiesen, dass L|K eine normale Erweiterung ist. (Das Resultat, dass

jede Körpererweiterung vom Grad 2 normal ist, wird meistens in der Vorlesung behandelt. Aus der

Aufgabenstellung geht nicht klar hervor, ob man das hier benutzen darf. Normalerweise dürfen alle

Ergebnisse aus der Vorlesung verwendet werden.)

Nun muss noch gezeigt werden, dass L|K separabel ist, denn daraus folgt insgesamt, dass es sich bei L|K
um eine Galois-Erweiterung handelt. Dafür wiederum genügt es zu zeigen, dass jedes α ∈ L\K separabel

über K ist. Sei also α ein solches Element und f ∈ K[x] das Minimalpolynom von α über K. Da f als

Minimalpolynom irreduzibel über K ist, folgt grad(f) ∈ {1, 2} aus der Rechnung von oben. Im Fall

grad(f) = 1 wäre x− α = f ∈ K[x] und somit α ∈ K. Also muss grad(f) = 2 sein, d.h. f = x2 + ax+ b

für geeignete a, b ∈ K. Wäre α nicht separabel über K, dann wäre f ∈ K[x] kein separables Polynom.

Es wäre dann α eine doppelte Nullstelle von f und damit auch eine Nullstelle von f ′ = 2x + a. Wegen

char(K) 6= 2 ist aber 2 6= 0 in K. Aus 2α + a = f ′(α) = 0 würde dann α = − 1
2a ∈ K folgen, erneut im

Widerspruch zu α /∈ K.

zu (b) Sei L = F2(t) der rationale Funktionenkörper über F2, also der Quotientenkörper des Polynom-

rings F2[t], und K = F2(t2). Dann gilt K(t) = F2(t2, t) = F2(t) = L. Um zu zeigen, dass [L : K] = 2

ist, genügt es zu überprüfen, dass f = x2 − t2 ∈ K[x] das Minimalpolynom von t über K ist, denn

darauf folgt [L : K] = [K(t) : K] = grad(f) = 2. Offenbar ist f normiert, und es gilt f(t) = t2 − t2 = 0.

Nehmen wir nun an, f wäre über K reduzibel. Wegen grad(f) = 2 wäre die Nullstelle t von f dann in

K enthalten. Es gäbe dann Polynome u, v ∈ F2[t] mit v 6= 0 und t = u(t2)/v(t2) (weil jedes Element

aus K in dieser Form dargestellt werden kann). Daraus würde tv(t2) = u(t2) folgen, aber eine solche

Gleichung ist ausgeschlossen, weil der Polynomgrad von u(t2) gerade und der von tv(t2) ungerade ist,

vgl. H24T1A4 (c). Also ist f über K irreduzibel.

zu (c) Für jedes n ∈ N mit n ≥ 3 sei αn = n
√

2 ∈ R+ und Kn = Q(αn). Wir zeigen, dass jeweils

[Kn : Q] = n gilt, und dass die Erweiterung Kn|Q nicht normal, und damit auch nicht galois’sch ist.

Das Polynom fn = xn− 2 ∈ Q[x] ist normiert, hat αn als Nullstelle, und nach dem Eisenstein-Kriterium

(angewendet auf die Primzahl p = 2) ist es in Z[x] und Q[x] irreduzibel. Es handelt sich also um das



Minimalpolynom von αn über Q, und daraus folgt [Kn : Q] = [Q(αn) : Q] = grad(fn) = n, für alle

n ∈ N.

Nehmen wir nun an, dass Kn|Q eine normale Erweiterung ist. Weil fn über Q irreduzibel ist und mit αn

in Kn eine Nullstelle besitzt, müsste fn über Kn in Linearfaktoren zerfallen. Dies würde bedeuten, dass

alle komplexen Nullstellen von fn bereits in Kn enthalten sind. Wegen αn ∈ R gilt Kn ⊆ R; laut unserer

Annahme wären also alle Nullstellen reell. Bezeichnet ζn die primitive n-te Einheitswurzel e2πi/n, dann ist

auch α′n = ζnαn eine komplexe Nullstelle von fn, wegen fn(α′n) = (ζnαn)n−2 = ζnnα
n
n−2 = 1 ·2−2 = 0.

Laut Annahme wäre also α′n ∈ R, und wegen αn ∈ R+ würde auch ζn = cos( 2π
n ) + i sin( 2π

n ) in R liegen.

Es wäre dann sin( 2π
n ) = 0. Aber aus n ≥ 3 folgt 0 < 2π

n < π und sin( 2π
n ) > 0. Unsere Annahme hat also

zu einem Widerspruch geführt, und folglich ist die Erweiterung Kn|Q nicht normal.

Sei nun Gn = Aut(Kn); wir zeigen, dass für ungerades n jeweils |Gn| = 1 gilt, und |Gn| = 2 für gerades n.

Aus der Vorlesung (oder durch Aufgabe H24T1A4) ist bekannt, dass Aut(Kn) = AutQ(Kn) = HomQ(Kn)

gilt. Auf Grund des Fortsetzungssatzes und wegen Kn = Q(αn) stimmt die Anzahl der Elemente von

HomQ(Kn) mit der Anzahl der Nullstellen des Minimalpolynoms µαn,Q = fn in Kn überein.

Zunächst überprüfen wir, dass die Menge der Nullstellen von fn in C durch Nn = {ζknαn | 0 ≤ k < n}
gegeben ist. Weil ζn in C× ein Element der Ordnung n ist, sind die Elemente ζkn mit 0 ≤ k < n alle

verschieden. Wegen αn 6= 0 folgt daraus, dass Nn aus n verschiedenen Elementen besteht, und wegen

fn(ζknαn) = (ζknαn)n − 2 = (ζnn )kαnn − 2 = 1k · 2 − 1 = 0 sind dies alles Nullstellen von fn. Die Anzahl

der komplexen Nullstellen von fn ist mit Vielfachheiten genau gleich grad(fn) = n; dies zeigt, dass Nn

tatsächlich genau die Menge der komplexen Nullstellen von fn ist.

Als nächstes ermitteln wir, viele der komplexen Nullstellen jeweils in Kn liegen; wie oben gezeigt, ist dies

dann die gesuchte Anzahl |Gn|. Für jedes n ∈ N mit n ≥ 3 und 0 ≤ k < n gilt jeweils

ζknαn = αn cos(
2πk

n
) + iαn sin(

2πk

n
).

Die Nullstellen der Sinusfunktion sind bekanntlich genau die ganzzahligen Vielfachen von π. Ist also
2k
n keine ganze Zahl, dann ist ζknαn also nicht reell, und erst recht gilt ζknαn /∈ Kn. Wegen k ∈ Z und

0 ≤ k < n ist 2k
n ∈ Z nur für k ∈ {0, 1

2n} möglich. Ist n ungerade, dann 2k
n ∈ Z also nur für k = 0 erüllt,

und somit |Gn| ≤ 1. Ist n gerade, so gilt 2k
n ∈ Z genau für k ∈ {0, 1

2n}, also ist hier |Gn| ≤ 2. Andererseits

gilt für k = 0 jeweils ζknαn = αn ∈ Kn, und für n gerade, k = 1
2n ist ζkn = cos(π) + i sin(π) = −1 und

ebenfalls ζknαn = −αn ∈ Kn. Es ist also tatsächlich |Gn| = 1 für ungerades und |Gn| = 2 für gerades n,

wie oben angegeben.



Aufgabe H24T2A1

Sei R ein Ring und eine Folge (an)n≥0 von Elementen von R rekursiv definiert wie folgt:

a0 = a1 = 1, an+2 = 2an+1 + an.

(a) Sei α ∈ R mit α2 = 2. Zeigen Sie, dass dann für alle n ≥ 0 gilt

2an = (1 + α)n + (1− α)n.

(b) Sei p eine ungerade Primzahl, so dass es ein α ∈ R = Fp (der Körper mit p Elementen) gibt mit

α2 = 2̄. Zeigen Sie, dass die Folge (an)n≥1 periodisch ist mit einer minimalen Periode, die p − 1

teilt.

(c) Bestimmen Sie die kleinste Zahl k > 0, so dass für R = F7 gilt an+k = an für alle n ≥ 0.

(d) Zeigen Sie, dass es für R = Z keine ganzen Zahlen m,n ≥ 0 mit der Eigenschaft an = m6 + 4 gibt.

Lösung:

zu (a) Wir beweisen die Gleichung durch vollständige Induktion für alle n ∈ N0. Es gilt sowohl

(1 + α)0 + (1− α)0 = 1 + 1 = 2 = 2 · a0 als auch (1 + α)1 + (1− α)1 = 2 = 2 · a1, also ist die Gleichung

für n ∈ {0, 1} erfüllt. Sei nun n ∈ N0 vorgegeben, und setzen wir die Gleichung für alle Werte m ∈ N0

mit m < n voraus. Dann erhalten wir einerseits

2an = 4an−1 + 2an−2 = 2(1 + α)n−1 + 2(1− α)n−1 + (1 + α)n−2 + (1− α)n−2 =

(1 + α)n−2 · (2(1 + α) + 1) + (1− α)n−2 · (2(1− α) + 1) = (1 + α)n−2 · (3 + 2α) + (1− α)n−2 · (3− 2α)

und wegen α2 = 2 andererseits

(1 + α)n + (1− α)n = (1 + α)n−2 · (1 + α)2 + (1− α)n−2 · (1− α)2 =

(1 + α)n−2 · (1 + 2α+ α2) + (1− α)n−2 · (1− 2α+ α2) = (1 + α)n−2 · (3 + 2α) + (1− α)n−2 · (3− 2α) ,

insgesamt also 2an = (1 + α)n + (1− α)n.

zu (b) Vorweg bemerken wir: Ist k ∈ N die minimale Periode der Folge (an)n≥0 und ` ∈ N eine beliebige

Periode (also eine Zahl mit an+` = an für alle n ∈ N0, dann muss ` ein Vielfaches von k sein. Denn

nehmen wir an, dies ist nicht der Fall. Durch Division mit Rest erhalten wir q, r ∈ N0 mit 0 < r < k, so

dass ` = qk + r erfüllt ist. Für jedes n ∈ N0 gilt dann an+r = an+`−qk = an+` = an. Somit wäre r eine

noch kürzere Periode, im Widerspruch zur Minimalität von k.

Da p ungerade ist, ist 2̄ in Fp invertierbar. Nach Teil (a) gilt somit an = 2̄−1(1̄ + α)n + 2̄−1(1̄− α)n für

alle n ∈ N0. Wegen α2 = 2̄ und p ≥ 3 ist α 6= 1̄ und somit 1̄−α ∈ F×p . Ebenso ist 1̄ +α ∈ F×p enthalten,

denn andernfalls wäre α = −1̄ und 2̄ = α2 = 1̄, was in Fp (wegen p > 1) ausgeschlossen ist.

Zunächst betrachten wir den Fall, dass auch das Element 1̄ + α in F×p liegt. Wegen |F×p | = p − 1 gilt

dann (1̄ + α)p−1 = 1̄ und (1̄− α)p−1 = 1̄, und wir erhalten für alle n ∈ N0 jeweils

an+p = 2̄−1(1̄ + α)n+p + 2̄−1(1̄− α)n+p = 2̄−1(1̄ + α)n · (1̄ + α)p + 2̄−1(1̄− α)n · (1̄− α)p

= 2̄−1(1̄ + α)n · 1̄ + 2̄−1(1̄− α)n · 1̄ = an.

Also ist p− 1 eine Periode der Folge (an)n≥0, und die minimale Periode ist, wie oben festgestellt wurde,

ein Teiler davon.



zu (c) Nach Teil (b) ist die minimale Periode k ein Teiler von 6, also k ∈ {1, 2, 3, 6}. In F7 gilt

a0 = a1 = 1̄, und die Rekursionsformel liefert a2 = 3̄, a3 = 0̄, a4 = 3̄, a5 = 6̄, a6 = a7 = 1̄. Wegen

a1 6= a2, a1 6= a3 und a1 6= a4 ist k ∈ {1, 2, 3} ausgeschlossen. Also ist die minimale Periode gleich 6.

(Dass an+6 = an für alle n ∈ N0 gilt, lässt sich natürlich wegen a6 = a0 und a7 = a1 auch mit Hilfe der

Rekursionsformel durch vollständige Induktion beweisen.)

zu (d) Nehmen wir an, dass es m,n ∈ N0 mit an = m6 + 4 gibt. Sei (bn)n≥0 die entsprechende Folge

in F7. Wegen b0 = a0 + 7Z, b1 = a1 + 7Z und auf Grund der Rekursionsformeln an+2 = 2an+1 + an,

bn+2 = 2̄bn+1 + bn liefert ein einfacher Induktionsbeweis bn = an + 7Z für alle n ∈ N0. Insbesondere

wäre also bn = m̄6 + 4̄, mit m̄ = m+ 7Z. Wir unterscheiden nun zwei Fälle. Ist m̄ = 0̄, dann ist bn = 4̄;

andernfalls liegt m̄ in F×7 , und weil dies eine Gruppe der Ordnung 6 ist, folgt bn = m̄6 + 4̄ = 1̄ + 4̄ = 5̄.

Aber anhand der Werte b0, ..., b5, die wir unter (c) berechnet haben, und auf Grund der Periodenlänge

6̄ der Folge (bn)n≥0, ist erkennbar, dass weder 4̄ noch 5̄ in der Folge vorkommt. Die Annahme hat also

zu einem Widerspruch geführt.



Aufgabe H24T2A2

(a) Bestimmen Sie die ganze Zahl a ∈ {0, ..., 82} mit 50247 ≡ a mod 83.

(b) Der Satz von Wilson besagt, dass (p − 1)! ≡ −1 mod p für jede Primzahl p gilt. Bestimmen Sie

hiermit die ganze Zahl a ∈ {0, ..., 100} mit 98! ≡ a mod 101.

Hinweis: Sie dürfen den Satz von Wilson ohne Beweis benutzen.

(c) Im Folgenden bezeichne ϕ die Eulersche ϕ-Funktion. Beweisen oder widerlegen Sie:

(i) für alle m,n ∈ N mit n > m gilt ϕ(n) > ϕ(m);

(ii) für alle n ∈ N gilt ϕ(2n) ≥ ϕ(n);

(iii) für alle n ∈ N gilt ϕ(n) | ϕ(n2).

Lösung:

zu (a) Weil 83 eine Primzahl ist, gilt c82 ≡ 1 mod 83 für alle c ∈ Z mit 83 - c, nach dem Kleinen Satzes

von Fermat. Wegen 83 - 50 erhalten wir mit Hilfe der Rechenregeln für Kongruenzen

50247 ≡ 503·82+1 ≡ (5082)3 · 50 ≡ 13 · 50 ≡ 50 mod 83.

Also ist a = 50 die gesuchte Zahl.

zu (b) Die Zahl 101 ist eine Primzahl, und im Körper F101 gilt 2̄ · 50 = 100 = −1̄, also (−2̄)−1 = 50

und 99
−1

= (−2̄)−1 = 50. Daraus folgt 50 · 99 ≡ 1 mod 101, und mit der Kongruenz 100! ≡ −1 mod 101

aus dem Satz von Wilson erhalten wir

98! ≡ 1 · (98!) ≡ 50 · 99 · 98! ≡ 50 · 99! ≡ 50 · (−1) · (−1) · 99! ≡ 50 · (−1) · 100 · 99! ≡ 50 · (−1) · 100!

≡ 50 · (−1) · (−1) ≡ 50 mod 101.

Also ist auch hier a = 50 die Lösung.

zu (c) (i) Die Aussage ist falsch, denn es ist 6 > 3, aber ϕ(6) = 2 = ϕ(3).

zu (c) (ii) Diese Aussage ist richtig. Für den Nachweis stellen wir eine beliebige Zahl n ∈ N in der

Form n = 2r ·m dar, wobei r ∈ N0 und m ∈ N ungerade ist. Ist r = 0, dann sind 2 und n teilerfremd,

und es folgt ϕ(2n) = ϕ(2)ϕ(n) = 1 · ϕ(n) ≥ ϕ(n). Ansonsten gilt ϕ(2n) = ϕ(2r+1m) = ϕ(2r+1) · ϕ(m) =

2r · ϕ(m) ≥ 2r−1 · ϕ(m) = ϕ(2r)ϕ(m) = ϕ(n), also ist die Ungleichung hier ebenfalls erfüllt.

zu (c) (iii) Auch diese Aussage ist richtig. Sei n ∈ N vorgegeben und n =
∏r
j=1 p

ej
j die Primfaktorzer-

legung von n, mit r ∈ N0, r verschiedenen Primzahlen p1, ..., pr und e1, ..., er ∈ N. Dann gilt

ϕ(n) =

r∏
j=1

ϕ(p
ej
j ) =

r∏
j=1

p
ej−1
j (pj − 1)

und

ϕ(n2) =

r∏
j=1

ϕ(p
2ej
j ) =

r∏
j=1

p
2ej−1
j (pj − 1).

Für 1 ≤ j ≤ r gilt jeweils 2ej − 1 = ej + ej − 1 ≥ ej + 1− 1 = ej ≥ ej − 1. Der Faktor p
ej−1
j (pj − 1) ist

also jeweils ein Teiler des Faktors p
2ej−1
j (pj − 1), und somit ist ϕ(n) ein Teiler von ϕ(n2).



Aufgabe H24T2A3

(a) Es sei n ∈ N und es sei G eine einfache Untergruppe der symmetrischen Gruppe Sn mit |G| > 2.

Zeigen Sie, dass G bereits eine Untergruppe der alternierenden Gruppe An ist.

(b) Sei G eine einfache Gruppe der Ordnung 90. Zeigen Sie, dass G zu einer Untergruppe der alternie-

renden Gruppe A6 isomorph ist.

(c) Zeigen Sie, dass es keine einfache Gruppe der Ordnung 90 gibt.

Lösung:

zu (a) Aus der Vorlesung ist bekannt, dass durch die Signumsfunktion ein Homomorphismus sgn : Sn →
{±1} gegeben ist. Sei ϕ : G→ {±1} dessen Einschränkung auf die Untergruppe G von Sn. Nehmen wir

an, dass G keine Teilmenge von An ist. Dann existiert ein σ ∈ G mit ϕ(σ) = sgn(σ) = −1. Setzen wir

N = ker(ϕ), dann ist N (als Kern eines Homomorphismus) ein Normalteiler von G. Wegen ϕ(σ) 6= 1

ist σ /∈ N und somit N ( G. Aber auch N = {id} ist ausgeschlossen. Denn in diesem Fall wäre ϕ

injektiv und somit |ϕ(G)| = |G| > 2, was aber wegen ϕ(G) ⊆ {±1} und |{±1}| = 2 unmöglich ist.

Insgesamt gilt unter unserer Annahme von oben also {id} ( N ( G. Aber dies steht im Widerspruch

zur Voraussetzung, dass G einfach ist. Also ist G in An enthalten.

zu (b) Wir erhalten diesen Isomorphismus, indem wir die Gruppe G auf ihren 5-Sylowgruppen operieren

lassen. Die Primfaktorzerlegung der Zahl 90 ist gegeben durch 90 = 2 · 32 · 5. Für die Anzahl ν5 der

5-Sylowgruppen gilt nach dem Dritten Sylowsatz ν5 | 18, also ν5 ∈ {1, 2, 3, 6, 9, 18}, und außerdem

ν5 ≡ 1 mod 5. Wegen 2, 3 6≡ 1 mod 5, 9 ≡ 4 6≡ 1 mod 5 und 18 ≡ 3 6≡ 1 mod 5 folgt ν5 ∈ {1, 6}. Im Fall

ν5 = 1 wäre die einzige 5-Sylowgruppe, die wir mit P bezeichnen, auf Grund des Zweiten Sylowsatzes

ein Normalteiler von G, und wegen 1 < |P | = 5 < |G| wäre {e} ( P ( G. Dies würde der Einfachheit

von G widersprechen. Also muss ν5 = 6 gelten.

Sei X die Menge der 5-Sylowgruppen von G. Laut Vorlesung liefert die Operation von G auf X einen

Homomorphismus ϕ : G → Per(X), der durch ϕ(g)(P ) = g · P = gPg−1 für alle g ∈ G und P ∈ X

definiert ist, wobei · die Operation von G auf X durch Konjugation bezeichnet. Wir zeigen, dass dieser

Homomorphismus injektiv ist. Angenommen, dies ist nicht der Fall. Dann ist N = ker(ϕ) ein Normalteiler

von G mit {e} ( N , für den außerdem N ( G gilt. Denn andernfalls wäre ϕ(g) = idX für alle g ∈ G, also

gPg−1 = ϕ(g)(P ) = idX(P ) = P für alle g ∈ G und P ∈ X, also jede 5-Sylowgruppe ein Normalteiler

von G. Dies würde laut Zweiten Sylowsatz aber ν5 = 1 implizieren, im Widerspruch zu ν5 = 6. So also

erhalten wir {e} ( N ( G, was der Einfachheit von G widerspricht. Damit ist die Injektivität von ϕ

nachgewiesen.

Wegen |X| = ν5 = 6 existiert ein Isomorphismus ι : Per(X)→ S6. Durch ψ = ι◦ϕ ist dann ein injektiver

Homomorphismus G → S6 definiert, und G ist somit isomorph zur Untergruppe ψ(G) von S6. Wegen

|G| = 90 > 2 können wir das Ergebnis aus Teil (a) anwenden und kommen zu dem Ergebnis, dass G

sogar isomorph zu einer Untergruppe von A6 ist.

zu (c) Nehmen wir an, dass G eine einfache Gruppe der Ordnung 90 ist. Nach Teil (b) ist G isomorph

zu einer Untergruppe von A6. Wir können an Stelle von G somit auch diese Untergruppe betrachten und

somit direkt G ≤ A6 annehmen. Es ist |A6| = 1
2 ·6! = 1

2 ·720 = 360 und somit (A6 : G) = |A6|
|G| = 360

90 = 4.

Laut Vorlesung liefert die Operation von G auf der Menge A6/G der vierelementigen Linksnebenklassen

von G in A6 einen Homomorphismus ϕ : A6 → Per(A6/G) gegeben durch ϕ(σ)(τG) = (στ)G für alle

σ, τ ∈ A6. Wegen |A6/G| = (A6 : G) = 4 existiert außerdem ein Isomorphismus ι : Per(A6/G) → S4, so

dass wir durch ψ = ι ◦ ϕ einen Homomorphismus A6 → S4 erhalten.



Sei N = ker(ψ). Laut Vorlesung ist die Gruppe A6 einfach und somit nur N = {id} oder N = A6

möglich. Im Fall N = A6 wäre ψ(σ) = id und somit auch ϕ(σ) = idA6/G für alle σ ∈ A6. Aber dann

würde σG = (σ ◦ id)G = ϕ(σ)(idG) = ϕ(σ)(G) = idA6/G(G) = G und σ ∈ G für alle σ ∈ A6 gelten. Aber

dies ist wegen (A6 : G) = 4 > 1 offenbar nicht der Fall. Betrachten wir nun die Möglichkeit N = {id}.
Dann wäre ψ injektiv und A6 somit isomorph zur Untergruppe ψ(A6) von S4. Aber auch dies ist wegen

|A6| = 360 > 24 = |S4| unmöglich. Unsere Annahme, dass eine einfache Gruppe der Ordnung 90 existiert,

hat also zu einem Widerspruch geführt.



Aufgabe H24T2A4

Im Folgenden sei R = Z+ iZ der Ring der Gauß’schen Zahlen. Ohne Beweis darf benutzt werden, dass

dies ein euklidischer Ring bezüglich der Normabbildung

N : R \ {0} → N, x+ iy 7→ x2 + y2

und somit insbesondere ein Hauptidealring und ein faktorieller Ring ist.

(a) Bestimmen Sie alle a ∈ R mit N(a) ≤ 5.

(b) Schreiben Sie mit Hilfe der Teilaufgabe (a) jede der ganzen Zahlen aus {2, 3, 4, 5, 6} als Produkt

irreduzibler Elemente in R.

(c) Bestimmen Sie ein d ∈ R mit (d) = (5 + 10i, 1 + 3i). Zeigen Sie, dass R/(d) ein Körper ist.

Lösung:

zu (a) Jedes a ∈ R hat die Form a = u+ iv mit u, v ∈ Z, und es ist jeweils N(a) = u2 + v2. Offenbar ist

N(a) = 0 äquivalent zu u2 + v2 = 0 und u = v = 0, also ist 0 das einzige Element mit Norm 0. Ebenso

erhält man

N(a) = 1 ⇔ u2 + v2 = 1 ⇔ (u, v) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}

⇔ a ∈ {±1,±i}

N(a) = 2 ⇔ u2 + v2 = 2 ⇔ u2 = v2 = 1 ⇔ (u, v) ∈ {(1, 1), (−1, 1), (1, 1), (1,−1)}

⇔ a ∈ {1 + i, 1− i,−1 + i,−1− i}

N(a) = 4 ⇔ u2 + v2 = 4 ⇔ {u2, v2} = {0, 4} ⇔ (u, v) ∈ {(2, 0), (−2, 0), (0, 2), (0,−2)}

⇔ a ∈ {±2,±2i}

N(a) = 5 ⇔ u2 + v2 = 5 ⇔ {u2, v2} = {1, 4} ⇔

(u, v) ∈ {(2, 1), (−2, 1), (2,−1), (−2,−1), (1, 2), (−1, 2), (1,−2), (−1,−2)} ⇔

a ∈ {2 + i,−2 + i, 2− i,−2− i, 1 + 2i,−1 + 2i, 1− 2i,−1− 2i}.

Die Gleichung u2 + v2 = 3 besitzt keine Lösung mit u, v ∈ Z. Insgesamt besteht die gesuchte Menge also

aus 1 + 4 + 4 + 4 + 8 = 21 Elementen und ist gegeben durch

{0, 1, i,−1,−i, 1 + i, 1− i,−1 + i,−1− i, 2,−2, 2i,−2i,

2 + i,−2 + i, 2− i,−2− i, 1 + 2i,−1 + 2i, 1− 2i,−1− 2i}.

zu (b) Es ist 2 = (1+i)(1−i). Dabei ist N(1+i) = N(1−i) = 2 eine Primzahl, und laut Vorlesung folgt

daraus, dass die Faktoren 1± i in R irreduzibel sind. Die Zahl 3 ist bereits selbst irreduzibel in R. Dies

folgt laut Vorlesung aus der Tatsache, dass N(3) = 32 ein Primzahlquadrat ist, und dass nach Teil (a) kein

Element der Norm 3 inR existiert. Für die Zahl 4 existiert die Zerlegung 4 = 2·2 = (1+i)(1−i)(1+i)(1−i),
und wie wir bereits oben festgestellt haben, sind alle Faktoren dieser Zerlegung irreduzibel.



Die Zahl 5 besitzt in R die Zerlegung 5 = (2 + i)(2− i), und da N(2 + i) = N(2− i) = 5 eine Primzahl

ist, sind die Faktoren in dieser Zerlegung irreduzibel. Die Zahl 6 kann schließlich zerlegt werden in

6 = 2 · 3 = (1 + i) · (1− i) · 3. Auch hier haben wir bereits festgestellt, dass alle Faktoren irreduzibel sind.

zu (c) Die Zahl 5 + 10i kann in der Form 5 + 10i = 5 · (1 + 2i) = (2 + i)(2− i)(1 + 2i) = i(2 + i)(2− i)2

zerlegt werden, und wie wir in Teil (b) festgestellt haben, sind die Faktoren 2±i in R irreduzibel, während

i wegen N(i) = 1 eine Einheit ist. Die Rechnung

1 + 3i

2 + i
=

(1 + 3i)(2− i)
(2 + i)(2− i)

= 1
5 · (5 + 5i) = 1 + i

liefert für das Element 1 + 3i die Zerlegung 1 + 3i = (2 + i)(1 + i) in irreduzible Faktoren. Da R laut

Angabe faktoriell ist, ist jeder größte gemeinsame Teiler von 5 + 10i und 1 + 3i somit assoziiert zu 1,

2 + i, (1 + i) oder (2 + i)(1− i), denn dies sind bis auf Assoziierte die Teiler von 1 + 3i.

Der Fall 1 ist ausgeschlossen, denn dann wären 5 + 10i und 1 + 3i teilerfremd, aber offenbar ist 2 + i

ein gemeinsamer Teiler der beiden Zahlen, der wegen N(2 + i) = 5 > 1 keine Einheit ist. Andererseits

kann kein Vielfaches von 1 + i ein größter gemeinsamer Teiler der Elemente sein, denn dann müsste 1 + i

assoziiert zu einem irreduziblen Faktor von 5+10i sein. Insbesondere müsste ein solcher Faktor die Norm

N(1 + i) = 2 besitzen. Aber die Faktoren 2 + i, 2− i und 1 + 2i sind alle von Norm 5.

Somit kommen wir zu dem Ergebnis, dass 2 + i ein größter gemeinsamer Teiler der beiden Elemente ist.

Weil R ein Hauptidealring ist, folgt daraus die Idealgleichung (5 + 10i, 1 + 3i) = (2 + i), also ist d = 2 + i

ein Element mit der gesuchten Eigenschaft. Weil d irreduzibel und R ein Hauptidealring ist, handelt es

sich bei dem Hauptideal (d) um ein maximales Ideal, und daraus wiederum folgt, dass R/(d) ein Körper

ist.

Anmerkung: Man hätte auch den Euklidischen Algorithmus verwenden können, um einen ggT der

Elemente 5 + 10i und 1 + 3i im Ring R zu berechnen. Aber auf Grund der Aufgabenteil (a) und (b) war

es leicht, die Faktorisierung der beiden Elemente zu bestimmen, und dadurch kommt man an den ggT

schneller heran.



Aufgabe H24T2A5

Gegeben sei das Polynom f = x6 − 6 ∈ Q[x].

(a) Es sei L ⊆ C der Zerfällungskörper von f über Q. Bestimmen Sie den Grad [L : Q].

(b) Zeigen Sie, dass L|Q eine Galois-Erweiterung ist. Zeigen Sie weiter, dass die Galois-Gruppe

Gal(L|Q) einen Normalteiler der Ordnung 6 enthält.

(c) Entscheiden Sie begründet, ob die Galois-Gruppe Gal(L|Q) abelsch ist.

Lösung:

zu (a) Sei α = 6
√

6 ∈ R+ und ζ = eπi/3, eine primitive 6-te Einheitswurzel. Dann ist N = {ζkα | 0 ≤ k ≤
5} die Menge der komplexen Nullstellen von f . Dass es sich bei allen Elementen von N tatsächlich um

Nullstellen handelt, folgt aus der für 0 ≤ k ≤ 5 gültigen Rechnung f(ζkα) = (ζkα)6−6 = (ζ6)k ·α6−6 =

1 ·6−6 = 0. Weil ζ in der Gruppe C× ein Element der Ordnung 6 ist, sind die Elemente ζk mit 0 ≤ k ≤ 5

alle verschieden, und wegen α 6= 0 gilt dies auch für die Elemente ζkα mit 0 ≤ k ≤ 5. Weil f als Polynom

vom Grad 6 nicht mehr als sechs verschiedene komplexe Nullstellen besitzt, muss N also die genaue

Nullstellenmenge von f in C sein. Daraus folgt, dass der Zerfällungskörper L durch L = Q(N) gegeben

ist.

Darüber hinaus gilt Q(N) = Q(α, ζ). Für den Nachweis genügt es zu überprüfen, dass N ⊆ Q(α, ζ) und

{α, ζ} ⊆ Q(N) gilt. Die erste Inklusion ist erfüllt, denn mit α und ζ ist auch jedes Element der Form

ζkα mit 0 ≤ k ≤ 5 in Q(α, ζ) enthalten. Für die zweite Inklusion genügt es festzustellen, dass α wegen

α ∈ N auch in Q(N) liegt, und dass wegen α, ζα ∈ N die beiden Elemente auch im Teilkörper Q(N)

von C liegen somit somit dasselbe auch für den Quotienten ζ = ζα
α gilt.

Nun bestimmen wir noch den Erweiterungsgrad [L : Q]. Auf Grund der Gradformel gilt

[L : Q] = [Q(α, ζ) : Q] = [Q(α)(ζ) : Q(α)] · [Q(α) : Q].

Das Polynom f ist normiert, besitzt α als Nullstelle, und ist auf Grund des Eisenstein-Kriteriums (an-

gewendet zum Beispiel auf die Primzahl 2) irreduzibel in Z[x] und Q[x]. Es handelt sich also um das

Minimalpolynom von α über Q, und daraus folgt [Q(α) : Q] = grad(f) = 6. Nun überprüfen wir noch,

dass das sechste Kreisteilungspolynom Φ6 ∈ Z[x] das Minimalpolynom von ζ nicht nur über Q, son-

dern auch über Q(α) ist. Bekanntlich ist Φ6 normiert, und weil ζ eine primitive 6-te Einheitswurzel

ist, gilt Φ6(ζ) = 0. Wäre Φ6 über Q(α) reduzibel, dann müsste wegen grad(Φ6) = ϕ(6) = 2 die Null-

stelle ζ bereits in Q(α) liegen. Aber dies ist ausgeschlossen, denn wegen α ∈ R gilt Q(α) ⊆ R, aber

ζ = cos( 1
3π) + i sin( 1

3π) ist wegen sin( 1
3π) 6= 0 keine reelle Zahl.

Also ist Φ6 tatsächlich das Minimalpolynom von ζ über Q(α), und wir erhalten [Q(α)(ζ) : Q(α)] =

grad(Φ6) = 2. Ingesamt erhalten wir [L : Q] = 2 · 6 = 12.

Hinweis: Das sechste Kreisteilungspolynom ist gegeben durch Φ6 = x2 − x+ 1. Durch Einsetzen sieht

man leicht, dass ω = 1
2 + 1

2

√
−3 eine primitive sechste Einheitswurzel ist. Wegen cos( 1

3π) = 1
2 und

sin( 1
3π) = 1

2

√
3 stimmt diese mit der komplexen Zahl ζ überein.



zu (b) Aus der Tatsache, dass L Zerfällungskörper eines Polynoms f ∈ Q[x] ist, folgt direkt, dass

es sich bei L|Q um eine normale Erweiterung handelt. Als normale Erweiterung ist L|Q insbesondere

algebraisch, und wegen char(Q) = 0 folgt daraus wiederum, dass L|Q auch separabel ist. Insgesamt ist

L|Q also eine Galois-Erweiterung.

Sei G = Gal(L|Q). Um zu zeigen, dass G einen Normalteiler der Ordnung 6 besitzt, betrachten wir den

Zwischenkörper K = Q(ζ). Weil ζ eine primitive sechste Einheitswurzel ist, ist das sechste Kreisteilungs-

polynom Φ6 das Minimalpolynom von ζ über Q. Daraus folgt [K : Q] = grad(Φ6) = 2. Sei N = Gal(L|K)

die zu K korrespondierende Untergruppe von G. Laut Galoistheorie gilt (G : N) = [K : Q] = 2. Weil

L|Q eine Galois-Erweiterung ist, gilt außerdem |G| = [L : Q] = 12. Wegen |G| = (G : N) · |N | ist die

Ordnung von N gleich |N | = |G|
(G:N) = 12

2 = 6. Wegen (G : N) = 2 ist N darüber hinaus ein Normalteiler

von G.

zu (c) Wäre G abelsch, dann müsste jede Untergruppe von G ein Normalteiler sein. Sei K1 = Q(α) und

U = Gal(L|K1) die korrespondierende Untergruppe. Ist U ein Normalteiler von G, dann muss K1|Q laut

Galoistheorie eine normale Erweiterung sein. Demnach müsste jedes über Q irreduzible Polynom, das in

K1 eine Nullstelle besitzt, über K1 bereits in Linearfaktoren zerfallen. Das Polynom f besitzt in K1 die

Nullstelle α, und wir haben in Teil (a) festgestellt, dass es über Q irreduzibel ist. Würde f über K1 in

Linearfaktoren zerfallen, dann müssten alle komplexen Nullstellen bereits in K1 liegen. Wegen α ∈ R
gilt K1 ⊆ R; somit wären alle komplexen Nullstellen von f reell. Aber wie wir oben gesehen haben, ist

ζ nicht-reell, und wegen α ∈ R+ gilt dasselbe für die Nullstelle ζα von f . Die Annahme, dass G abelsch

ist, führt also zu einem Widerspruch.



Aufgabe H24T3A1

Für einen Körper K sei

G(K) =




1 0 a

0 1 b

0 0 1

 ∣∣∣∣ a, b ∈ K
 .

(a) Zeigen Sie, dass G(K) eine abelsche Untergruppe von GL3(K) ist.

(b) Für eine Primzahl p sei Fp der Körper mit |Fp| = p. Entscheiden Sie begründet, zu welchem

direkten Produkt zyklischer Gruppen G(Fp) isomorph ist.

Hinweis: Hauptsatz für endliche abelsche Gruppen

(c) Für eine Primzahl p sei Fp2 der endliche Körper mit Fp2 = p2. Entscheiden Sie begründet, zu

welchem direkten Produkt zyklischer Gruppen G(Fp2) isomorph ist.

Lösung:

zu (a) Um zu zeigen, dass G(K) eine Untergruppe ist, stellen wir zunächst fest, dass die Einheitsmatrix

E, das Neutralelement von GL3(K), in G(K) enthalten ist, denn diese erhält man, indem man a = b = 0

setzt. Seien nun A,B ∈ G(K) vorgegeben,

A =


1 0 a

0 1 b

0 0 1

 , B =


1 0 c

0 1 d

0 0 1


mit a, b, c, d ∈ K. Die Rechnung

AB =


1 0 a

0 1 b

0 0 1




1 0 c

0 1 d

0 0 1

 =


1 0 a+ c

0 1 b+ d

0 0 1


zeigt, dass auch AB in G(K) enthalten ist. Aus

1 0 a

0 1 b

0 0 1




1 0 −a
0 1 −b
0 0 1

 =


1 0 0

0 1 0

0 0 1

 = E folgt A−1 =


1 0 −a
0 1 −b
0 0 1

 ,

also ist auch A−1 in G(K) enthalten. Damit ist die Untergruppen-Eigenschaft nachgewiesen. Die Rech-

nung

BA =


1 0 c

0 1 d

0 0 1




1 0 a

0 1 b

0 0 1

 =


1 0 c+ a

0 1 d+ b

0 0 1

 = AB

zeigt, dass zwei beliebige Elemente aus G(K) vertauschbar sind, es sich bei G(K) also um eine abelsche

Gruppe handelt.



zu (b) Sei A ∈ G(Fp) wie oben vorgegeben, mit a, b ∈ Fp. Wir überprüfen durch vollständige Induktion,

dass für alle m ∈ N0 die Gleichung

Am =


1̄ 0̄ ma

0̄ 1̄ mb

0̄ 0̄ 1̄


gilt. Für m = 0 ist dies offenbar der Fall, denn A0 ist nach Definition die Einheitsmatrix, und wegen

ma = mb = 0̄ stimmte auch die Matrix auf der rechten Seite mit der Einheitsmatrix überein. Sei nun

m ∈ N0 vorgegeben, und setzen wir die Gleichung für m voraus. Dann erhalten wir

Am+1 = Am ·A =


1̄ 0̄ ma

0̄ 1̄ mb

0̄ 0̄ 1̄




1 0 a

0 1 b

0 0 1

 =


1̄ 0̄ ma+ a

0̄ 1̄ mb+ b

0̄ 0̄ 1̄

 =


1̄ 0̄ (m+ 1)a

0̄ 1̄ (m+ 1)b

0̄ 0̄ 1̄

 .

Wegen pa = pb = 0̄ in Fp ist Ap wiederum die Einheitsmatrix. Dies zeigt, dass die Orndung jedes

Elements in G(K) ein Teiler von p ist.

Da es für die Einträge in a und b jeweils p Wahlmöglichkeiten gibt, ist G(K) eine Gruppe der Ordnung

p2, und nach Teil (a) ist diese außerdem abelsch. Aus dem Hauptsatz über endliche abelsche Gruppen

folgt, dass G(K) isomorph zu einem Produkt zyklischer Gruppen mit Primzahlpotenzordnungen > 1 ist.

Damit erhalten wir G(K) ∼= Z/p2Z oder G(K) ∼= Z/pZ×Z/pZ. Im ersten Fall hätte G(K) ein Element

der Ordnung p2, weil 1̄ in Z/p2Z ein solches Element ist. Aber p2 ist kein Teiler von p, somit widerspricht

dies unserer Feststellung von oben. Damit bleibt G(K) ∼= Z/pZ×Z/pZ als einzige Möglichkeit.

zu (c) Die Gruppe G(Fp2) ist diesmal eine abelsche Gruppe Ordnung p4, weil es diesmal für die

Einträge a und b jeweils p2 Wahlmöglichkeiten gibt. Die einzigen Möglichkeiten, die Zahl p4 als Produkt

von Primzahlpotenzen größer als 1 darzustellen, sind p · p · p · p, p2 · p · p, p3 · p, p2 · p2 und p4. Aus

dem Hauptsatz über endliche abelsche Gruppen folgt somit diesmal, dass G isomorph zu einer der fünf

Gruppen

G1 = (Z/pZ)4 , G2 = Z/p2Z× (Z/pZ)2 , G3 = Z/p3Z×Z/pZ ,

G4 = Z/p2Z×Z/p2Z , G5 = Z/p4Z

ist. Mit Ausnahme der ersten enthält jede dieser Gruppen ein Element mit Ordnung größer als p: die

Gruppe G2 das Element (1̄, 0̄, 0̄) der Ordnung p2, die Gruppe G3 das Element (1̄, 0̄) der Ordnung p3,

die Gruppe G4 das Element (1̄, 0̄) der Ordnung p2 und die Gruppe G5 das Element 1̄ der Ordnung p4.

Dieselbe Rechnung wie in Teil (b) zeigt aber, dass auch für alle A ∈ G(Fp2) jeweils Ap = E gilt, es also

nur Elemente gibt, deren Ordnung p teilt. Also muss G isomorph zu G1 sein.



Aufgabe H24T3A2

Sei R der Restklassenring Z[x]/(x3 + x).

(a) Zeigen Sie, dass R zum Produktring Z×Z[i] isomorph ist.

(b) Geben Sie sämtliche Einheiten des Rings Z×Z[i] an.

(c) Bestimmen Sie alle Elemente a, b ∈ Z, so dass die Restklasse von x2 + ax+ b in R eine Einheit ist.

Lösung:

zu (a) Wir beweisen die Isomorphie R ∼= Z × Z[i] mit Hilfe des Homomorphiesatzes und definieren

dafür einen geeigneten Ringhomomorphismus. Die Abbildung ϕ0 : Z → Z × Z[i], c 7→ (c, c) ist ein

Ringhomomorphismus, denn es gilt ϕ0(1) = (1, 1) = 1Z×Z[i], ϕ0(c+ d) = (c+ d, c+ d) = (c, c) + (d, d) =

ϕ0(c) + ϕ0(d) und ϕ0(cd) = (cd, cd) = (c, c) · (d, d) = ϕ0(c)ϕ0(d) für alle c, d ∈ Z. Auf Grund der

universellen Eigenschaft des Polynomrings existiert ein Ringhomomorphismus ϕ : Z[x] → Z × Z[i] mit

ϕ|Z = ϕ0 und ϕ(x) = (0, i).

Nun überprüfen wir die Voraussetzungen des Homomorphiesatzes. Für den Nachweis der Surjektivität

sei (u, v + iw) ∈ Z × Z[i] vorgegeben, mit u, v, w ∈ Z. Es gilt ϕ(1) = (1, 1), ϕ(x) = (0, i) und ϕ(x2) =

(0, i2) = (0,−1). Für alle a, b, c ∈ Z erhalten wir damit

ϕ(a+ bx+ cx2) = aϕ(1) + bϕ(x) + cϕ(x2) = (a, a) + (0, ib) + (0,−c) = (a, a− c+ ib).

Weiter gilt die Äquivalenz (a, a − c + ib) = (u, v + iw) ⇔ a = u ∧ a − c = v ∧ b = w, was zu a = u,

b = w, c = u− v umgeformt werden kann. Setzen wir g = u+ wx+ (u− v)x2, dann erhalten wir somit

ϕ(g) = (u, u− (u− v) + iw) = (u, v + iw), wodurch die Surjektivität nachgewiesen ist.

Nun überprüfen wir noch, dass der Kern von ϕ mit dem Hauptideal (x3 + x) übereinstimmt. Mit

ϕ1 : Z[x] → Z und ϕ2 : Z[x] → Z[i] bezeichnen wir die beiden Komponenten von ϕ. Nach Defini-

tion gilt ϕ1(c) = ϕ2(c) = c für alle c ∈ Z, außerdem ϕ1(x) = 0 und ϕ2(x) = i. Also ist ϕ1 der

Auswertungshomomorphismus auf Z[x] an der Stelle 0 und ϕ2 der Auswertungshomomorphismus an der

Stelle i. Für jedes f ∈ Z[x] gilt somit die Äquivalenz

f ∈ ker(ϕ) ⇔ ϕ(f) = 0Z×Z[i] ⇔ (f(0), f(i)) = (0, 0) ⇔ f(0) = 0 ∧ f(i) = 0.

Nun ist x das Minimalpolynom von 0 über Q, und x2 + 1 ist das Minimalpolynom von i über Q (denn

dieses Polynom ist normiert, hat i als Nullstelle und ist als viertes Kreisteilungspolynom irreduzibel in

Q[x]). Die Gleichung f(0) = 0 ist somit äquivalent zu x | f , und f(i) = 0 ist äquivalent zu (x2 + 1) | f
in Q[x]. Weil x2 + 1 und x in Q[x] teilerfremd sind, gilt darüber hinaus die Äquivalenz

x | f ∧ (x2 + 1) | f ⇔ x(x2 + 1) | f ⇔ (x3 + x) | f ,

wobei auch hier die Teilbarkeit in Q[x] gemeint ist. Nun ist x3 + x als normiertes Polynom in Z[x]

aber primitiv, und somit ist die Teilbarkeit (x3 + x) | f in Q[x] äquivalent zur Teilbarkeit in Z[x].

Dies wiederum ist gleichbedeutend mit f ∈ (x3 + x), wobei (x3 + x) das Hauptideal in Z[x] bezeichnet.

Insgesamt haben wir damit die Äquivalenz f ∈ ker(ϕ) ⇔ f ∈ (x3 + x) und damit ker(ϕ) = (x3 + x)

nachgewiesen. Damit sind alle Voraussetzungen des Homomorphiesatzes überprüft, und wir erhalten den

gewünschten Isomorphismus R ∼= Z[x]/ker(ϕ) ∼= Z×Z[i].



zu (b) Aus der Vorlesung ist bekannt: Sind R und S beliebige Ringe, dann ist die Einheitengruppe von

R×S gegeben durch (R×S)× = R××S×. Außerdem ist bekannt, dass Z× = {±1} und Z[i]× = {±1,±i}
gilt. Es folgt

(Z×Z[i])× = Z× ×Z[i]× = {±1} × {±1,±i} =

{(1, 1), (1, i), (1,−1)(1,−i), (−1, 1), (−1, i), (−1,−1), (−1,−i)} =

{(a, b) | a, b ∈ {±1}} ∪ {(a, ib) | a, b ∈ {±1}}.

zu (c) Sei I = (x3 + x). Der Isomormphismus ϕ̄ : R → Z × Z[i], den uns die Anwendung des

Homomorphiesatzes aus Teil (a) liefert, ist gegeben durch ϕ̄(f+I) = ϕ(f) = (f(0), f(i)) für alle f ∈ Z[x].

Außerdem haben wir in Teil (a) gesehen, dass für alle u, v, w ∈ Z das Polynom u+wx+ (u− v)x2 durch

ϕ auf (u, v + iw) abgebildet wird. Da die Einheiten in R genau die Urbilder der Einheiten in Z × Z[i]

unter ϕ̄ sind, müssen wir also lediglich die Urbilder der acht in Teil (b) gefundenen Elemente bestimmen.

Für alle a, b ∈ {±1} gilt jeweils ϕ̄(a + (a − b)x2 + I) = ϕ(a + (a − b)x2) = (a, b); dies zeigt, dass die

Restklassen der vier Polynome 1, 1 + 2x, −1 − 2x und −1 Einheiten in R sind. Außerdem gilt für alle

a, b ∈ {±1} auch ϕ̄(a + bx + ax2 + I) = ϕ(a + bx + ax2) = (a, ib). Damit sind die Restklassen der vier

Polynome 1+x+x2, 1−x+x2, −1+x−x2 und −1−x−x2 ebenfalls Einheiten in R, und auf Grund der

Vorüberlegung gibt es keine weiteren Polynome mit dieser Eigenschaft. Es gibt also genau zwei Paare

(a, b) ∈ Z2 mit der Eigenschaft, dass x2 + ax+ b+ I in R eine Einheit ist, nämlich (1, 1) und (−1, 1).



Aufgabe H24T3A3

Sei f = x2024+2024 ∈ Z[x]. Wir definieren die Iterierten von f als f0 = x und fn+1 = f(fn) = f2024
n +2024

für n ≥ 0. Zeigen Sie:

(a) f ist irreduzibel.

(b) Für alle n ≥ 1 gilt fn(0) ≡ 2024 mod 20242.

(c) fn ist irreduzibel für alle n ≥ 0.

Lösung:

zu (a) Die Zahl 2024 hat die Primfaktorzerlegung 2024 = 23 ·11·23. Weil die Primzahl 11 den konstanten

Term von f nur einfach teilt, der Leitkoeffizient 1 von 11 nicht geteilt wird und alle anderen Koeffizienten

gleich null sind, liefert das Eisenstein-Kriterium die Irreduzibilität von f in Z[x]. (Genauso gut hätte

man natürlich auch die Primzahl 23 nehmen können.)

zu (b) Wir beweisen die Aussage durch vollständige Induktion über n. f1 = f(f1) = f = x2024 + 2024,

also f1(0) = 2024 und damit auch f1(0) ≡ 2024 mod 20242. Sei nun n ∈ N beliebig, und setzen wir die

Aussage für n voraus. Dann erhalten wir

fn+1(0) ≡ fn(0)2024 + 2024 ≡ 20242024 + 2024 ≡ 0 + 2024 ≡ 2024 mod 20242 ,

wobei wir im vorletzten Schritt verwendet haben, dass 2024m für alle m ≥ 2 durch 20242 teilbar ist und

somit 2024m ≡ 0 mod 20242 gilt.

zu (c) Unser Ziel ist der Nachweis, dass das Eisenstein-Kriterium auf alle Polynome fn mit n ≥ 1 und

die Primzahl 11 angewendet werden kann. Wir bemerken vorweg, dass fn für alle n ≥ N nicht-konstant

und normiert ist: Für f1 = f ist dies unmittelbar klar. Ist nun n ∈ N, und setzen wir die Aussage für

fn voraus, dann ist mit fn auch f2024
n nicht konstant, und damit ist auch fn+1 = f2024

n + 2024 kein

konstantes Poylnom. Mit fn ist auch f2024
n nicht normiert, und weil f2024

n nicht konstant ist, ist mit f2024
n

auch das Polynom fn+1 = f2024
n + 2024 normiert.

Für jedes n ∈ N sei nun f̄n jeweils das Bild von fn in F11[x]. Wir zeigen durch vollständige Induktion,

dass f̄n für alle n ≥ 1 ein Monom ist. Weil fn normiert ist, folgt daraus, dass alle Koeffizienten von fn

mit Ausnahme des Leitkoeffizienten durch 11 teibar sind. Offenbar ist f̄1 = x2024 + 2024 = x2024 + 0̄ =

x2024 ∈ F11[x] ein Monom. Sei nun n ∈ N vorgegeben, und setzen wir f̄n = xd für ein d ∈ N voraus.

Dann folgt f̄n+1 = f̄2024
n + 2024 = (xd)2024 + 0̄ = x2024d.

Sei nun n ∈ N beliebig vorgegeben. Das Polynom fn ist normiert, und alle Koeffizienten von fn mit

Ausnahme des Leitkoeffizienten sind durch 11 teilbar. Weil 112 ein Teiler von 20242 ist, erfüllt der

konstante Term a0 von fn nach Teil (b) die Kongruenz a0 ≡ fn(0) ≡ 2024 ≡ 88 mod 112. Weil 88 durch

11, aber nicht durch 112 teilbar ist, gilt auch 11 | a0 und 112 | a0. Damit sind alle Voraussetzungen des

Eisenstein-Kriteriums erfüllt, und fn ist in Z[x] irreduzibel.



Aufgabe H24T3A4

Sei f = x3 + x2 − 2x− 1 ∈ Q[x] und a ∈ C eine beliebige Nullstelle von f .

(a) Zeigen Sie durch Polynomdivision, dass f(x2 − 2) durch f teilbar ist.

(b) Zeigen Sie, dass a und a2 − 2 verschiedene Nullstellen von f sind.

(c) Zeigen Sie, dass Q(a)|Q eine Galois-Erweiterung ist, deren Galois-Gruppe zu Z/3Z isomorph ist.

Lösung:

zu (a) Auf Grund des binomischen Lehrsatzes ist (x2 − 2)3 = x6 − 6x4 + 12x2 − 8, und (x2 − 2)2 =

x4 − 4x2 + 4. Auf diese Weise erhält man f(x2 − 2) = x6 − 5x4 + 6x2 − 1. Die Polynomdivision ergibt

f(x2 − 2) = fg mit g = x3 − x2 − 2x+ 1. (Aus Zeitgründen verzichten wir hier auf die Ausführung.)

zu (b) Wegen f(x2 − 2) = fg gilt f(a2 − 2) = f(a) · g(a) = 0 · g(a) = 0. Dies zeigt, dass mit a auch

a2 − 2 eine komplexe Nullstelle von f ist. Nehmen wir nun an, es gilt a = a2 − 2, was zu a2 − a− 2 = 0

äquivalent ist. Die Elemente 1, a, a2 wären also im Q-Vektorraum Q(a) linear abhängig. Dies führen wir

zu einem Widerspruch.

Dazu stellen wir zunächst fest, dass das Polynom f in Q irreduzibel ist. Denn andernfalls hätte f wegen

grad(f) = 3 eine rationalen Nullstelle c. Weil f in Z[x] liegt und f normiert ist, wäre c darüber hinaus

ganzzahlig und ein Teiler des konstanten Terms −1 von f , also c ∈ {±1}. Aber wegen f(1) = und

f(−1) = sind ±1 keine Nullstellen von f . Damit ist die Irreduzibilität nachgewiesen. Da f außerdem

normiert ist und a eine Nullstelle von f ist, handelt es sich bei f um das Minimalpolynom von a über Q.

Laut Vorlesung gilt: Ist L|K eine Körpererweiterung, α ∈ L ein über K algebraisches Element, g = µα,K

und n = grad(g), dann sind bilden die Elemente 1, α, ..., αn−1 eine n-elementige Basis von K(a) als K-

Vektorraum; insbesondere sind sie über K linear unabhängig. In unserer Situation bedeutet das wegen

grad(f) = 3, dass die Elemente 1, a, a2 im Q-Vektorraum Q(a) linear unabhängig sind. Die Annahme

a = a2−2 hat also zu einem Widerspruch geführt, und folglich sind a und a2−2 verschiedene Nullstellen

von f .

zu (c) Um zu zeigen, dass Q(a)|Q eine normale Erweiterung ist, überprüfen wir, dass Q(a) ein

Zerfällungskörper des Polynoms f über Q ist. Wegen f(a) = f(a2 − 2) = 0 sind x− a und x− (a2 − 2)

Teiler von f im Polynomring Q(a)[x]. Wegen a 6= a2 − 2 sind diese außerdem teilerfremd; daraus folgt,

dass f vom Produkt (x − a)(x − (a2 − 2)) geteilt wird. Es existiert also ein Polynom h ∈ Q(a)[x] mit

f = (x−a)(x−(a2−2))h, und wegen grad(f) = 3 ist grad(h) = 3−2 = 1. Damit ist nachgewiesen, dass f

über Q(a) in Linearfaktoren zerfällt. Außerdem wird Q(a) über Q von den Nullstellen des Polynoms f in

Q(a) erzeugt, da unter anderem a eine Nullstelle von f und bereits {a} ein Erzeugendensystem von Q(a)

über Q ist. Damit ist gezeigt, dass Q(a) tatsächlich ein Zerfällungskörper von f über Q ist. Als normale

Erweiterung ist Q(a)|Q insbesondere algebraisch, und wegen char(Q) = 0 folgt daraus wiederum, dass

Q(a)|Q auch eine separable Erweiterung ist. Insgesamt ist Q(a)|Q damit eine Galois-Erweiterung.

Bereits in Teil (b) haben wir festgestellt, dass f das Minimalpolynom von a über Q ist. Weil die Erwei-

terung Q(a)|Q zudem galois’sch ist, erhalten wir |Gal(Q(a)|Q)| = [Q(a) : Q] = grad(f) = 3. Als Gruppe

der Primzahlordnung 3 ist Gal(Q(a)|Q) zyklisch und somit isomorph zu Z/3Z. Â¸



Aufgabe H24T3A5

Sei ζ16 = e
2πi
16 .

(a) Zeigen Sie, dass Q(ζ16)|Q(i) eine Galois-Erweiterung vom Grad 4 ist.

(b) Bestimmen Sie das Minimalpolynom von ζ16 über Q(i).

(c) Entscheiden Sie begründet, ob die Galois-Gruppe von Q(ζ16)|Q(i) zu Z/4Z oder zu Z/2Z×Z/2Z
isomorph ist.

Lösung:

zu (a) Laut Vorlesung ist Q(ζ16)|Q als Kreisteilungserweiterung eine Galois-Erweiterung. Allgemein

gilt: Ist M |K eine Galois-Erweiterung, und ist L ein Zwischenkörper von M |K, dann ist auch M |L eine

Galois-Erweiterung. Nun ist Q(i) ein Zwischenkörper von Q(ζ16)|Q, wegen i = e
2πi
4 = ζ4

16 ∈ Q(ζ16).

Also ist auch Q(ζ16)|Q(i) eine Galois-Erweiterung. Allgemein gilt: Ist n ∈ N und ζn = e
2πi
n , dann ist

Q(ζn)|Q eine Erweiterung von Grad ϕ(n). Daraus folgt [Q(ζ16) : Q] = ϕ(16) = 8. Wegen i = ζ4 gilt auch

[Q(i) : Q] = ϕ(4) = 2. Auf Grund der Gradformel gilt

8 = [Q(ζ16) : Q] = [Q(ζ16) : Q(i)] · [Q(i) : Q] = [Q(ζ16) : Q(i)] · 2

und somit [Q(ζ16) : Q(i)] = 8
2 = 4.

zu (b) Auf Grund der Gleichung ζ4
16 − i = 0 ist ζ16 eine Nullstelle des Polynoms f = x4 − i ∈ Q(i)[x].

Sei g = µζ16,Q(i), das Minimalpolynom von ζ16 über Q(i). Wegen f ∈ Q(i)[x] und f(ζ16) = 0 ist g ein

Teiler von f in Q(i)[x]. Außerdem sind f und g beide normiert, und es gilt gradg = [Q(i)(ζ16) : Q(i)] =

[Q(ζ16) : Q(i)] = 4 = gradf . Dies zeigt, dass f und g übereinstimmen und somit x4 − i das gesuchte

Minimalpolynom ist.

zu (c) Aus der Vorlesung ist bekannt, dass die Elemente von Gal(Q(ζ16)|Q) alle durch σa(ζ16) = ζa16

gegeben sind, wobei a die ganzen, zu 16 teilerfremden (also ungeraden) Zahlen durchläuft. Dabei ist

σa = σb für a, b ∈ Z \ 2Z genau dann erfüllt, wenn die Bilder von a und b in (Z/16Z)× übereinstimmen.

Wegen (Z/16Z)× = {1̄, 3̄, 5̄, 7̄, 9̄, 11, 13, 15} ist also

Gal(Q(ζ16)|Q) = {σ1, σ3, σ5, σ7, σ9, σ11, σ13, σ15}.

Weil Q(i) ein Zwischenkörper von Q(ζ16)|Q ist, handelt es sich bei G = Gal(Q(ζ16)|Q(i)) um eine

Untergruppe von Gal(Q(ζ16)|Q) mit Ordnung [Q(ζ16) : Q(i)] = 4, bestehend aus genau den Elementen

σ ∈ Gal(Q(ζ16)|Q) mit σ|Q(i) = idQ(i), was zu σ(i) = i äquivalent ist. Nun ist für alle a ∈ Z \ 2Z die

Gleichung i = σa(i) äquivalent zu ζ4
16 = σa(ζ4

16) = σa(ζ16)4 = (ζa16)4 = ζ4a
16 , was wegen ord(ζ16) = 16

in C× zu 16 | (4a − 4) äquivalent ist, und dies wiederum zu 4 | (a − 1) und a ≡ 1 mod 4. Das Urbild

der Untergruppe G unter dem Isomorphismus (Z/16Z)× → Gal(Q(ζ16)|Q), a+ 16Z 7→ σa ist somit die

Untergruppe von (Z/16Z)× gegeben durch {1̄, 5̄, 9̄, 13}. Wegen 5̄2 = 25 = 9̄ 6= 1̄ und 5̄4 = (5̄2)2 = 9̄2 =

81 = 1̄ ist 5̄ ein Element der Ordnung 4 in der Untergruppe von (Z/16Z)×. Dies zeigt, dass auch G ein

Element der Ordnung 4 enthält, und wegen |G| = 4 folgt daraus G ∼= Z/4Z.



Aufgabe F25T1A1

Sei p eine Primzahl, Fp = Z/pZ der Körper mit p Elementen und G = GL2(Fp).

(a) Zeigen Sie, dass für die Anzahl der Elemente in G gilt: |G| = p(p− 1)2(p+ 1).

(b) Bestimmen Sie die Ordnung des Elements T ∈ G gegeben durch

T =

(
1̄ 1̄

0̄ 1̄

)
.

(c) Zeigen Sie, dass es mehr als eine p-Sylowgruppe in G gibt.

(d) Sei nun speziell p = 3 und H = 〈T 〉 = {T k | k ∈ Z}. Zeigen Sie, dass der Normalisator

N = {g ∈ G | g ·H = H · g} von H in G aus den oberen Dreiecksmatrizen in G besteht.

Folgern Sie, dass G genau vier 3-Sylowgruppen besitzt.



Aufgabe F25T1A2

Für b ∈ Z \ {0} betrachte man Rb = { a
bk
∈ Q | a ∈ Z und k ∈ N0} ⊆ Q.

(a) Zeigen Sie, dass Rb ein Teilring von Q und damit ein kommutativer Ring mit Eins ist.

(b) Zeigen Sie, dass für die Einheitengruppe von R gilt:

(Rb)
× =

{
a

bk

∣∣∣∣ a ∈ Z, und es existieren c ∈ Z \ {0} und ` ∈ N0 mit ac = b`
}

(c) Zeigen Sie, dass Rb ein Hauptidealbereich ist, und dass jedes Ideal a von Rb die Form a = Rbw für

ein w ∈ Z hat.



Aufgabe F25T1A3

Sei A ∈M3,Q eine 3×3-Matrix, deren charakteristisches Polynom χA ∈ Q[x] irreduzibel über Q ist. Seien

α ∈ C eine Nullstelle von χA und Q(α) der davon erzeugte Zwischenkörper Q ⊆ Q(α) ⊆ C. Betrachten

Sie die Multiplikation mit α, also die Abbildung ϕ : Q(α)→ Q(α), γ 7→ αγ.

(a) Zeigen Sie, dass ϕ eine Q-lineare Abbildung ist.

(b) Bestimmen Sie die darstellende Matrix B von ϕ bezüglich der Basis 1, α, α2 von Q(α) als Q-

Vektorraum und zeigen Sie, dass deren charakteristisches Polynom identisch mit dem von A ist,

also χA = χB in Q[x] gilt.

(c) In der Situation von (b), zeigen Sie, dass die beiden Matrizen A und B, betrachtet inM3,C, ähnlich

sind.



Aufgabe F25T1A4

Sei G eine endliche Gruppe und p eine Primzahl, die die Gruppenordnung |G| teilt. Seien ferner

Fp = Z/pZ der Körper mit p Elementen und F×p die Einheitengruppe von Fp. Wir definieren

M = {g ∈ G | ord(g) = p}

als die Menge aller Gruppenelemente, deren Ordnung gleich p ist.

(a) Zeigen Sie, dass durch F×p ×M →M , ([a], g) 7→ ga eine Gruppenoperation definiert ist.

(b) Sei g ∈ M ein beliebiges Element. Zeigen Sie, dass der Stabilisator (Fp)
×
g = {[a] ∈ F×p | ga = g}

von g trivial ist, also mit {[1]} übereinstimmt.

(c) Folgern Sie, dass |M | ein Vielfaches von p− 1 ist.



Aufgabe F25T1A5

Betrachten Sie das Polynom f = x15 − 7 ∈ Q[x].

(a) Sei L|Q ein Zerfällungskörper von f . Bestimmen Sie den Körpergrad [L : Q].

(b) Zeigen Sie, dass die Galoisgruppe G = Gal(L|Q) einen Normalteiler der Ordnung 15 besitzt.

(c) Sei α ∈ L eine Nullstelle von f . Zeigen Sie, dass die Körpererweiterung Q(α)|Q(α5) den Körpergrad

[Q(α) : Q(α5)] = 5 besitzt.



Aufgabe F25T2A1

(a) Sei n ∈ N und R ein Ring. Ein Element ω ∈ R ist eine n-te Einheitswurzel in R, wenn ωn = 1

gilt, und eine primitive n-te Einheitswurzel, wenn zusätzlich für alle 1 ≤ m < n gilt, dass ωm− 1 ∈
R× (also eine Einheit in R) ist. Zeigen Sie, dass (die Restklasse von) 7 in Z/100Z eine vierte

Einheitswurzel, aber keine primitive vierte Einheitswurzel ist.

(b) Bestimmen Sie die Ordnung der Einheitengruppe von Z/2025Z, und zeigen Sie, dass diese nicht

zyklisch ist.



Aufgabe F25T2A2

Sei p eine Primzahl.

(a) Sei q ein Primteiler von 2p − 1. Zeigen Sie: q ≡ 1 mod p.

Hinweis: Betrachten Sie die Ordnung von 2̄ ∈ (Z/qZ)×.

(b) Zeigen Sie: Es gibt eine Galois-Erweiterung Kp|Q mit Gal(Kp|Q) ∼= Z/pZ.

Hinweis: Betrachten Sie Teilkörper von geeigneten Kreisteilungskörpern.



Aufgabe F25T2A3

Sei K ein Körper mit algebraischem Abschluss K̄, sei f ∈ K[x] normiert und sei L = K(α) mit einer

Nullstelle α ∈ K̄ von f .

(a) Zeigen Sie: Ist [L : K] = grad(f), dann ist f irreduzibel in K[x].

(b) Sei jetzt f ∈ K[x] irreduzibel, und sei weiter g ∈ K[x]. Wir nehmen an, dass das Polynom g−α in

L[x] irreduzibel ist. Zeigen Sie, dass dann f(g(x)) ∈ K[x] in K[x] irreduzibel ist.

Hinweis: Sei β ∈ K̄ mit g(β) = α. Zeigen Sie K(β) = L(β).



Aufgabe F25T2A4

Sei G eine Gruppe der Ordnung 2025 = 34 · 52. Seien U5, U
′
5 zwei verschiedene 5-Sylowgruppen von G.

(a) Bestimmen Sie die Anzahl der 5-Sylowgruppen von G.

(b) Sei U die von der Teilmenge U5 ∪ U ′5 erzeugte Untergruppe von G. Zeigen Sie: Dann gilt U = G.

Hinweis: Wieviele 5-Sylowgruppen kann eine echt zwischen U5 und G liegende Untergruppe haben?



Aufgabe F25T2A5

Sei p eine Primzahl und Fp der endliche Körper mit p Elementen. Sei weiter

G =

{(
a 0̄

b a

) ∣∣∣∣ a ∈ F×p , b ∈ Fp

}
.

Zeigen Sie:

(a) Die Menge G ist eine Untergruppe von GL2(Fp).

(b) Die Gruppe G enthält eine zyklische Untergruppe Hp−1 der Ordnung p − 1 und eine zyklische

Gruppe Hp der Ordnung p.

(c) Die Gruppe G ist zyklisch.



Aufgabe F25T3A1

Sei n ∈ N, sei K ein Körper, sei Mn,K der Ring der n × n-Matrizen über K, und sei A ∈ Mn,K .

Bekanntlich ist das Minimalpolynom von A das eindeutig bestimmte normierte Polynom µA ∈ K[x]

minimalen Grades, das µA(A) = 0Mn,K
erfüllt.

(a) Sei m ∈ N und B ∈Mm,K . Desweiteren sei C ∈Mm+n,K die Blockdiagonalmatrix

C =

(
A 0

0 B

)
.

Beweisen Sie, dass µC ein kleinstes gemeinsames Vielfaches von µA und µB ist.

(b) Entscheiden Sie begründet, ob es eine Matrix A ∈ M6,R mit charakteristischem Polynom x6 + x4

und Minimalpolynom µA vom Grad 5 gibt.



Aufgabe F25T3A2

(a) Sei F3 der Körper mit drei Elementen, und sei G die Menge der oberen Dreiecksmatrizen inM3,F3

mit Einsen auf der Hauptdiagonalen. Zeigen Sie, dass G eine nicht-abelsche Untergruppe von

GL3(F3) der Ordnung 27 ist.

(b) Bestimmen Sie 12 paarweise nicht-isomorphe Gruppen der Ordnung 2025.



Aufgabe F25T3A3

(a) Zerlegen Sie die Polynome x6−y6 und x5y+x3y3+xy5 im faktoriellen Ring Q[x, y] in Primfaktoren.

Hinweis: Es sind jeweils vier Primfaktoren.

(b) Finden Sie alle Paare von Polynomen (f, g) ∈ Q[x, y]2 mit

f · (x6 − y6) + g · (x5y + x3y3 + xy5) = 0.



Aufgabe F25T3A4

Für a ∈ Z sei fa = x4 + ax2 + 1 ∈ Q[x]. Mit Gal(fa|Q) werde im Folgenden die Galoisgruppe des in C

enthalten Zerfällungskörpers von fa über Q bezeichnet.

(a) Finden Sie ein a ∈ Z, so dass Gal(fa) nur aus der Identität besteht.

(b) Finden Sie ein a ∈ Z, so dass Gal(fa) nur aus der Identität und der komplexen Konjugation besteht.

(c) Bestimmen Sie den Isomorphietyp von Gal(fa) im Fall a = −1.



Aufgabe F25T3A5

Sei R = Z[
√

3], sei K = Q(
√

3), und sei NK : K → Q die Normabbildung, die gegeben ist durch

NK(a+ b
√

3) = a2 − 3b2 für alle a, b ∈ Q.

(a) Beweisen Sie, dass es zu x ∈ R und y ∈ R \ {0} ein Element q ∈ R gibt mit |NK(xy − q)| < 1.

Hinweis: Schreiben Sie x
y in der Form a+ b

√
3 mit a, b ∈ Q.

(b) Sei NR : R→ Z die Einschränkung der Abbildung NK . Zeigen Sie, dass R bezüglich der Abbildung

|NR| ein euklidischer Ring ist, d.h. zu zwei Elementen x, y ∈ R mit y 6= 0 gibt es Elemente q, r ∈ R
mit x = qy + r und |NR(r)| < |NR(y)|.


