Chronologische Sortierung

Es fehlen noch die Losungen zu den Priiffungsterminen Frithjahr 2023 (grofitenteils), Herbst 2023,
Friithjahr 2024 und Friithjahr 2025.

Friithjahr 2020

F20T1A1 F20T1A2 F20T1A3 F20T1A4 F20T1A5
F20T2A1 F20T2A2 F20T2A3 [F20T2A4 F20T2A5
F20T3A1 F20T3A2 F20T3A3 [F20T3A4 F20T3A5

Herbst 2020

H20T1A1 H20T1A2 H20T1A3 H20T1A4 H20T1A5
H20T2A1 H20T2A2 H20T2A3 H20T2A4 H20T2A5
H20T3A1 H20T3A2 H20T3A3 H20T3A4 H20T3A5

Frithjahr 2021

F21T1A1 F21T1A2 F21T1A3 F21T1A4 F21T1A5
F21T2A1 F21T2A2 F21T2A3 F21T2A4 F21T2A5
F21T3A1 F21T3A2 F21T3A3 F21T3A4 F21T3A5

Herbst 2021

H21T1A1 H21T1A2 H21T1A3 [H21T1A4 H21T1A5
H21T2A1 H21T2A2 H21T2A3 [H21T2A4 H21T2A5
H21T3A1 H21T3A2 H21T3A3 H21T3A4 H21T3A5

Friithjahr 2022

F22T1A1 F22T1A2 F22T1A3 F22T1A4 F22T1A5
F22T2A1 F22T2A2 F22T2A3 [F22T2A4 F22T2A5
F22T3A1 F22T3A2 F22T3A3 [F22T3A4 F22T3A5

Herbst 2022

H22T1A1 H22T1A2 H22T1A3 H22T1A4 H22T1A5
H22T2A1 H22T2A2 H22T2A3 [H22T2A4 H22T2A5
H22T3A1 H22T3A2 H22T3A3 [H22T3A4 H22T3A5




Friithjahr 2023

F23T1A1 F23T1A2 F23T1A3 F23T1A4 F23T1A5

F23T2A1 F23T2A2 F23T2A3 F23T2A4 F23T2A5

F23T3A1 F23T3A2 F23T3A3 F23T3A4 F23T3A5
Herbst 2023

H23T1A1 H23T1A2 H23T1A3 H23T1A4 H23T1A5

H23T2A1 H23T2A2 H23T2A3 H23T2A4 H23T2A5

H23T3A1 H23T3A2 H23T3A3 H23T3A4 H23T3A5
Friihjahr 2024

F24T1A1 F'24T1A2 F'24T1A3 F24T1A4 F24T1A5

F24T2A1 '24T2A2 '24T2A3 F'24T2A4 F24T2A5

F24T3A1 F24T3A2 F24T3A3 F24T3A4 F24T3A5
Herbst 2024

H24T1A1 H24T1A2 H24T1A3 H24T1A4 H24T1Ab5

H24T2A1 H24T2A2 H24T2A3 H24T2A4 H24T2A5

H24T3A1 H24T3A2 H24T3A3 H24T3A4 H24T3A5
Friithjahr 2025

F25T1A1 F25T1A2 F25T1A3 F25T1A4 F25T1A5

F25T2A1 F25T2A2 F25T2A3 F25T2A4 F25T2A5

F25T3A1 F25T3A2 F25T3A3 F25T3A4 F25T3A5




Sortierung nach Einzelthemen

0. Lineare Algebra

e Grundlagen

[A20TTA3] [F21T2A2] [H22T3AT] [H22T3A4] [F23T1A4] [F23TTAS| [F23T3A2] [H23T2A4]

e Lineare Gleichungssysteme

[22T2AT] [F23T2AT]

e Ordnung linearer Gruppen

[F20T2A3] [H21T3AY] [F25TTAT] [F25T2A%

e Berechnung von Determinanten

[24TTAT]

e Dimensionssétze

[F24T3AT]

e Endomorphismen, charakteristisches Polynom, Eigenrdume und Diagonalisierung

[F20TTAT] [F21TTAY] [F21T2A5] [F23T2AT] [F25T1AT|

e Minimalpolynome und Satz von Cayley-Hamilton

[H2TT3A3] [F22TTAT] [F25T3AT]

e Jordansche Normalform
20 12AT1]

e cuklidische Vektorrdume

I. Gruppentheorie

e Elementare Gruppentheorie
[F20T2A4] [F20TSAT] [A22TTAT] [H22T2A5] [F23T1AT] [H23T2A3] [F24T1A2] [F24T2A3] [F24T3A3)
[H24TTAT] [H24T3AT]

e Elementordnungen und zyklische Gruppen

[A20TTA4)] [H2TT2AT] [F22T2AT] [F24T2A7] [F24T2A3|

e abelsche Gruppen

[F23T3A3] [F24T2A3] [H24T3AT] [F25T3A2

e symmetrische Gruppen

[A2TT3AT] [F22TTA3] [H23TTA2]

e Homomorphie- Isomorphie- und Korrespondenzsatz

[A22TTAT] [H22T2A5| [F23TTAT] [F23T2A2] [A23T3AT]

e Gruppenoperationen

[F20TTA2] [F20T3A3] [H20T2A2] [H22TTAT] [F23TTA4] [F23T3AT] [H23TTAS| [F25TTA4




e Satz von Cayley

[A20T3A2] [H2TT2A5| [F22TTA3] [F22T3AT]

e Normalteiler und einfache Gruppen
[H24T2A3

o Auflosbarkeit

[F2TT3A3| [H22T2A5] [A23T2A2] [F24T3A3]

e semidirekte Produkte

[F20TTA3| [H2ITTAZ

o Sylowsiitze

[F20TTA3| [F20T2A3] [F21T1A4] [F22T2A2] [F22T3AT] [H22T3A3] [F23T2A2] [F23T3A3| [H24T1A2]
[A24T2A3] [F25T2A7]

II. Ringtheorie

e Elementare Ringtheorie

[A20TTA2] [H20T3A3] [F21T2A3| [H2TTIAT] [H22T2A2] [F23TTA2] [F23T1A4] [F23T3A5| [F24T2A4]
[F24T3A3] [H24TTAS] [F25T1AT]

e FElementare Zahlentheorie
[[22T2AJ

e Ideale und Faktorringe
[A20T3A4] [F21T3A4) [F22TTAZ [F22T2A3] [A22T3A4] [H22T3AS| [H23T1A4] [H23T2A5| [H23T3A%]

e Homomorphie- Isomorphie- und Korrespondenzsatz

[A20T2A4] [F22TTA4] [H22T3A4] [F23TTA2] [H23TTAT]

e Kongruenzrechnung und Restklassenringe

[F20TTAS| [F20T3A2] [H20TTAT] [H20T2AT] [F22TTA2] [F22T1A4] [F22T3A2] [H22T2A3] [F23T2AT]
[A23TTAT] [H23T3A4] [F24T2AT] [F24T2A2] [H24T2AT] [H24T2A2] [H24T3A3] [F25T2AT]

e Chinesischer Restsatz

[A20T3AT] [H22TTA2| [H22T2A3] [H23TTAT] [H23T3A4] [F24T3A2] [H24T3A2]

e FKuklidische Ringe und Euklidischer Algorithmus
[A23T3AN] [F24T3AT] [H24T2A4) [F25T3AT

e Hauptidealringe und faktorielle Ringe

[H22T3A2] [F25T3A3]

e Quadratische Zahlringe und Zerlegbarkeit von Elementen

[F21TTAT] [F22T3A3| [F23T2A3| [F24T2AT] [F24T3AT] [F24T3A4] [H24TTA3| [H24T2A4]

e Irreduzibilitdt von Polynomen

[F20T3A5] [F21T3AT] [H21T1A3] [H22T2A4




ITI. Korpertheorie

IV.

Teilkoérper und Homomorphismen

[M24TTA4l

Algebraische Erweiterungen

[F2TTTA3] [F22TTAF| [H22T1A4] [H24T3A4
Bestimmung von Minimalpolynomen
[F23T3A4] [H23T3A2 [H23T3A3| [F24T1AH
Erweiterungsgrade

[F21T2AT] [F22TIA5| [F22T2A5] [F22T3A5| [H22TTA4] [H23T2AT] [H23T3A3] [F24T2AT] [F24T2A5]
[F24T3A4)] [H24T2A5| [F25T2A3

Korperhomomorphismen und Fortsetzungssatz

F22T3AD

Zerfallungskorper

[F23TTA3] [F23T2A4)

separable Korpererweiterungen
[H21T2A3

endliche Koérper

[A20T2A3] [F21T3A5| [H21T2A2] [H21T3A4] [F22T2A4] [H22T3A4] [F23T2A%] [H23TTAS| [F24T2A17]

Galoistheorie

Nachweis von Galois-Erweiterungen

[[22T2A5] [F22T3A5 [H22TTA3| [H22T2A4] [H22T3A4] [F23TTA3| [H23T2AT] [F24TTAS] [H24TTAS
[A24T2AF] [H24T3A7]

Hauptsatz der Galoistheorie

[F20T3A4] [H20T2A5] [F21T2A4] [H2TTTAS] [F22T2A5| [F22T3A4] [H22TTA3] [F23TTA3| [H24T2A7)]
E25T2A2

Rechnen in Galoisgruppen und Bestimmung des Isomorphietyps

[A20TTAF| [H20T3A5| [F21TTAT] [F21T3A2] [H21T2A4] [H22TTAZ] [H22T2A4] [F23TTA3] [F24T1AT]
[A24T2AF] [H24T3A4] [F25TTAT] [F25T3A7]

Kreisteilungspolynome und Kreisteilungskorper

Konstruktion mit Zirkel und Lineal

E24T3AD



Aufgabe F20T1A1

Sei K ein Kérper und V = K2%2 der K-Vektorraum der 2 x 2-Matrizen iiber K. Fiir A, B € K?*2
betrachten wir die Abbildung ® : V — V, X — AXB. Zeigen Sie:

(a) @ ist ein Endomorphismus von V.

(b) Spur(®) = Spur(A)Spur(B)

Lésung:
zu (a) Wir miissen iiberpriifen, dass durch ® eine lineare Abbildung V' — V gegeben ist, dass also
D(X1+X2) = P(X1) + D(X2) und ®(AX7) = AP(X,) fiir alle X7, X5 € V und A € K gegeben ist. Beide

Gleichungen ergeben sich unmittelbar aus den bekannten Rechenregeln fiir Matrizen. Es gilt
O(X:1+X2) = AXi+X9)B = AXiB+XyB) = AXiB+AXpB = &(Xp)+ ®(X»)
und ®(AX;) = A(MAX1)B = A(AM(X1B)) = AM(AX1B) = A0(X4).

zu (b) Fiir 1 <i,j < 2 sei B;; € K?*? jeweils die Basismatrix mit dem Eintrag 1 an der Stelle (i, j)

(bei der alle iibrigen Eintriige gleich null sind), also

1 0 0 1 0 O 0 0
By = , Bia= , Bor = , By = .
0 0 0 0 1 0 0 1

Wir berechnen die Spur von @, indem wir die Darstellungsmatrix von ® beziiglich der geordneten Basis
(B11, B12, Ba1, Bas) des K-Vektorraums V' bestimmen. Es gilt

a11 a2\ (1 O\ (b1 bio _ a1 a2\ [bi1 bio _ a11biy a11bia
az2/ \0 0/ \ba1 b2 a1  G22 0 0 a21b11  a21bi2
®(Bis) = ABpB = ail a2 0 1 bi1  bi2 _ ail  ais bar  bao _ a11byr  ai1bas
az1 a2 O 0 b21 bgg a1 a99 0 0 a21b21 as b22

®(B21) = ABaB = a2 ) (00) fou bi — a11 - G412 0 0 _ ajzbi1  aizbia
a1 Q22 1 0 ba1  bao as1 G99 bi1 bio aob11  abis

arz) (0 0) (b iz _ a1 a1z 0 0 _ a12b21  a12baa

a1 azz) \O 1) \ba1 ba as1 99 bor  boo gobor  Gnabon

Jede dieser Gleichungen liefert eine Spalte der Darstellungsmatrix; insgesamt ist die Darstellungsmatrix

®(B;1) = AB;B

Il
N
Q
[\v]
=

@(BQQ) = ABQQB

|
N
Q
=
=
N~ ~ " " N

gegeben durch
aiibiy  aibiz  aizbin ai2by
ajibiz  aithyy  aizbiz  aizba
az1bir  asibar  azbin azbs
az1biz  azibay  azebia  azeba
Es gilt Spur(A) = a11 + age und Spur(B) = b1 + bes. Die Spur von ® ist nach Definition gleich der Spur

der Darstellungsmatrix, und fiir diese erhalten wir den Wert

a11bi1 + a11baz + a22biy + ag2bes = (@11 +a22)(bii +b22) = Spur(A)Spur(B).



Aufgabe F20T1A2

Seien R=7/15Z und f: R — R, x — Tz.

(a) Zeigen Sie, dass f bijektiv und damit eine Permutation von R ist.
(b) Bestimmen Sie die Fixpunkte von f.

(c) Bestimmen Sie die Anzahl der Bahnen der Operation von (f) auf R. Hier steht (f) fiir die von f

erzeugte Untergruppe der Permutationen von R.

Lésung:
zu (a) Istist 7 € R*, und 13 ist das multiplikative Inverse von 7. Daraus folgt, dass g : R — R, z + 13z
die Umkehrabbildung von f ist, denn fiir alle z € R gilt (go f)(x) = g(f(z)) = g(Tx) = 13(Tz) = 91z =

1z = z und ebenso (f o g)(x) = f(g(x)) = f(13z) = 7(13z) = 91z = la = x. Die Existenz einer
Umkehrabbildung zeigt, dass f bijektiv ist.

zu (b) Fiir ¢ € R ist ¢+ 15Z genau dann ein Fixpunkt, wenn 7¢ = ¢ mod 15 gilt, also genau dann, wenn
15 ein Teiler von 7¢ — ¢ = 6¢ ist. Dies wiederum ist wegen ggT(3,5) = 1 genau dann der Fall, wenn 3
und 5 Teiler von 6¢ sind. Da 3 immer ein Teiler von 6¢ ist, dies dies wiederum &quivalent zur Teilbarkeit
von 6¢ durch 5, wegen ggT(6,5) = 1 also zur Teilbarkeit von ¢ durch 5. Es gilt 5 | ¢ genau dann, wenn
c+ 157 € {0,5,10} gilt. Also ist {0,5,10} die Fixpunktmenge von f.

zu (¢) Jeder Fixpunkt bildet eine einelementige Bahn. Wegen 72 =49 =4 # 1 und 74 = (7%)?2 = 42 =
16 = 1 ist 7 in der Einheitengruppe R* ein Element der Ordnung 4. Zwei Bahnen der Operation sind
deshalb gegeben durch

NM = {rMinezy = {7-1jnez} = {7"|0<n<4} = ({7,413,1}

und

N = {"@Inez}y = {72 nez} = {"-2]0<n<4) = (WL8IL2 ,

eine weitere durch

(HB) = {f"@)|nez} = {7-3|nezZ} = {7"-3|0<n<4} = {21,12,9,3}.

Insgesamt existieren also genau sechs Bahnen.



Aufgabe F20T1A3

(a) Geben Sie die Definition einer auflisbaren Gruppe an.
(b) Zeigen Sie: Jede Gruppe der Ordnung 2020 ist auflgsbar.

(c) Geben Sie zwei nicht-isomorphe abelsche und zwei nicht-isomorphe nicht-abelsche Gruppen der

Ordnung 2020 an (mit Begriindung).

Lésung:

zu (a) Eine Gruppe G wird auflésbar genannt, wenn G eine abelsche Normalreihe besitzt. Darunter
versteht man eine Kette G = Ny 2 Ny 2 Ny O ... 2 N, = {eg} mit der Eigenschaft, dass die
Untergruppe N, jeweils ein Normalteiler von N; und die FaktorN; /N, abelsch ist, fiir 0 <i < r.

zu (b) Sei G eine Gruppe der Ordnung 2020. Fiir die Anzahl 1191 der 101-Sylowgruppen gilt auf
Grund der Sylowsétze v101 | 20, also v101 € {1,2,4,5,10,20}, und auBerdem 191 = 1 mod 101. Wegen
a # 1 mod 101 fiir a € {2,4, 5,10, 20} folgt 191 = 1. Sei N die einzige 101-Sylowgruppe von G. Ebenfalls

auf Grund der Sylowsitze handelt es sich um einen Normalteiler von G.

Laut Vorlesung ist G' genau dann auflésbar, wenn N und G /N auflésbar sind. Wegen 2020 = 22 -5 101!
gilt |[N| = 101' = 101, und als Gruppe von Primzahlordnung ist N zyklisch, damit auch abelsch und
auflosbar. Wegen |G/N| = % = 20 geniigt es zu zeigen, dass jede Gruppe der Ordnung 20 auflosbar

ist; daraus ergibt sich auf Grund des soeben genannten Satzes dann die Auflésbarkeit von G.

Sei also H eine Gruppe der Ordnung 20 und p, fiir jede Primzahl p die Anzahl der p-Sylowgruppen
von H. Es gilt ps | 4, also us € {1,2,4}, und auBerdem ps = 1 mod 5. Wegen 2 # 1 mod 5 und
4 #£ 1 mod 5 folgt us = 1. Sei M die einzige 5-Sylowgruppe von H; dann gilt M < H. Es gilt |[H| =5
und |H/M| = % = 20 = 4. Die Zahl 4 ist ein Primzahlquadrat, somit ist H/M eine abelsche und
insbesondere auflosbare Gruppe. Auf Grund der Primzahlordnung ist H zyklisch, damit ebenfalls abelsch

und auflésbar. Aus der Auflosbarkeit von M und H/M folgt die Auflésbarkeit von H.

zu (¢) Sei A = Z/2020Z und B = Z/2Z x 7./1010Z. Die Gruppe A besitzt mit 1 ein Element der
Ordnung 2020. Fiir alle (b,¢) € Z/27 x 7./10107Z gilt dagegen 1010(b, ¢) = (1010b, 1010¢) = (0,0); dies
zeigt, dass die Ordnung jedes Elements in B ein Teiler von 1010 ist und somit kein Element der Ordnung

2020 in B existiert. Folglich sind A und B zwei nicht zueinander isomorphe abelsche Gruppen.

Eine nicht-abelsche Gruppe der Ordnung 2020 konstruieren wir als dufleres semidirektes Produkt. In der
Gruppe Z/1007 ist 20 ein Element der Ordnung 5, folglich existiert laut Vorlesung ein nichttrivialer Ho-
momorphismus ¢ : Z/57 — 7./100Z gegeben durch ¢(1) = 20. AuBlerdem gilt Z/100Z = (Z/1017Z.)* =
Aut(Z/1017Z); sei ¢ : Z/100Z — Aut(Z/1017Z) ein beliebig gewiahlter Isomorphismus und ¢ = ¢ o ¢. Das
duBere semidirekte Produkt C7 = Z/1017Z x, Z/5Z ist dann eine nicht-abelsche Gruppe der Ordnung
101 -5 =505, und C = Z/47 x Cy ist eine nicht-abelsche Gruppe der Ordnung 4 - 505 = 2020.

Eine weitere nicht-abelsche Gruppe der Ordnung 2020 ist Diedergruppe D119, die Symmetriegruppe
des regelméfligen 1010-Ecks. Diese ist laut Vorlesung ebenfalls nicht abelsch. Desweiteren sind C' und
D1p10 nicht zueinander isomorph. Denn bekanntlich enthélt die Diedergruppe D, fiir alle n € IN nur
Elemente der Ordnung 2 und solche, deren Ordnung ein Teiler von n ist. Anhand der Primfaktorzerlegung
1010 = 2 - 5 - 101 konnen wir die Teiler von 1010 aufzéhlen. Die Gruppe Dig1o enthélt demnach nur
Elemente der Ordnungen 1, 2, 5, 10, 101, 202, 505 und 1010, aber kein Element der Ordnung 4. Dagegen
ist (1,ec,) offenbar ein Element der Ordnung 4 in C. Dies zeigt, dass C und Dig1g nicht zueinander

isomorph sind.



Aufgabe F20T1A4

Sei ¢ € C eine primitive elfte Einheitswurzel und K = Q(().

(a) Zeigen Sie: K ist der Zerfillungskérper von x'! — 1 iiber Q. Geben Sie den Isomorphietyp der
Galois-Gruppe von Gal(K|Q) an.

(b) Zeigen Sie: Es gibt eine galoissche Kérpererweiterung @ C L mit [L : Q] = 5.

Lésung:

zu (a) Die Nullstellenmenge des Polynoms f = z!! — 1 ist gegeben durch N = {¢* | 0 < k < 11}.
Denn wegen f(¢) = (¢¥F)' — 1= (¢'')* —1=1—1 =0 ist jedes Element dieser Menge tatsichlich eine
Nullstelle von f, und weil ¢ eine primitive elfte Einheitswurzel ist, in der multiplikativen Gruppe C*
also die Ordnung 11 besitzt, enthélt N elf verschiedene Elemente. Weil ein Polynom vom Grad 11 iiber

einem Korper nicht mehr als elf Nullstellen haben kann, muss N die genaue Nullstellenmenge von f sein.

Um nun zu zeigen, dass K = Q(¢) der Zerfdllungskorper von f iiber @ ist, miissen wir die Gleichung
Q(¢) = Q(N) beweisen. Wegen ¢ € N gilt einerseits ¢ € Q(N). Aus ¢ € Q(¢) folgt auf Grund der
Teilkorper-Eigenschaft von Q(¢) andererseits ¢* € Q(¢) fiir 0 < k < 11, also N € Q(¢). Aus N C Q(¢)
und ¢ € Q(N) folgt laut Vorlesung die behauptete Gleichheit.

Bezeichnet K, den n-ten Kreisteilungskérper (mit n € IN; n > 2), so ist die Erweiterung K,|Q laut
Vorlesung galoissch, und es gilt Gal(K,,|Q) = (Z/nZ)*. Somit gilt Gal(K|Q) = (Z/117Z)*, und weil 11
eine Primzahl ist, gilt aulerdem (Z/11Z)* = Z/10Z. Die Galois-Gruppe Gal(K|Q) ist also zyklisch von
Ordnung 10.

zu (b)  Weil die Gruppe G = Gal(K|Q) zyklisch von Ordnung 10 ist, gibt es fiir jeden Teiler d € IN
von 10 eine eindeutig bestimmte Untergruppe Uy von G von Ordnung d. Sei L = KU? der Fixkorper der

Untergruppe Us. Nach den Ergénzungen zum Hauptsatz der Galoistheorie gilt dann [L : Q] = (G : Uy) =

|‘UG2|‘ = 1—20 = 5. Weil G als zyklische Gruppe abelsch ist, sind sdmliche Untergruppen von G Normalteiler,

insbesondere die Untergruppe Us. Daraus wiederum folgt laut Vorlesung, dass die Erweiterung L|Q eine

Galois-Erweiterung ist.



Aufgabe F20T1A5

Ein n-Tupel (a1, asz, ..., a,) von ganzen Zahlen heifie hiibsch, wenn a;a; + 2 eine Quadratzahl ist fiir alle

1 <7< j < n. Zeigen Sie:

(a) Es gibt hiibsche Tripel.
(b) Wenn ein Quadrupel hiibsch ist, dann ist keine der Zahlen a; (j =1, ...,4) durch 4 teilbar.

(c) Es gibt keine hiibschen Quadrupel.

Lésung:
zu (a) Das Tripel (a1,a2,a3) = (1,2,7) ist hiibsch, denn ajas +2 =4, a1az +2 =9 und asasz +2 = 16

sind alles Quadratzahlen.

zu (b) Nehmen wir an, (a1, as,as,as) ist ein hiibsches Quadrupel mit der Eigenschaft, dass eines der
Elemente a; (mit ¢ € {1,2,3,4}) durch 4 teilbar ist. Betrachten wir zunéchst den Fall i = 1. Nach
Voraussetzung ist aijas + 2 eine Quadratzahl. Wegen a; = 0 mod 4 gilt aber aja2 +2 =0-as + 2 =
2 mod 4. Bekanntlich ist aber jede Quadratzahl kongruent zu 0 oder 1 modulo 4 (wegen 02 = 0 mod 4,
12 =1 mod 4, 22 = 0 mod 4 und 32 = 1 mod 4). Der Widerspruch zeigt, dass die Annahme im Fall i = 1
falsch ist. Setzen wir nun 7 > 1 voraus. In diesem Fall ist aya; + 2 = a1 - 0 + 2 = 2 mod 4, andererseits
ist auch aia; + 2 nach Voraussetzung eine Quadratzahl. Also fithrt die Annahme auch in diesem Fall zu

einem Widerspruch.

zu (¢) Angenommen, (a1, as,as,as) ist ein hiibsches Quadrupel. Nach (b) ist keine der vier Zahlen
durch 4 teilbar. Da es abgesehen von 0 nur drei Restklassen modulo 4 gibt, miissen zwei der Zahlen a;, a;
(mit 1 <4 < j < j) in derselben Restklasse modulo 4 liegen. Ist diese Restklasse 2, dann sind a;, a;
beide gerade, und folglich gilt a;a; +2 = 0+ 2 = 2 mod 4. Aber wie wir bereits in Teil (b) gesehen
haben, ist dies unvereinbar mit der Annahme, dass a;a; + 2 eine Quadratzahl ist. Also muss entweder
a; = a; = 1 mod 4 oder a; = a; = 3 mod 4 gelten. In beiden Féllen ist a;a; +2 =1+ 2 = 3 mod 4. Aber
auch dies ist unmoglich, wenn a;a; + 2 ein Quadrat ist. Auch hier hat unsere Annahme also zu einem

Widerspruch gefiihrt.



Aufgabe F20T2A1

Fiir A1, Ao, A3 € C seien ag, a1, as die Koeffizienten des Polynoms

FX)i=(X =) - (X =X)- (X =X3) = X® +aeX? + a1 X + ap € Clz].

Ferner sei
0 0 —Q
A=[1 0 —a | €C?®3
0 1 —ag

die sogenannte Begleitmatrix zu den gegebenen Zahlen. Zeigen Sie:

(a) Die Eigenwerte von A sind A1, Ao, As.

(b) Die Jordansche Normalform von A hat fiir jeden Eigenwert A genau ein Jordan-Kiistchen.

Lésung:
zu (a) Wir iiberpriifen, dass f mit dem charakteristischen Polynom x 4 von A iibereinstimmt. Bezeichnen

wir die Einheitsmatrix in C3*3 mit £, dann gilt

T 0 ap
xa = det(zE—-A) = -1 =z ay =
0 -1 x+ao

22(r+a)) +0+ag—0—(—a12) =0 = 2%+ a2® +a1x+ ap.

Die Eigenwerte von A sind laut Vorlesung genau die Nullstellen von x4 = f, und die Zerlegung von f

in Linearfaktoren zeigt, dass dies genau die Werte A1, Az, A3 sind.

zu (b) Wir zeigen zuniichst, dass die Matrizen E, A, A? im C-Vektorraum C3*3 ein linear unabhéngiges
System bilden. Die erste Spalte von E, A bzw. A? ist jeweils der Einheitsvektor e, es bzw. es. Bei F und
A kann dies direkt abgelesen werden, bei A2 erhilt man das Resultat durch Multiplikation der Matrix

A mit ihrer ersten Spalte:

0 0 —ao 0
10 —a|]1] = Jo|l = es
0 1 —ag 0 1

(Es ist nicht notwendig, die Matrix A2 vollstéindig zu berechnen.) Seien ¢y, c1, o mit coE+c1 A+co A% =0
vorgegeben. Durch Vergleich der ersten Spalten auf beiden Seiten erhilt man cpe; 4+ cieq + coes = 0, und
daraus folgt ¢y = ¢; = co = 0, weil {e1,e2,e3} ein linear unabhiingiges System in C? ist. Damit ist die

linear Unabhéngigkeit von {E, A, A%} nachgewiesen.

Aus der linearen Unabhiingigkeit von {E, A, A%} folgt, dass das Minimalpolynom 4 von A mindestens
vom Grad 3 ist. Wire nimlich 4 vom Grad 1 oder 2, pa = cax? + c12 + ¢ mit ¢y, ¢1, ¢ € C, dann
wiirde caA? + c; A+ cog = pa(A) = 0 folgen, im Widerspruch zur linearen Unabhingigkeit. Nach dem
Satz von Cayley-Hamilton gilt x4 (A) = 0; wegen grad(ua) > 3 = grad(xa) folgt daraus pa = xa.

Sei nun A € C ein Eigenwert von A und a € {1, 2,3} dessen algebraische Vielfachheit. Dann ist a zugleich
die Vielfachheit von A als Nullstelle von p4. Laut Vorlesung ist die algebraische Vielfachheit von A die
Summe der Groflen sdmtlicher Jordanblocke zum Eigenwert A in der Jordanschen Normalform. Die
Vielfachheit von a als Nullstelle von p 4 ist dagegen die Grole des grofiten Jordanblocks zum Eigenwert

A. Da beide Werte gleich a sind, folgt daraus, dass nur ein Jordanblock zum Eigenwert A existiert.



Aufgabe F20T2A2

Zeigen Sie:

(a) Ist n = dm mit ungeradem m € IN, so gilt die Teilbarkeitsrelation (z% + 1) | (2™ + 1).

(b) Das Polynom z" + 1 ist genau dann iiber Q irreduzibel, wenn n = 2* fiir ein k € Ny gilt.

Hinweise:

zu (a) Weisen Sie die Teilbarkeitsrelation anhand der Nullstellen nach. Die komplexen Nullstellen von

22% — 1 sind genau die 2d-ten Einheitswurzeln. Was bedeutet das fiir die Nullstellen von 2% 4 1?7

zu (b) Eine Implikationsrichtung kann aus Teil (a) abgeleitet werden. Fiir die andere Richtung denken

Sie daran, dass Kreisteilungspolynome laut Vorlesung iiber Q irreduzibel sind.

Lésung:

zu (a)  Wir zeigen: Fiir jedes t € IN ist ( € C* genau dann eine Nullstelle von z! + 1, wenn die
Ordnung von ¢ in C* zwar ein Teiler von 2¢, aber kein Teiler von ¢ ist. ,<* Sei ord(¢) | (2¢) und
ord(() t t vorausgesetzt. Wegen (¢*)? = ¢ = 1 ist (! einerseits eine Nullstelle von 22 — 1, also ¢! € {+1},
andererseits ist (! = 1 ausgeschlossen, da ansonsten ord(¢) | ¢ gelten wiirde. Also gilt ¢! = —1, und somit
ist ¢ eine Nullstelle von 2zt +1 =% Sei ¢ € C eine Nullstelle von z! + 1. Dann gilt ¢! = —1 und
¢ = (=1)2 =1, also ¢ € C* und ord(¢) | 2t. Wiirde auch ord(¢) | ¢ gelten, dann wiirde daraus ¢! = 1
folgen, im Widerspruch zu ¢! = —1.

Seien nun d, m,n € N wie angegeben. Die Polynome x%+1 und 2" +1 haben wegen ggT (2% +1, dz?~1) =1
und ggT(z" + 1,n2" 1) = 1 nur einfache Nullstellen. Fiir den Nachweis der Teilbarkeitsrelation geniigt
es deshalb nachzuweisen, dass jede komplexe Nullstelle von 2 4+ 1 auch eine Nullstelle von 2™ + 1 ist. Sei
also ¢ € C eine Nullstelle von ¢ + 1. Wie im vorherigen Absatz gezeigt, gilt ¢ € C*, ord(¢) | (2d) und
ord(¢) 1 d. Weil d ein Teiler von n ist, gilt auch (2d) | (2n) und damit ord(¢) | (2n). Nehmen wir nun an,
dass auch ord(() | n erfiillt ist. Dann ist ord(¢) insgesamt ein Teiler von ggT(2d,n) = ggT(2d,dm) = d,
wobei im letzten Schritt verwendet wurde, dass m ungerade ist. Aber ord(¢) | d steht im Widerspruch
zu unserer Voraussetzung. Es gilt also ord(¢) | (2n) und ord(¢) | n. Wie oben gezeigt folgt daraus, dass

¢ eine Nullstelle von ™ + 1 ist.

zu (b) ,<“ Ist n = 2% fiir ein k € Ny, dann ist 2™ + 1 das 2n-te Kreisteilungspolynom und somit
laut Vorlesung iiber @ irreduzibel. Bezeichnen wir nidmlich fiir jedes m € IN mit ®,, € Z[z] das m-
te Kreisteilungspolynom, so gilt laut Vorlesung 22" — 1 = [1,; ®a, wobei d die Teiler von 2n = 2k+1
durchliuft. Die Menge dieser Teiler besteht aus 2n und den Teilern von n, so dass die Gleichung in der

Form 22" — 1 = ®,,, - (2™ — 1) geschrieben werden kann. Daraus wiederum folgt

2n
" —1

,=“ Ist n keine Zweierpotenz, so gibt es eine Zerlegung n = dm mit d,m € IN, wobei d > 1 und
ungerade ist. Nach Teil (a) wird 2" 4+ 1 dann von 2% + 1 geteilt, mit 1 < d < n. Daraus folgt, dass 2™ + 1
in Q[z] reduzibel ist.



Aufgabe F20T2A3

Seien p eine Primzahl und IF, C IF,» eine Kérpererweiterung vom Grad k iiber dem Korper IF),. Betrachten

Sie die Gruppe G := GLy(IF,») der invertierbaren 2 x 2-Matrizen {iber IF,x. Zeigen Sie:

(a) Die Teilmenge N :={A € G | det(A) € F, } ist ein Normalteiler.
(b) Der Index des Normalteilers N ist teilerfremd zu p.

(c) Die p-Sylowgruppen von G sind genau die p-Sylowgruppen von N.

Lésung:

zu (a) Weil die Gruppe G aus den invertierbaren Matrizen iiber . besteht, gilt det(A) # 0, also
det(A) € IF:k fiir alle A € G. Die Gruppe IF; ist eine Untergruppe von ]F;k, denn es gilt 1 € IF ¥, und fiir
allea,b e I gilt auch ab € ) und a~! € GFp*. Dariiber hinaus ist IF¥ sogar ein Normalteiler von F;k,
denn die Gruppe F;k ist abelsch, und in einer abelschen Gruppe sind alle Untergruppen Normalteiler. Nun
ist N nach Definition das Urbild des Normalteilers I ¢ ﬂF;k unter dem Homomorphismus det : G — F;k,
und laut Vorlesung ist jedes Urbild eines Normalteilers unter einem Gruppenhomomorphismus ebenfalls

ein Normalteiler. Daraus folgt N < G.

zu (b)  Wir betrachten den Abbildung ¢ : G — IF;,C/]F;7 A+ det(A)F5. Als Komposition der
Determinantenabbildung mit dem kanonischen Epimorphismus a — ol handelt es sich um einen

Gruppenhomomorphismus. Der Kern von ¢ ist gleich N, denn fiir alle A gilt die Aquivalenz
Acker(¢p) & ¢(A)= CE%, /F & det(A)F; =F; <& det(Ad)elF; < AcN.

AuBerdem ist ¢ surjektiv, denn fiir vorgegebenes o ¥ € F,x /) mit o € IF;k ist

1 0
0 «

wegen det(C,) = a # 0 eine invertierbare Matrix, also ein Element aus G, und es gilt ¢(a) =
det(Co)IF ) = alF ).

Damit sind alle Voraussetzungen des Homomorphiesatzes erfiillt, und wir erhalten einen Isomorphismus
G/N =T /). Es folgt

GN) = GN| = [FAEX = e el y
(')_ ‘/| = |pk/p‘ - F;)( - p—1 - 4 p-

Wegen p' = 0 mod p fiir 1 <i < k—1folgt (G: N) =S¥ pi =1 mod p, insbesondere gilt p{ (G : N).

Weil p eine Primzahl ist, ist dies gleichbedeutend damit, dass p und (G : N) teilerfremd sind.

zu (c) Sei P eine Untergruppe von G. Wir zeigen, dass P genau dann eine p-Sylowgruppe von G
ist, wenn P eine p-Sylowgruppe von NN ist. Dabei verwenden wir, dass allgemein eine Untergruppe P
einer endlichen Gruppe G genau dann eine p-Sylowgruppe ist, wenn |P| von p-Potenzordnung ist und
pt(G: P)gilt. ,<“ Weil P eine p-Sylowgruppe von N ist, gilt p{ (N : P). Es gilt

Gl _ 6l N

P = B = NP

(G:N)-(N:P).

Aus p{ (G : N)und p 1 (N : P) folgt p 1 (G : P). Aulerdem ist P (als p-Sylowgruppe von N) von
p-Potenzordnung. Also ist P eine p-Sylowgruppe von G.



»=“ Sei P eine p-Sylowgruppe von G. Auf Grund des Ersten Isomorphiesatzes gilt P/(NNP) = PN/N.
Weil P von p-Potenzordnung ist, gilt dasselbe fir P/(N N P) und damit auch fir PN/N. Es handelt
sich bei PN/N also um eine p-Untergruppe von G/N. Weil aber |G/N| = (G : N) nach Teil (b)
teilerfremd zu p ist, muss PN/N = {eg/n} sein, also PN = N und somit P C N gelten. Es ist P
also eine p-Untergruppe von N. Wire p ein Teiler von (N : P), dann wire p erst recht ein Teiler von
(G:P)=(G:N)-(N : P). Aber dies ist nicht der Fall, weil P eine p-Sylowgruppe von G ist. Insgesamt
ist damit gezeigt, dass P eine p-Sylowgruppe von N ist.



Aufgabe F20T2A4

(a) Sei h: A — G ein surjektiver Gruppenhomomorphismus einer abelschen Gruppe A in eine Gruppe

G. Zeigen Sie, dass dann auch G abelsch ist.

(b) Sei p eine Primzahl, p # 2. Bestimmen Sie die Anzahl der Nullstellen des Polynoms f(X) =
2?2+ 22+ 1in Fp2 und in Z/p*Z.

(¢) Man zeige oder widerlege folgende Aussage: Fiir alle a,b,c € N gilt ggT(a, b, c)kgV(a, b, c) = abe.

Lésung:

zu (a) Seien u,v € G vorgegeben. Zu zeigen ist uv = vu. Da h surjektiv ist, gibt es a,b € A mit h(a) = u
und h(b) = v. Weil A abelsch ist, gilt ab = ba. Auf Grund der Homomorphismus-Eigenschaft von h folgt
uv = h(a)h(b) = h(ab) = h(ba) = h(b)h(a) = vu.

zu (b) Fiir alle o € 2 gilt die Aquivalenz
fl@)=0 & o*+2a+1=0 & (a+1)*=0 & a+1=0 & a=-1.

Dabei wurde im vorletzten Schritt verwendet, dass in jedem Kérper K die Aquivalenz 8 = 0x < 82 = 0x
fiir alle 8 € K giiltig ist. (Im Fall 3 = O ist die Aquivalenz offensichtlich, im Fall 8 # 0 die Implikation
»,= ebenfalls, und ,,<=* erhiilt man durch 3 = 87132 = 371 . 0 = Ok.) Das Polynom f besitzt in I,

also genau eine Nullstelle.

Im Ring Z/p?Z ist diese Aquivalenz aber falsch, weshalb hier anders vorgegangen werden muss. Sei a € Z

und @ das Bild von a in Z/p?Z. Es gilt die Aquivalenz

fl@=0 & a&a+2a+1=0 & (@a+1)*=0 < p’|(a+1)?® < plla+1)
& Jk€Z:a+l=kp < a€—-1+pZ < ac{-1+pk|kecZ}
& ac{-1+pk|0<k<p}

Im vierten Schritt ist die Implikation ,,<* erfiillt, denn aus a+ 1 = kp fiir ein k € Z folgt (a+1)? = k2p>.
Ebenso gilt ,=“, denn wire a + 1 teilerfremd zu p, dann wiirde dies auch fiir (a + 1)? gelten. Im letzten
Schritt haben wir verwendet, dass fiir k,¢ € Z die Elemente —1 + pk und —1 + pf in Z/p?*Z genau
dann {ibereinstimmen, wenn —1 + pk = —1 + pf mod p? gilt, was zu pk = pf mod p? und k = ¢ mod p
dquivalent ist. Damit —1 + pk alle Elemente von Z/p2Z durchliuft, geniigt es also, fiir k alle Elemente
aus einem Reprisentantensystem von Z/pZ einzusetzen, zum Beispiel {0, 1, ..., p— 1}. Zugleich sind diese

Elemente dann alle verschieden. Das Polynom f hat also in Z/p?Z genau p Nullstellen.

zu (c) Diese Aussage ist im Allgemeinen falsch. Setzt man zum Beispiel a = 5, b = 52, ¢ = 53,
dann gilt ggT(a,b,c) = 5, kgV(a,b,c) = 53 und somit ggT(a,b,c)kegV(a,b,c) = 5%, andererseits aber
abc = 5-52.5% = 55, (Im Gegensatz dazu ist die Gleichung ggT(a, b)kgV (a,b) = ab fiir beliebige a,b € IN
richtig. Man beweist diese Gleichung leicht, indem man die Primfaktorzerlegung von a und b betrachtet

und die Formeln fur die Primfaktorzerlegung von ggT und kgV aus der Vorlesung verwendet.)



Aufgabe F20T2A5

Sei L C C der Zerfillungskorper von 28 — 2. Sei ferner ¢ := exp(%) € C. Zeigen Sie:

(a) Es gilt V2 € Q(¢).
(b) Die Koérpererweiterung @ C L hat den Grad [L : Q] = 16.

(¢) Die Galoisgruppe G = Gal(L|Q) ist nicht abelsch und hat einen Normalteiler der Ordnung 4
mit N = 7,/47.

Lésung:

zu (a) Es gilt ¢ = exp(%) = cos(§7) + isin(f7),

(7! = exp(—Z) = cos(3m) — isin(inm), und somit cos(ir) = L(¢ + (1) € Q(¢). Auf Grund des
Additionstheorems des Kosinus gilt 0 = cos(3m) = cos(§m)? — sin(§7)?, also cos(37)? = sin(37)2. Es
folgt 2(:05(l )2 = cos(im)? +sin(ir)? = 1, cos(37)? = %, und wegen cos(a) > 0 fiir —27 < o < i7

folgt L %= cos(37) € Q(¢). Damit ist auch der Kehrwert v/2 in Q(¢) enthalten.

zu (b) Wir zeigen zunichst, dass L = Q(+/2, ) gilt. Die Menge der komplexen Nullstellen von f = 2% —2
ist durch N = {¢*V/2 | 0 < k < 8} gegeben. Denn wegen f(¢Fv/2) = (¢FV/2)% —2 = (¢®)F-2 -2 =
1¥.2 — 2 = 0 sind tatsiichlich alle Elemente von N Nullstellen von f. Da es sich bei ¢ um eine primitive
achte Einheitswurzel handelt, sind die Elemente ¢*¥ mit 0 < k < 8 alle verschieden, und wegen /2 # 0
gilt dasselbe fiir ¢¥v/2 mit 0 < k < 8. Da andererseits ein Polynom vom Grad 8 iiber einem Korper
nie mehr als acht Nullstellen besitzt, ist N genau die Menge der komplexen Nullstellen von f. Der

Zerfallungskorper L von f iiber @ in C ist also durch L = Q(N) gegeben.

Zu zeigen bleibt Q(N) = Q(V/2,i). Wir haben bereits in Teil (a) gesehen, dass cos(3m) = % und
1

im)? = cos(im)? gilt. Wegen s1n(a) > 0 fiir 0 < a < 7 ist somit auch sin(3r) = % Es folgt

C = cos(§7) + isin(im) = f 75+ Aus V2,1 € Q(V/2,i) folgt V2 = (V/2)* € Q(V/2,4) und ¢ =
ﬁ ﬁ € Q(v/2,i). Wir erhalten weiter ¢*v/2 € Q(v/2,4) fiir 0 < k < 8 und somit N C Q(v/2,1).
Aus ¥/2 € N C Q(N) und (/2 € N C Q(N) folgt andererseits ¢ = ‘Z% € Q(N) und i = ¢ € Q(N).
Insgesamt gilt also {+/2,i} C Q(N). Aus den beiden Inklusionen {v/2,i} € Q(N) und N C Q(+/2,14)

folgt die Gleichung Q(N) = Q(+/2,1). Insgesamt ist der Beweis von L = Q(+/2,4) damit abgeschlossen.

sin(

Nun bestimmen wir den Erweiterungsgrad [L : Q). Das Polynom f = 2% — 2 ist in Q[z] irreduzibel nach
dem Eisenstein-Kriterium, angewendet auf die Primzahl p = 2. AuBerdem ist es normiert und hat /2
als Nullstelle. Insgesamt ist f damit das Minimalpolynom von /2 iiber @, und es folgt [Q(v/2) : Q] =
grad(f) = 2. Das Polynom g = 2241 ist normiert und hat i als Nullstelle. Wiire es iiber Q(+/2) reduzibel,
dann miissten wegen grad(g) = 2 die beiden Nullstellen 47 in Q(+3/2) liegen. Aber dies ist unméglich,
denn es gilt Q(v/2) C R, wihrend die Zahlen i nicht reell sind. Also ist g das Minimalpolynom von 4
itber Q(¥/2), und es folgt

[L:Q(V2)] = [Q(V2)(0):QV2] = gadf) = 2
Mit der Gradformel erhalten wir [L: Q] = [L : Q(v/2)] - [Q(¥/2) : Q] =2 -8 = 16.

zu (¢) Waire G abelsch, dann miisste jede Untergruppe von G Normalteiler sein. Insbesondere wiire
Gal(L|Q(+/2)) ein Normalteiler von G, und nach den Ergiinzungen zum Hauptsatz der Galoistheorie
wiirde sich daraus ergeben, dass Q(+/2)|Q eine Galois-Erweiterung ist, insbesondere eine normale Er-

weiterung. Aber dies ist nicht der Fall. Denn das Polynom f = 28 — 2 ist {iber Q irreduzibel und hat



in Q(¥/2) eine Nullstelle. Wiire die Erweiterung normal, dann miisste f iiber Q(+/2) bereits in Line-
arfaktoren zerfallen, also alle komplexen Nullstellen bereits in Q(+/2) C R liegen. Aber f besitzt auch
nicht-reelle Nullstellen in C, beispielsweise ¢ 4/2. Dies zeigt, dass G nicht-abelsch ist.

Fiir den Beweis der zweiten Aussage zeigen wir zunéchst, dass es in G ein Element ¢ mit ord(c) = 8
gibt. Der erste Schritt ist die Konstruktion eines solchen Elements. Nach dem Fortsetzungssatz, ange-
wendet auf das irreduzible Polynom f € Q[z] und die beiden Nullstellen /2 und ¢+/2, existiert ein
Q-Homomorphismus & : Q(3/2) — C mit o(3/2) = (/2. Nochmalige Anwendung dieses Satzes, diesmal
auf das iiber Q(+/2) irreduzible Polynom g = 22 + 1, liefert eine Fortsetzung o : L — C von & mit
o(i) = i. Bs gilt also 0(¥/2) = ¢v/2 und o(i) = i. Da die Erweiterung L|Q normal ist, handelt es sich bei

o sogar um einen Q-Automorphismus von L, also um ein Element von G.

Aus o(V/2) = ¢ V2 folgt o(¥8) = o((V2)*) = o(V2D)* = (CV2)* = (H(VD)* = (-1)vZ = —v2 und

Wir erhalten weiter

0*(V2) = 0(0(V2)) = 0(¢V2) = 0(¢)o(V2) = (—()((V2) = —iV2

Aus 08(V/2) = ¥/2 und ¢8(i) = i folgt ¢® = id, denn wegen L = Q(~/2, i) ist jedes Element aus G durch
die Bilder von v/2 und i festgelegt. Aus 0#(v/2) # v/2 folgt andererseits 0* # id. Damit ist ord(c) = 8

nachgewiesen.

Sei nun N = Gal(L|Q(¢)). Als Kreisteilungserweiterung ist Q(¢)|Q eine normale Erweiterung, und nach
den Ergénzungen zum Hauptsatz der Galoistheorie gilt somit N < G. Dariiber hinaus gilt G/N =
Gal(Q(Q)|Q) = (z/8Z)*, auBerdem |G| = |Gal(L|Q)| = [L : Q] = 16. Es folgt

16 _ ldl

N = N T IG/N| = |((Z/32)*] = ¢((8) = 4

Es folgt [N| = % = 4. Bekanntlich sind die einzigen Gruppen der Ordnung 4 bis auf Isomorphie durch
7,/AZ und (Z,/27.)? gegeben.

Nehmen wir an, es ist N = (Z/2Z.)2. Weil es in G/N 22 (Z/27)? nur Elemente der Ordnung 1 und 2 gibt,
gilt fiir jedes 7 € G jeweils 72N = (7N)? = eg/ny = N und somit 72 € N. Weil auch in N = (Z/2Z)?
nur Elemente der Ordnung 1 und 2 existieren, folgt daraus weiter 74 = (72)2? = idy. Aus der Annahme
folgt also, dass in G nur Elemente existieren, deren Ordnungen Teiler von 4 sind, im Widerspruch dazu,
dass es in G ein Element der Ordnung 8 gibt. Somit bleibt N = Z /47, als einzige Moglichkeit.



Aufgabe F20T3A1

Seien G und G’ Gruppen und f : G — G’ ein Gruppenhomomorphismus.

(a) Definieren Sie den Begriff Normalteiler.

(b) Sei K der Kern von f, und sei H C G eine Untergruppe. Zeigen Sie, dass

FYfH)=HK ={hk|hec Hkc K} ist.

(c) Sei G eine Gruppe, und seien H und K Normalteiler in G mit der Eigenschaft H N K = {e¢}.
Zeigen Sie, dass kh = hk gilt fiir alle h € H und k € K.

(d) Geben Sie ein Beispiel (U,G) mit einer Gruppe G und einer Untergruppe U von G, die kein

Normalteiler ist.

Lésung:
zu (a) Ein Normalteiler einer Gruppe G ist eine Untergruppe N mit der Eigenschaft, dass gN = Ng
fiir alle g € G erfiillt ist.

zu (b) ,C“ Seig e f(f(H)) vorgegeben. Dann ist f(g) € f(H), also f(g) = f(h) fiir ein h € H.
Es folgt f(h=tg) = f(h"1)f(9) = f(h)"'f(9) = ec und somit h~'g € K. Dies wiederum bedeutet
g = h(h7lg) € HK. ,2“ Seig € HK, also g = hk fiir ein h € H und ein k € K. Dann folgt

f(g) = f(hk) = f(h)f(k) = f(h) - ecr = f(h) € f(H) und somit g € f~1(f(H)).

zu (¢) Seien h € H und k € K vorgegeben. Die Gleichung kh = hk ist dquivalent zu khk~*h~! = eg.
Wegen H <G ist khk~! € H und khk='h=! = (khk=')h~! € H. Wegen K <G gilt auch hk~'h™' € K
und khk~'h~! = k(hk~'h~!) € K. Insgesamt ist damit nachgewiesen, dass khk~*h~!in HN K = {eg}
enthalten ist. Also gilt khk~'h™! = eg.

zu (d) Sei G die symmetrische Gruppe S3 und U = ((1 2)) = {id, (1 2)}. Dann gilt einerseits (1 3)U =
{(13)0id, (13)o(12)} ={(13),(123)}, andererseits U(1 3) = {ido(1 3), (1 2)o(1 3)} = {(1 3),(1 3 2)}.
Es gilt also (1 3)U # U(1 3), was zeigt, dass U kein Normalteiler von S3 ist.



Aufgabe F20T3A2

Berechnen Sie die letzten beiden Ziffern der Zahl

92020) .

2018201

Gehen Sie dazu wie folgt vor:

(a) Berechnen Sie die Klasse von 2018(2019°%*%) iy 7./257.
(b) Zeigen Sie, dass [2018(2019°"*")] = () in Z/47Z gilt.

(c) Schlieflen Sie die Berechnung mit Hilfe des Chinesischen Restsatzes ab.

Lésung:
zu (a) Laut Vorlesung gilt |Z/25Z| = ¢(25) = 20, und in Z/20Z* gilt

[2019]2020 — [19]2020 — [_1]2020 — ([_1]2)1010 — [1]1010 _ 1.

Es folgt 2019%02° = 1 mod 20; es existiert also ein k € Z mit 20192020 = 1 + 20k. Wegen |Z /257 | = 20
gilt ¢2° =1 fiir alle ¢ € (Z/25Z)*. Wegen 5 1 2018 folgt ggT(2018,25) = 1, also ist die Klasse [2018] von
2018 in Z/257 in (Z/257Z)* enthalten. Daraus wiederum folgt

201820197 = [2018'+20F] = [2018]- ([2018]2)F = [2018]-[1]* = [2018] = [18].

zu (b) Fiir alle k > 2 gilt 4 | 2¥ und somit [2]* = [0] in Z /47, und es ist 20192020 > 2019 > 2. Wegen
2018 = 2 mod 4 folgt [2018](2019°020) — [9)(2019°*%) _ |0] iy 7, /47,

zu (¢)  Laut Chinesischem Restsatz existiert ein (eindeutig bestimmter) Ringhisomorphismus ¢ :
Z/100Z — Z/AZ x Z./257Z mit ¢(c + 100Z) = (c + 4Z,c + 257Z) fiir alle ¢ € Z. Daraus folgt: Sind
c1,C2 € Z mit ¢; = co mod 4 und ¢; = ¢o = ¢ mod 25, dann folgt ¢; = ¢ mod 100. Denn auf Grund

der Voraussetzung gilt
d(c1 +100Z) = (c1+4Z,c1 +252) = (ca+4Z,co+25Z) = P(co+ 100Z).

Aus der Injektivitit von ¢ folgt ¢; + 100Z = ¢y + 1007, und dies wiederum ist gleichbedeutend mit

¢1 = ¢ mod 100.

Es gibt gibt genau vier Zahlen ¢ € Z mit 0 < ¢ < 100 mit ¢ = 18 mod 25, ndmlich 18, 43, 68 und 93. Nur
eine dieser Zahlen erfiillt auch die Bedingung ¢ = 0 mod 4, nédmlich 68. Sei nun ¢; = 2018(2019°”*%) ynd
co = 68. Nach Teil (a) gilt ¢; = 18 = 68 = ¢ mod 25, und nach Teil (b) gilt ¢; = 0 = 68 = ¢ mod 4.
Wie soeben ausgefiihrt, folgt daraus ¢; = ¢, mod 100, also ¢; = 68 mod 100. Dies bedeutet, dass die

letzten beiden Ziffern der Zahl ¢; durch 6 und 8 gegeben sind.



Aufgabe F20T3A3

Sei p eine Primzahl, I, der Koérper mit p Elementen und V' = It} fiir n € IN. Weiter sei G < GL,,(IF},)
eine Gruppe, deren Ordnung eine Potenz von p ist. Man zeige, dass es einen Vektor 0 # v € I} gibt mit
gv = fiir alle g € G.

(Hinweis: |V \ {0} ist nicht durch p teilbar.)

Lésung:

Bekanntlich ist durch - : GL,(F,) x V. — V, (4,v) — Av eine Gruppenoperation von GL,,(IF,,) auf V
definiert, und durch Einschrinkung der Abbildung auf G x V erhalten wir eine Operation von G auf V.
Es sei FF C V die Fixpunktmenge dieser Operation und R C V ein Reprisentantensystem der Bahnen

mit mehr als einem Element. Laut Bahngleichung gilt

pto= VI o= FI+ ) (GG
vER
mit (G : G,) > 1 fiir alle v € R. Nach Voraussetzung gibt es auBerdem |G| = p© fiir ein e € IN. Betrachten
wir nun zunéchst den Fall e = 0. Dann ist G = {E} mit der Einheitsmatrix F, und fiir einen beliebig

gewiihlten Vektor v € V' \ {0} gilt Ev = v, also gv = v fiir alle g € G.

Ist dagegen e > 0, dann ist nicht nur |G|, sondern auch (G : G,) fiir jedes v € R eine p-Potenz grofier

als 1. Daraus folgt, dass ) durch p teilbar ist. Weil auch p” ein Vielfaches von p ist, ergibt sich aus

veER
der Bahngleichung, dass dasselbe auch fiir |F|. Auerdem ist |F| positv, denn wegen A -0 = 0 fiir alle
A € G ist der Nullvektor auf jeden Fall in G enthalten. Ingesamt gilt damit |F| > p > 1, insbesondere

gibt es ein v € F\ {0}. Wegen v € F ist Av = v fiir alle A € G erfiillt.



Aufgabe F20T3A4

Seien K ein Korper und L|K eine endliche Galoiserweiterung.

(a) Wir betrachten Zwischenkorper M und M’ von L|K und ein Element ¢ in Gal(L|K). Zeigen Sie

die Aquivalenz der folgenden beiden Aussagen.

(i) o(M) = M’
(i) oGal(L|M)o~" = Gal(L|M’)

(b) Seien L der Zerfallungskorper eines irreduziblen Polynoms f in K[z] und « und 8 Nullstellen von
fin L. Zeigen Sie, dass die Galoisgruppen Gal(L|K(a)) und Gal(L|K(8)) zueinander isomorph

sind.

(c) Zeigen Sie, dass man in (b) die Voraussetzung, dass f irreduzibel ist, nicht weglassen kann.

Lésung:

zu (a) ,=“ Wir zeigen, dass M’ der Fixkérper der Untergruppe U = ocGal(L|M)o~! von G = Gal(L|K)
ist; dann folgt Gleichung (ii) aus dem Hauptsatz der Galoistheorie. Sei « € L vorgegeben. Weil o : L — L
bijektiv ist, existiert ein 8 € L mit o(f) = a. Es gilt nun die Aquivalenz

aclV & VreU:r(a)=a & V7eGal(LM):(cotoo ) a)=a <«
VreGal(LM):(cotoo No(B)=0(8) & VreGal(LlM):a(r(B)=0(8) <
VreGalLIM):7(8) =8 < peLlCEM o geM & op)coM) & acM.

Dabei wurde im fiinften Schritt erneut die Bijektivitéit von o verwendet, und im siebten (drittletzten)

der Hauptsatz der Galoistheorie. Die Aquivalenz zeigt, dass tatséchlich M’ = LU gilt.

,=“ Sei M" = o(M). Wie wir unter ,,=“ gezeigt haben, ist M” der Fixkérper von oGal(L|M)o !, auf
Grund der Voraussetzung also von Gal(L|M’). Nach dem Hauptsatz der Galoistheorie gilt L&2!/(L1M D=
M. Aus Aus M" = LGalZIM") yng [GalLIM') — ©p7 folgt M = M” = o(M).

zu (b) Auf Grund des Fortsetzungssatzes, angewendet auf das irreduzible Polynom f, existiert ein Ele-
ment o € G mit o(a) = B. Weil ¢ ein K-Homomorphismus ist, gilt o(K(«a)) = K(o(a)) = K(B).
Nach Teil (a) folgt daraus Gal(L|K(8)) = oGal(L|K(a))o~!. Die Untergruppen Gal(L|K(«)) und

Gal(L|K(f)) sind also konjugiert zueinander; daraus folgt, dass sie isomorph sind.

zu (¢) Sei f = x(2? +1) = 2% + 2 € Q[z]. Die Nullstellenmenge dieses Polynoms ist N = {0,4,—i},
somit ist L = Q(N) der Zerfillungskorper von f. Aus i € N C Q(N) und N = {0,i, —i} C Q(7) folgt
Q(N) = Q(i). Die Erweiterung L|Q ist normal, da L Zerfillungskérper des Polynoms f iiber Q ist.
Als normale Erweiterung ist L|Q insbesondere algebraisch, und jede algebraische Erweiterung von @ ist

wegen char(Q) = 0 separabel. Insgesamt ist L|Q also eine Galois-Erweiterung.

Wir bestimmen die Ordnung der Galois-Gruppe G = Gal(f|Q) = Gal(L|Q) = Gal(Q(#)|Q). Das Polynom
g = 2%+ 1 ist normiert, irreduzibel und hat i als Nullstelle. Es ist ¢ also das Minimalpolynom von 7 iiber
Q, und folglich gilt [L : Q] = [Q(¢) : Q] = grad(g) = 2. Da L|Q eine Galois-Erweiterung ist, erhalten wi
1G] = |Gal(Z|Q)| = (L Q] = 2.

Betrachten wir nun die beiden Nullstellen & = 0 und 8 = i von f. Dann ist Q(«) = @ und Q(8) = L.
Es folgt |Gal(L|Q(a))] = [L : Q(a)] = [L : Q] = 2 und |Gal(L|Q(B))| = [L : Q(B)] = [L : L] = 1. Als
Gruppen unterschiedlicher Ordnung kénnen Gal(L|Q(«)) und Gal(L|Q(8)) nicht isomorph sein.



Aufgabe F20T3A5

Wir betrachten das Polynom f; := 2% + 102 + 5 in Q[z] und definieren induktiv Polynome f,(z) :=
fi(fn—1(z)) fir n € IN mit n > 2. Zeigen Sie, dass die Polynome f, fiir alle n € IN irreduzibel sind.

Zeigen Sie dazu folgende Zwischenschritte durch Induktion nach n:

(a) f, liegt in Z[z], und die Klasse von f,, in Z/5Z[x] ist durch z°" gegeben.

(b) Zeigen Sie, dass die Klasse von f,,(0) in Z/25Z nicht verschwindet.

Lésung:

zu (a) Fiir allen € IN sei f,, jeweils das Bild von f,, € Z[z] in Z/5Z[z]. Wir beweisen nun die angegebene
Aussage durch vollstéindige Induktion nach n. Das Polynom f; ist nach Definition in Z[z] enthalten und
das Bild von f; in Z/5Z[z] ist gegeben durch fi; = 2° + 10z + 5 = 2° = 2° . Damit ist die Aussage fiir
n = 1 bewiesen. Sei nun n € N, und setzen wir die Aussage fiir n voraus. Dann gilt also f,, € Z[z] und
fn = 2°". Allgemein gilt: Setzt man in ein Polynom f € Z[xz] ein Polynom g € Z[x] ein, dann ist f(g(z))
wiederum in Z[x] enthalten. Daraus folgt f,4+1(x) = f1(fn(2)) € Z[z]. Betrachten wir auf beiden Seiten
dieser Gleichung das Bild in Z/5Z[z], so erhalten wir f,.1(z) = fi(fn(2)) = fu(z)® +10f,(z) +5 =

fn(z)® = (257)5 = 25" Damit ist die Aussage fiir n + 1 bewiesen.

zu (b) Hier beweisen wir durch vollstindige Induktion iiber n, dass f,(0) jeweils zwar durch 5, aber
nicht durch 25 teilbar ist. Daraus ergibt sich unmittelbar, dass das Bild von f,(0) in Z/25Z ungleich
null ist. Fiir n = 1 ist die Aussage wegen f1(0) =5, 5|5 und 25t 5 offenbar erfiilt. Sei nun n € IN, und
setzen wir die Aussage fiir n voraus. Dann gilt laut Annahme 5 | f,(0) und 25 1 f,,(0). Nach Definition
ist foi1(z) = fi(fa(z)) und somit f,41(0) = fi(fa(0)) = fa(0)* + 10£,(0) + 5. Wegen 5 | f,(0) ist
fn(0)? durch 5% und somit erst recht durch 25 teilbar. Aus 5 | f,,(0) und 5 | 10 folgt auch 25 | 10, (0).
Damit gilt insgesamt f,,+1(0) = 5 mod 25. Dies zeigt, dass auch f,,+1(0) zwar durch 5, aber nicht durch
25 teilbar ist.

Die Irreduzibilitat von f;, fiir alle n € IN folgt nun aus dem Eisenstein-Kriterium. Um nachzuweisen, dass
die Voraussetzungen dieses Kriteriums jeweils erfiillt sind, zeigen wir noch durch vollstdndige Induktion,

5" jeweils der Leitterm von f,,, das Polynom also insbesondere normiert ist. Fiir f; ist dies offenbar

dass z
erfiillt, der Leitterm ist z°. Sei nun n € IN, und setzen wir voraus, dass z° der Leitterm von f, ist.
Es ist foi1 = f2 + 10f, + 5. Nach Induktionsvoraussetzung ist f, vom Grad 57, also ist f2 vom Grad
55" = 5" und 10f, vom Grad 5". Der Leitterm von f,.; ist also gleich dem Leitterm von f2, und

dieser ist durch (z°")> = 25" gegeben.

Jedes f, ist also normiert vom Grad 5", 2°" ist der Leitterm und 1 der Leitkoeffizient. Weil das Bild von
fn in Z/5Z[z] nach Teil (a) gleich 2" ist, sind alle iibrigen Koeffizienten von f,, durch 5 teilbar. Nach Teil
(b) ist der konstante Termn f,,(0) aber nicht durch 25 teilbar. Also sind tatséchlich alle Voraussetzungen

des Eisenstein-Kriteriums erfiillt.



Aufgabe H20T1A1

(a) Entscheiden Sie, ob es eine Potenz von 7 gibt, die mit den Ziffern 11 endet, und begriinden Sie Thre

Entscheidung.
(b) Ermitteln Sie die kleinste Potenz von 7, die auf 001 endet.

(c) Bestimmen Sie die letzten vier Ziffern von 72020,

Lésung:

zu (a) FEine Potenz 7" mit n € IN endet genau dann auf die Ziffern 11, wenn 7" = 11 mod 100
gilt. Dies wiederum ist genau dann der Fall, wenn in Z/100Z die Gleichung 7" = 11 erfiillt ist. Wegen
ggT(7,100) = 1 ist 7 ein Element der primen Restklassengruppe (Z/100Z)*. Wire 7" = 11 fiir ein
n € Ny erfiillt, dann miisste 11 in der von 7 erzeugten Untergruppe (7) von (Z/100Z)* liegen.

Es gilt 72 = 49 # 1 und 7* = (49)? = 2401 = 1. Dies zeigt, dass 7 in (Z/100Z)* ein Element der Ordnung
4 ist und folglich (7) = {7°,7%, 72,73} = {1,7,49, 43} gilt. Insbesondere ist 11 nicht in (7) enthalten, und
folglich gibt es keine Potenz von 7, die auf die Ziffern 11 endet.

zu (b) Eine Potenz 7" mit n € IN endet genau dann auf die Ziffern 001, wenn 7" = 1 mod 1000
gilt. Dies wiederum ist genau dann der Fall, wenn in Z/1000Z die Gleichung 7" = 1 erfiillt ist. Wegen
ggT(7,1000) = 1 ist 7 ein Element der Gruppe (Z/1000Z)*, und das kleinste n € IN mit 7" = 1 ist die

Ordnung von 7 in dieser Gruppe.

Auf Grund des Chinesischen Restsatzes und wegen ggT(8,125) = 1 existiert ein Isomorphismus ¢ :
(Z/1000Z)* — (Z./8Z)* x (Z,/125Z)* gegeben durch a + 1000Z — (a + 87Z,a + 125Z). Die Ordnung
von 7 in (Z/1000Z)* stimmt also mit der Ordnung von (7,7) in (Z/8Z)* x (Z/125Z.)* iiberein.

Esist (Z/125Z.)* eine Gruppe der Ordnung ¢(125) = 100, wobei ¢ die Eulersche ¢-Funktion bezeichnet.
Die Ordnung von 7 € (Z/125Z)* muss somit ein Teiler von 100 sein. Es gilt 72 = 49, 74 = 419" = 26,
78 =26 =51, 70 =78.72=51.49 = 124 = —1 und 72° = (—1)? = 1. Dies zeigt, dass 7 in (Z/125Z)*
die Ordnund 20 hat. In (Z/8Z)* gilt 72 = 49 = 1 und somit ebenfalls 729 = (72)10 = 119 = 1. Insgesamt
ist 20 damit die kleinste natiirliche Zahl n mit der Eigenschaft (7,7)" = (1,1) in (Z/8Z)* x (Z./125Z,)*.
Folglich ist 20 auch die Ordnung von 7 in (Z/1000Z)*. Die kleinste Potenz von 7, die auf 001 endet, ist
somit 720 = 79.792.266.297.612.001.

(Die Anwendung des Chinesischen Restsatzes ist hier nicht unbedingt notwendig. Es entstehen beim
Rechnen in Z/1257Z lediglich nicht ganz so grofle Zahlen wie in Z/1000Z.)

zu (¢) An den letzten vier Stellen der Zahl 7?° kann abgelesen werden, dass in Z/10000Z die Gleichung
720 = 2001 gilt, und es ist 7190 = (729)° = 2001° = 1. Daraus folgt 72020 = 7100:20+20 — (7100)20 . 720 —
120.2001 = 2001. Die letzten vier Ziffern von 72920 sind also 2001.




Aufgabe H20T1A2

(a) Begriinden Sie fiir jeden der folgenden vier Ringe Z /47, Fo x Fo, Fa[z]/(2?) und Falx]/ (22 +x+1),

ob er ein Korper ist.

(b) Zeigen Sie, dass die vier Ringe aus Teilaufgabe (a) paarweise nicht isomorph sind.

Losung:

zu (a) Die Ringe Z /47, Fy xF5 und Fy[z]/(2?) sind keine Korper. Denn Korper sind Integrititsbereiche,
was bedeutet, dass in ihnen kein von Null verschiedener Nullteiler existiert. Die Gleichungen 2-2 =0 =
0747 in Z/AZ, (1,0)- (0,1) = (0,0) = Op, xp, in Fy x Fy und (z+ (2?)) - (z + (2?)) = 22 + (2?) = (2?) =
Op, 2]/ (22) sowie die Ungleichungen 2 # 07,47, (1,0),(0,1) # Op,xr, und @ + (2%) # Op, 4]/ (x2) zeigen

aber, dass es in den drei genannten Ringen solche Elemente gibt.

Der Ring Fa[z]/(f) mit f = 22+ 2+ 1 dagegen ist ein Kérper. Denn als Polynomring {iber einem Kérper
ist IFo[x] laut Vorlesung ein Hauptidealring. Jedes irreduzible Element in einem Hauptidealring erzeugt
ein maximales Ideal, und der entsprechende Faktorring ist dann ein Koérper. Das Element f ist irreduzibel
in Fy[x], denn es ist grad(f) = 2, und wegen f(0) = 1 # 0 und f(1) =3 =1 # 0 hat f in F2 keine
Nullstellen. Folglich ist (f) in Fa[x] ein maximales Ideal, und Fo[z]/(f) ist ein Kérper.

zu (b) Aus Teil (a) folgt, dass Fa[z]/(f) zu keinem der drei anderen Ringe isomorph ist (denn ein Ring,

der isomorph zu einem Korper ist, ist selbst ein Korper).

Der Ring Z /47 ist weder zu F5 x F5 noch zu Fy[x]/(2?) isomorph. Denn wegen 4-1=0und 2-1 =2 # 0
in Z/AZ ist 1 in der Gruppe (Z/4Z,+) ein Element der Ordnung 4, und folglich die Charakteristik von
Z,/AZ gleich 4. Andererseits folgt aus 1, xr, = (1,1) # Op,xr, und 2 - 1p,xw, = (2,2) = (0,0), dass
Iy x Fy von Charakteristik 2 ist. Auch Fa[z]/(2?) ist von Charakteristik 2, denn es gilt 1g,y)/(z2) =
T4 (%) # Oy o)/ a2) und 2 1y o)/ a2) = 2+ (@%) = () = Opy o]/ a2).

SchlieBlich sind auch Fa[z]/(2?) und Fy x Fy nicht zueinander isomorph. Denn der Ring Fa[x]/(2?)
enthélt wegen = + (22) # Op,p)/2) und (z + (2%))* = 2% + (2?) = (2®) = Op,[u)/(22) €in von Null
verschiedenes Element, dessen Quadrat gleich Null ist. Wéren die beiden Ringe isomorph, dann miisste
es auch in Fy x IFy ein solches Element geben. Aber aus (a,b)? = (0,0) folgt fiir a,b € Fy jeweils
(a?,b?) = (0,0), also a®> = b*> = 0, somit @ = b = 0 und (a,b) = (0,0) = Op,xr,. Dies zeigt, dass in
Iy x IF5 kein Element ungleich Null existiert, dessen Quadrat gleich Null ist.



Aufgabe H20T1A3

Sei V = My q der Q-Vektorraum der 2 x 2-Matrizen iiber Q, und sei ¢ : V — V die Linksmultiplikation

. . 0 1
mit der Matrix .
1 0

(a) Zeigen Sie, dass ¢ eine Q-lineare Abbildung ist.

(b) Bestimmen Sie das charakteristische Polynom von ¢.

(c) Bestimmen Sie das Minimalpolynom von ¢.
Lésung:
zu (a) Sei A die in der Aufgabenstellung angegebene Matrix. Nach Definition der Abbildung ¢ und
auf Grund der bekannten Rechenregeln fiir Matrizen gilt fiir alle B,C € My g und alle A € Q jeweils

$(B+C) = A(B+C) = AB + AC = ¢(B) + ¢(C) und ¢(AB) = A(AB) = A(AB) = A¢(B). Damit ist

die Q-Linearitiat von ¢ nachgewiesen.

zu (b) Aus der Linearen Algebra ist bekannt, dass durch B = (Bi1, B12, Ba1, Ba2) mit den Matrizen

1 0 0 1 0 0 0 0
By = , Bia= , Bop = , Bag =
0 0 0 0 1 0 0 1

eine geordnete Basis von V = Mj q gegeben ist. Die Bilder dieser Basiselemente unter ¢ sind gegeben
durch

0 1 1 0
0 1 0 1 0 0

Qb(BlZ) = AB;; = < ) ( ) = ( ) = 0:-B11+0-Bi2+0-Bs;+1- By
1 0 0 0 0 1

0 1 0 O
o~ P
0 1 0 O 0 1
¢(BQ2) = ABy = < > ( ) = ( ) = 0-By1+1-Bi2+0-By; +0-Bsyy

Mpg(¢) des Endomorphismus ¢

—_
o

0 0
) = O'Bll+0'312+1-B21+0'BQQ

1 0
) = 1-B11+0-Bi2+0-By; +0- By

Jede Gleichung liefert eine Spalte in der Darstellungsmatrix M
beziiglich der Basis B. Es ist

0010
M:Ms(éﬁ):OOOl
1000
0100

Als charakteristisches Polynom von ¢ erhalten wir (durch Entwicklung der Matrix xE4 — M zur ersten



Spalte)

0 T
Xo = Xxm = det(xEy—M) = det 0 =

z 0 -1 0 -1 0
zdet | 0 2z 0 [+ (-1)det| =z 0 -1 =
-1 0 =« -1 0 =z
r-(2®—2)+(=1)- (1) = (=2?)) = 2" -22"+1 = (2212

zu (¢) Aus der Linearen Algebra ist bekannt, dass das Minimalpolynom 4 stets ein Teiler der charak-
teristischen Polynoms x, ist. Dariiber hinaus ist py ein normierter Teiler jedes Polynoms f € Q[z] mit
f(#) =0 bzw. f(M) = 0. Die Gleichung

001 0\/0 010 100 0
g, — |00 0 tffo oo tf o100
100 o0f[]l1 00 0 0010

0100/ \0100 000 1

100 0 100 0 000 0
o100 o100  |ooo0 o0
“Joo 1ol loo1o|l  foooo
00 0 1 000 1 0000

zeigt, dass i, ein Teiler von 2 — 1 = (z — 1)(z + 1) ist. Die einzigen normierten Teiler dieses Polynoms
sind 22 —1, z — 1 und 2 + 1. Wegen M # +FE, ist weder M — E, = 0 noch M + E, = 0, also stimmt e

weder mit  — 1 noch mit = + 1 {iberein. Somit ist us = 2? — 1 die einzige verbleibende Moglichkeit.



Aufgabe H20T1A4

Sei G eine Gruppe und sei H die Untergruppe von G, die aus allen Produkten von Elementen der Form

g% mit g € G besteht.

(a) Bestimmen Sie H im Fall der alternierenden Gruppe G = Ajy.
(b) Bestimmen Sie H im Fall der symmetrischen Gruppe G = S4.

(c) Zeigen Sie H # @G, falls G eine Untergruppe von Index 2 besitzt.

Lésung:

zu (a) Jeder 3-Zykel (i j k) ist in H enthalten, denn es gilt (i &k j) € Ay somit (i j k) =
(i k j)ti k j)=(i k j)®€ H.Die Gleichungen (1 2 3)(1 2 4)=(1 3)(2 4), (1 3 4)(1 3 2) =
(I 4)(2 3)und (1 3)(2 4)o(1 4)(2 3) = (1 2)(3 4) zeigen, dass auch die drei Doppeltranspositionen
in H enthalten sind. Als Untergruppe von G enthélt H auch id, das Neutralelement. Insgesamt ist damit

H = A4 = G nachgewiesen.

zu (b) Fiir jedes g € G gilt sgn(g) € {+1} und somit sgn(g?) = sgn(g)? = 1. Da H aus Produkten
von Elementen dieser Form besteht, haben alle Elemente von H positives Signum, es gilt also H C Ay.
Andererseits enthélt H insbesondere alle Produkte von Elementen der Form g2 mit g € A4, und diese

Gruppe stimmt nach Teil (a) mit A4 iiberein. Insgesamt gilt also H = A4 auch in diesem Fall.

zu (c) Sei N eine Untergruppe von G vom Index 2. Laut Vorlesung ist N dann ein Normalteiler von G,
und somit kann die Faktorgruppe G/N gebildet werden. Fiir alle g € G gilt g? N = (¢gN)? = N und somit
g% € N, wobei im zweiten Schritt verwendet wurde, dass G/N eine Gruppe der Ordnung (G : N) = 2
ist und gN € G/N somit ein Element der Ordnung 1 oder 2 sein muss. Aus g2 € N fiir alle g € G folgt
H C N, wegen N C G also auch H C G.



Aufgabe H20T1A5
Sei w = 1(1—/=3).

(a) Zeigen Sie, dass w eine primitive sechste Einheitswurzel ist.
(b) Entscheiden Sie, ob Q(w, ¥/5) eine galoissche Korpererweiterung von Q(+/5) ist.
(c) Entscheiden Sie, ob Q(w, v/2) eine galoissche Korpererweiterung von Q ist.

(d) Finden Sie galoissche Kérpererweiterungen L|K und K|Q, so dass L|Q nicht galoissch ist.
Hinweis: Betrachten Sie v/2.

Lésung:
zu (a) Zu zeigen ist, dass es sich bei w um ein Element der Ordnung 6 in der multiplikativen Gruppe

C* handelt. Dies ist genau dann der Fall, wenn w?, w3 # 1 und w® = 1 gilt. Tatsichlich gilt w? =

11—y = 1= 2vTB+(-3) = —3 — 1VTF £ 1, w? = w? - w = (-1 — IVTB)( - 1v7D) =

zu (b)  Wir zeigen zuniichst, dass [Q(w, ¥/5) : Q(3/5)] = 2 gilt. Als primitive sechste Einheitswurzel
ist w eine Nullstelle des sechsten Kreisteilungspolynoms &g = z2
Wiire ®¢ iiber Q(+/5) reduzibel, dann wire wegen grad(®¢) = 2 die Nullstelle w des Polynoms in Q(+/5)
enthalten. Aber dies ist wegen Q(+/5) C R und w € C \ R nicht der Fall. Insgesamt ist ®g damit das

Minimalpolynom von w iiber Q(+/5), und wir erhalten

— x + 1, auBerdem ist ®g normiert.

[Q,V5):Q(V5)] = [Q(V5)w):Q(V5)] = grad(®) = 2 ,

wie gewiinscht. Laut Vorlesung ist jede Korpererweiterung vom Grad 2 normal, insbesondere algebraisch.
Wegen char(Q(+/5)) = 0 ist jede algebraische Erweiterung von Q(+/5) auch separabel. Insgesamt ist
Q(w, V/5)|Q(¥/5) also tatsichlich eine Galois-Erweiterung.

zu (c) Die Menge der komplexen Nullstellen des Polynoms f = 2% — 2 ist gegeben durch N = {w*v/2 |
0 < k < 6}. Denn fiir k € {0, ..., 5} gilt jeweils f(wF¥/2) = (WFV/2)6 -2 = (WO)F(V2)6 -2 =1F.2-2=0.
Da w eine primitive sechste Einheitswurzel ist, sind die Elemente w®,w!,...,w® alle verschieden, wegen
2 # 0 auch die Produkte Wk /2 mit 0 < k < 6. Da ein Polynom vom Grad 6 iiber einem Ko6rper nicht
mehr als sechs Nullstellen besitzen kann, haben wir damit tatséchlich alle komplexen Nullstellen von f

bestimmt.

Somit ist Q(N) der Zerfillungskorper von f in C iiber Q. Laut Vorlesung folgt daraus, dass die Erweite-
rung Q(N)|Q normal ist. Als algebraische Erweiterung ist sie wegen char(Q) = 0 auch separabel. Insge-
samt handelt es sich also bei Q(N)|Q um eine Galois-Erweiterung. Schlielich gilt noch Q(N) = Q(w, ¥/2).
Die Inklusion ,,C* folgt aus der Tatsache, dass mit w und /2 auch w*+/2 fiir 0 < k < 6 in Q(w, V/2)
liegt, also N C Q(w, v/2) gilt. Fiir die Inklusion ,,D“ bemerken wir, dass mit ¥/2,wv/2 € N C Q(N)
auch w = 2¥2 in Q(N) liegt. Es gilt also {w, v/2} € Q(N). Damit ist die Gleichung Q(N) = Q(w, v/2)

V2
bewiesen, und folglich ist auch Q(w, v/2)|Q eine Galois-Erweiterung.

zu (d) Sei K = Q({/) und L = Q(v/2). Zunichst zeigen wir, dass [K : Q] = [L : Q] = 2 gilt. Da laut
Vorlesung Erweiterungen vom Grad 2 immer normal sind, folgt daraus, dass K|Q und L| K normale Erwei-
terungen sind. Als endliche Erweiterungen sind diese auch algebraisch, und wegen char(Q) = char(K) =0

dariiber hinaus separabel. Insgesamt handelt es sich damit also um Galois-Erweiterungen.



Zum Nachweis der angegebenen Erweiterungsgrade sei f = 22 — 2 und g = z* — 2. Beide Polynome sind
normiert und auflerdem irreduzibel iiber Z, auf Grund des Eisenstein-Kriteriums angewendet auf die
Primzahl p = 2. Nach dem Gauf’schen Lemma sind sie somit auch irreduzibel iiber Q. Wegen f(v/2) = 0
ist f insgesamt das Minimalpolynom von v/2 iiber @, und es folgt [K : Q] = [Q(V/2) : Q] = grad(f) = 2.
Wegen g(v/2) = 0 ist g das Minimalpolynom von +/2 iiber Q, und es folgt [L : Q] = [Q(+/2) : Q] =
grad(g) = 4. Wegen v2 = (v/2)? € L ist K = Q(v/2) ein Zwischenkérper von L|Q. Auf Grund der

Gradformel gilt somit [L: Q] = [L: K] - [K : Q], und wir erhalten [L : K] = % =41=2

Nun zeigen wir noch, dass die Erweiterung L|Q nicht normal ist, und somit erst recht eine galois’sche
Erweiterung. Wére sie normal, dann miisste jedes Polynom, das iiber Q irreduzibel ist und in L eine
Nullstelle besitzt, iiber L bereits in Linearfaktoren zerfallen. Wie oben gezeigt, ist das Polynom g = x4 —2
irreduzibel iiber Q, und es besitzt in L die Nullstelle v/2. Wiirde es iiber L in Linearfaktoren zerfallen,
dann miissten sémltliche komplexen Nullstellen von g bereits in L liegen, insbesondere auch die Nullstelle
iv/2. Aber dies ist nicht der Fall, denn einerseits gilt L = Q({‘@) C R wegen v/2 € R, andererseits aber
iv2 ¢ R.



Aufgabe H20T2A1

(a) Bestimmen Sie das a € {0,1,...,6} mit 32°20 = g mod 7.

Hinweis: Benutzen Sie den kleinen Satz von Fermat.

(b) Zeigen Sie, dass die Diedergruppe Dy = {c%6° | k € {0,1},¢ € {0,1,2,3}} mit 8 Elementen (es gilt
02 =e=06*und 060! = 6~ 1) nicht isomorph zur Quaternionengruppe Q = {+£1, +i, +5, £k} (es
gilt i? = j2 = k? = ijk = —1) ist.

2
(c) Bestimmen Sie eine zu A = <2 1) € My R dhnliche Diagonalmatrix D sowie eine invertierbare

Matrix S mit D = S~1AS.

(d) Bestimmen Sie alle erzeugenden Elemente der Einheitengruppe (Z/117Z)*.

Losung:

zu (a) Die Gruppe (Z/7Z)* hat ¢(7) = 6 Elemente, und 3 = 3 + 77 ist wegen ggT(3,7) = 1 in dieser
Gruppe enthalten. Auf Grund des kleinen Satzes von Fermat folgt 36 = 1. Wegen 2020 = 220 = 40
4 mod 6 gibt es ein n € Z mit 2020 = 6n+4. Es gilt also 32020 = 36n+4 = (36)n.34 = 1n.31 =81 =11 =
in (Z/7Z)*. Daraus wiederum folgt 32°?° = 4 mod 7.

wr Il

zu (b) Wiren die beiden Gruppen isomorph, dann miisste es in beiden Gruppen gleich viele Elemente
der Ordnung 2 geben. Fiir o € {#i, 47, £k} gilt jeweils a® = —1 # 1. Diese Elemente sind also nicht
von Ordnung 2. Die einzigen verbleibenden Elemente sind +1. Das Neutralelement 1 hat die Ordnung
1; wegen —1 # 1 und (—1)? = 1 ist —1 also das einzige Element der Ordnung 2 in Q. Andererseits ist
bekannt, dass fiir jedes n € IN mit n > 3 die 2n-elementige Diedergruppe mindestens n Elemente der
Ordnung 2 besitzt (die ,,Spiegelungen*). Daraus folgt, dass in D4 mindestens vier Elemente der Ordnung
2 existieren. Somit kann Dy nicht zu @ isomorph sein. (Tatséchlich gibt es in D4 noch ein fiinftes Element
der Ordnung 2, die 180°-Drehung 42.)

zu (¢) Das charakteristische Polynom von A ist gegeben durch

-1 2
xa = det(zE—A) = det v = (z—-1)>2-4
2 z—1

= (@*-2x+1)—-4 = 2°>-2r-3.

wobei E € My R die Einheitsmatrix bezeichnet. Mit Hilfe der p-¢-Formel findet man die Nullstellen —1
und 3. Also sind dies die beiden Eigenwerte von A, und foglich ist

()

eine zu A dhnliche Diagonalmatrix. Durch die Rechnung

) - ()

findet man den Eigenvektor (1, —1) zum Eigenwert —1. Genauso erhélt man durch

= (2) = ()



den Eigenvektor (1, 1) zum Eigenwert 1. Trigt man die beiden Eigenvektoren als Spalten in eine Matrix

= ()

ein, so erhilt man eine Matrix mit D = S~!AS. Tatsichlich gilt

el 9 10 G ) [ o R T R

zu (d) Da p = 11 eine Primzahl ist, handelt es sich laut Vorlesung bei (Z/11Z)* um eine zyklische

N[= N[
[

4

—

I
VR
N N

|

N[

[N NIE

Gruppe der Ordnung 11 —1 = 10. Die einzigen Primteiler von 10 sind 2 und 5. Nach einem Kriterium aus
der Vorlesung ist 2 wegen 2'9/2 = 25 =32 = 10 # 1 und 2'%/5 = 22 = 4 # 1 ein Element der Ordnung 10,
also ein erzeugendes Element der Gruppe. Allgemein gilt: Ist n € IN, G eine zyklische Gruppe der Ordnung
n und g € G ein erzeugendes Element, dann besitzt G genau ¢(n) erzeugende Elemente (wobei ¢ die
Eulersche ¢-Funktion bezeichnet), und diese sind gegeben durch ¢g¥ mit 0 < k < n und ggT(k,n) = 1.
Wegen ¢(10) = ¢(2)¢(5) = 1-4 = 4 besitzt (Z/11Z)* also insgesamt vier erzeugende Elemente, und
diese sind gegeben durch 2! =2, 23 =8, 27 =128 = 7Tund 2° = 512 = 72 = 6 (denn 1, 3, 7 und 9 sind
genau die zu 10 teilerfremden ganzen Zahlen k mit 0 < k < 10).



Aufgabe H20T2A2

Sei G eine Gruppe, die auf einer Menge S operiert. Dann heifit die Operation transitiv, falls es zu jedem

Paar von Elementen s,s’ € S ein g € G mit gs = s’ gibt. Zeigen Sie:

(a) Die iibliche Operation von GL(R) auf R? \ {0} ist transitiv.

Hinweis: Betrachten Sie die Bahn von v = (1,0).

(b) Sei G eine endliche Gruppe mit |G| > 3. Dann ist die Operation von G auf G \ {e} nicht transitiv.

Lésung:

zu (a) Laut Vorlesung ist die Operation einer Gruppe G auf einer Menge S genau dann transitiv,
wenn ein Element s € S existiert, dessen Bahn G(s) mit S iibereinstimmt. Setzen wir G = GL2(R) und
S = R?\ {0}, so geniigt es also zu zeigen, dass fiir v = (1,0) € S die Gleichung G(v) = S erfiillt ist.
Die Inklusion ,,C* ist offensichtlich erfiillt, da jede Bahn einer Operation von G auf S in S enthalten ist.

Zum Beweis der Inklusion ,2% sei w = (a,b) € S vorgegeben. Wegen w # (0,0) gilt @ # 0 oder b # 0.

ey

wegen det(A) = a # 0 ein Element von G mit

0\ (1
Av = ¢ = ¢ = w.
b 1) \0 b
1
A=(" 7).
b 0
Auch diese Matrix ist wegen det(A) = —b # 0 ein Element von G, und es gilt

G- 0 -

In beiden Fillen ist w also in der Bahn G(v) enthalten.

Im ersten Fall ist die Matrix

Im zweiten Fall setzen wir

zu (b) Nehmen wir an, dass G auf G \ {e} transitiv operiert, und sei h € G \ {e} ein beliebiges
Element. Auf Grund der Transitivitét ist die Bahn von h dann durch G(h) = G\ {e} gegeben. Bezeichnet
G}, den Stabilisator von h, dann gilt auf Grund der Beziehung zwischen Bahnldnge und Stabilisator
I‘Cill = (G : Gp) = |G(h)| = |G\ {e}| = |G| — 1. Setzen wir n = |G|, dann zeigt die Gleichung, dass

n — 1 ein Teiler von n ist. Es gibt also ein d € IN mit d(n — 1) = n. Aber die Umformung zeigt, dass

dann d = 15 =1+ nil eine ganze Zahl sein miisste, was nur fiir n = 2 der Fall ist. Dies steht im

Widerspruch zur Voraussetzung n = |G| > 3.



Aufgabe H20T2A3

Sei p eine Primzahl, n € N und f € F,[z] irreduzibel vom Grad n. Man bestimmen diejenigen m € IN,

fiir die f iiber IF,» in Linearfaktoren zerféllt.

Lésung:
Sei m € IN. Wir zeigen, dass f genau dann iiber IF,» in Linearfaktoren zerféllt, wenn m ein Vielfaches
von n ist. Mit Fglg bezeichnen wir einen algebraischen Abschluss von F,m (der zugleich ein algebraischer

Abschluss des Primkorpers F), von Fpm ist).

»=% Wenn f iiber Fm in Linearfaktoren zerfillt, dann besitzt f insbesondere eine Nullstelle o € IFpm.
Da f in Fp[z] irreduzibel vom Grad n ist, stimmt f bis auf eine Konstante ungleich null mit dem
Minimalpolynom von « iiber I, iiberein, und es gilt [, («) : F,,] = grad(f) = n. Als n-dimensionaler IF,-
Vektorraum besteht der Kérper I, (c) aus p™ Elementen; er stimmt also mit dem eindeutig bestimmten
p"-elementigen Zwischenkérper Fp» von IFglg|IFp iiberein. Aus a € Fpm folgt, dass Fpn = Fp(a) ein

Teilkérper von IFpm ist. Dies ist laut Vorlesung genau dann der Fall, wenn m ein Vielfaches von n ist.

»<“  Hier setzen wir voraus, dass m = dn fiir ein d € IN gilt. Zu zeigen ist, dass f iiber = in
Linearfaktoren zerfillt. Sei « eine Nullstelle von f in F;lg. Wie im Beweis von ,,=“ zeigt man, dass
F, (o) = Fpn gilt. Insbesondere ist o in Fp» enthalten. Da n ein Teiler von m ist, gilt Fpn C Fpm; es gilt
somit auch o € Fpm. Aus der Vorlesung ist bekannt: Ist E|F eine Erweiterung bestehend aus endlichen
Kérpern F und E, dann ist E|F normal. Also ist auch = |F, eine normale Erweiterung. Dies bedeutet,
dass jedes iiber I, irreduzible Polynom, das in )= eine Nullstelle besitzt, {iber IF,m in Linearfaktoren
zerfallt. Das Polynom f ist laut Voraussetzung irreduzibel, und « ist eine Nullstelle dieses Polynoms in

Fpm. Also zerfillt f iiber Fm in Linearfaktoren.



Aufgabe H20T2A4

Sei k ein Korper und G = (g) eine von g erzeugte zyklische Gruppe der Ordnung n > 2. Der Gruppenring
kG ist die Menge aller Summen 7" a;¢' (o; € K). Fakt: Die Menge kG ist beziiglich der Operationen

(Z_: Oéigi> + <Z_: 5i9i> = 2(041‘ + Bi)g’
i=0 =0

=0

n—1 n—1 n—1
(Z Oéigi> : (Z Bigi> = D wdt . ow= ). b
=0 =0 k=0

i+j=k mod n

ein assoziativer, kommutativer Ring mit Einselement 1y = 1% - 1. Zeigen Sie:

(a) Es gibt einen surjektiven Ringhomomorphismus ¢ : k[z] — kG.
(b) kG = k[z]/(z™ — 1})

(¢) kG ist kein Integritétsbereich

Lésung:

zu (a)  Allgemein gilt: Ist ¢9 : R — S ein Ringhomomorphismus und s € S, dann gibt es einen
eindeutig bestimmten Ringhomomorphismus ¢ : R[z] — S mit ¢|gr = ¢g und ¢(z) = s. Die Abbildung
oo : k = kG gegeben durch ¢p(c) = ¢ 1g fiir alle ¢ € k ist ein Ringhomomorphismus, denn es gilt
o(1x) = 1 -1 = 1pa, ¢o(c+d) = (c+d)-1g = c-1g+d-1g = do(c) + ¢o(d) und ¢o(cd) = (cd) -1 =
(c-1g) - (d-1g) = ¢o(c) - do(d) fiir alle ¢, d € k.

Also existiert ein eindeutig bestimmter Ringhomomorphismus ¢ : k[z] — kG mit ¢|r = ¢o und ¢(z) =
15 - g'. Zu zeigen bleibt, dass ¢ surjektiv ist. Wir zeigen zunichst durch vollstindige Induktion, dass
(1 - gh)t =15 - g% fiir 0 < i < n — 1 gilt. Fiir i = 0 ist die Gleichung erfiillt, denn es gilt (15 - g')° =
kg = 11 -1g = 11 - ¢°. Setzen wir nun die Gleichung fiir ein i € {0, ...,n — 2} voraus. Es sei o; = 1 = 13,
und «; = 0 fur alle j € {0,...,n — 1} \ {3}, 8; = 0 fiir j = 0 und 2 < j < n — 1. Definieren wir
Yo = Zu+v§€ mod n CufBy fiir 0 <€ < n —1, dann ist «,f, # 0 nur fir das Paar (u,v) = (4,1). Daraus
folgt vit1 = ;1 = 1 und vy, = O, fiir £ € {0,...,n — 1} \ {i + 1}, und wir erhalten

n—1 n—1 n—1
(1k . gl)i+1 = (lk . gl)l . (lk‘ . gl) = <Z O‘ug”) (Z /ng’v> — Z’Y@Qe — 1k . gi+1.
u=0 v=0 =0

Zum Nachweis der Surjektivitit von ¢ sei nun v = Z?;Ol a;¢* ein beliebig vorgegebenes Element, mit

ag,...,an_1 € k. Setzen wir f = Z?z_ol a;zt, dann gilt

of) = ¢<Zaizi> = Y de) o) = 3 dola) (kg =
=0 1=0 i=0
S 1e) (kg) = Sawg = 7
i=0 i=0

Damit ist die Surjektivitédt von ¢ nachgewiesen.

zu (b) In Teil (a) haben wir einen surjektiven Ringhomomorphismus ¢ : k[z] — kG definiert. Wenn
auferdem ker(¢) = (z™ — 1), dann induziert ¢ nach dem Homomorphiesatz fiir Ringe einen Isomor-
phismus k[z]/(2™ — 1}) = kg. Zum Nachweis der Inklusion ,,O¢ beweisen wir zunéchst die Gleichung
(1x-9)"™ = 1,c. Bereits gezeigt wurde die Gleichung (1;-¢)" ! = 1;-¢"!. Wir definieren nun a; = 0, fiir
0<i<n—2a, 1 =1 f1 =1pund 3; = 0 fiiralle j € {0, ..., n—1}\{1},und v¢ = > . s 110d n CulBo



fiir 0 < £ < n—1. Das einzige Paar (u, v) mit a,, 3, # 0 ist dann (n—1,1), und es gilt (n—1)+1 = 0 mod n.
Daraus folgt 79 = ap—161 = 1§ und v, = 0y, fiir 1 < £ < n — 1. Wir erhalten

n—1 n—1 n—1
(Le-g")" = (Le-g)" - (k-g") = (Zaug“> <Zﬂvg”> = > wgt =
u=0 v=0 =0

¢ = li-lg = L.

Wegen ¢(z™ — 1) = ¢(x)™ — ¢(1) = (1x - 9)™ — lkg = lkg — lgkg = Ogg ist 2™ — 1 im Kern von ¢
enthalten, und weil ker(¢) ein Ideal in k[z] ist, gilt (2™ — 1) C ker(¢). Zum Nachweis der Inklusion , C*
sel nun umgekehrt f € ker(¢). Durch Division von f durch 2™ — 1, mit Rest erhalten wir Polynome
q,r € klx] mit f = ¢q- (2™ — 1) + r, wobei r = 0;, oder grad(r) < n gilt. Schreiben wir r = ZZ:_(} apx’

mit ag, ay, ...,an—1 € k, dann folgt
ke = o(f) = olg" 1) +7r) = ¢(q) - ¢" —1p) +o(r) =

n—1
¢(q) - Ok + ¢ (Z ae$e> = arg".

=0

~

Daraus folgt a; = 0y, fiir 0 < £ < n, was wiederum r = 0j zur Folge hat. Es gilt also f = ¢ - (2™ — 1}).
Dies zeigt, dass f im Hauptideal (™ —1;) enthalten ist, womit der Nachweis der Inklusion abgeschlossen

ist.

zu (¢) Im Faktorring k[z]/(z™ — 1;) sind die Elemente z — 1j + (2™ — 1x) und )_,_ lee + (2™ — 1)
ungleich null, denn die Polynome = — 1 und Z;:Ol 2% sind auf Grund ihrer Grade keine Vielfachen von

x™ — 1g. Andererseits gilt

(x — 1 + (2" — 1i)) (Z:EJr lk)> = (z— 1) (Zx) (2™ —1g)

£=0 £=0

= 2" -1+ (@@"-1) = Ok[a]/ (2 —11)-

Dies zeigt, dass k[z]/(x™ — 1%) kein Integritéitsbereich ist. Wegen k[z]/(z™ — 1}) = kG ist auch kG kein

Integritatsbereich.



Aufgabe H20T2A5

Sei K ein Korper der Charakteristik 0 und sei p eine Primzahl. Angenommen, p teilt den Grad jeder
endlichen Kérpererweiterung L|K mit K C L. Zeigen Sie, dass dann der Grad jeder endlichen Korperer-
weiterung von K eine Potenz von p ist.

Hinweis: Zeigen Sie, dass es eine endliche Galoiserweiterung E|K mit K C L C F gibt, und verwenden

Sie die Sylowsétze.

Lésung:

Sei L|K eine endliche Kérpererweiterung, und nehmen wir an, dass [L : K| keine p-Potenz ist. Dann
existiert eine von p verschiedene Primzahl ¢, die [L : K] teilt. Wegen char(K) = 0 ist L|K separabel.
Somit kann der Satz vom primitiven Element angewendet werden, und demnach existiert ein Element
v € L mit L = K(v). Sei f € K[z] das Minimalpolynom von « iiber K, L*# ein algebraischer Abschluss
von L und M der Zerfillungskorper von f iiber K, der durch Adjunktion aller Nullstellen von f in L?®
an K existiert. Weil y eine Nullstelle von f in L C L# ist, gilt v € M und L = K(y) C M.

Als Zerfallungskorper eines Polynoms f € K[x] iiber K ist M|K eine normale Erweiterung. Wegen
char(K) = 0 ist diese Erweiterung auch separabel, insgesamt also eine Galois-Erweiterung. Sei G =
Gal(M|K) die zugehorige Galois-Gruppe. Dann gilt |G| = [M : K]. Da L ein Zwischenkérper von M|K
ist, liefert die Gradformel die Gleichung [M : K] = [M : L] - [L : K]. Da die Primzahl ¢ ein Teiler von
[L : K] ist, ist sie auch ein Teiler von [M : K] und |G|. Schreiben wir |G| = p" - m mit r € Ng, m € IN

und p { m, dann ist g ein Teiler von m.

Sei nun P eine p-Sylowgruppe von G und L; = M der zugehorige Fixkorper. Auf Grund der Erginzun-

gen zum Hauptsatz der Galoistheorie gilt dann [L; : K] = (G : P) = % = m. Wegen ¢ | m gilt

[L1 : K] > 1; es handelt sich bei L;|K also um eine endliche Korpererweiterung mit Ly O K. Aber der
Grad [L; : K] = m wird von p nicht geteilt, im Widerspruch zu den Voraussetzungen. Unsere Annahme,

dass [L : K] keine p-Potenz ist, war also falsch.



Aufgabe H20T3A1

Es sei f = 2%+ az + 2 € Z[z].

(a) Bestimmen Sie alle a € Z, fiir die f eine rationale Nullstelle besitzt.
(b) Zeigen Sie, dass f fiir kein a € Z in zwei quadratische Faktoren aus Z[z] zerfllt.

(c) Beweisen Sie: Der Restklassenring Q[z]/(f) ist, abhéngig von a, entweder ein Kérper oder isomorph
zu einem direkten Produkt K7 x K5 von zwei Korpern, die die Grade 1 bzw. 3 iiber Q haben und

geben Sie an, fiir welche Werte von a die jeweiligen Félle eintreten.

Lésung:

zu (a) Da es sich bei f ein um normiertes, ganzzahliges Polynom handelt, ist jede rationale Nullstelle
ganzzahlig und ein Teiler des konstanten Terms. Die einzigen moglichen Nullstellen sind also +1, +2. Es
gilt f(1) =3+a, f(=1) =3 —a, f(2) = 18 + 2a, f(—2) = 18 — 2a. AuBerdem gelten die Aquivalenzen
3+a=0a=-3,3—a=0a=3,184+2a =0 a=-9,18—-2a =0« a=9. Das Polynom f
besitzt also genau dann eine rationale Nullstelle, wenn a € {£3,+9} gilt, und diese rationale Nullstelle

ist dann auch ganzzahlig.

zu (b) Nehmen wir an, dass f ein Produkt zweier Faktoren g, h € Z[x] ist. Weil f normiert ist, ist das
Produkt der Leitkoeffizienten von g und h gleich 1. Daraus folgt, dass entweder beide Leitkoeffizienten
gleich 1 oder beide gleich —1 sind. Nach eventueller Ersetzung von g und A durch —g bzw. —h kénnen
wir davon ausgehen, dass g und h beide normiert sind. Es gibt also b, c,r, s € Z mit g = 2% + bz + r und

h = 22 + cz + s. Wir erhalten

ttar+2 = f = gh = (@ +br+r)(aP+cxts) =
o+ (b4 c)a® + (r+ s+ be)x? + (bs + cr)z + rs.

Koeflizientenvergleich liefert b + ¢ =r 4+ s+ bc =0, bs + c¢r = @ und rs = 2. Einsetzen von ¢ = —b in die
letzten drei Gleichungen liefert r +s = 2, b(s —r) = a und rs = 2. Auf Grund der Gleichung rs = 2 gibt
es fiir das Paar (r, s) nur die vier Moglichkeiten (1,2), (2,1), (=1, —2) und (-2, —1). Die Summe r + s ist
in diesen vier Fillen entweder 3 oder —3. Da aber beides keine Quadrate in Z sind, kann die Gleichung

r + s = ¢ nicht gelten. Dies zeigt, dass keine Zerlegung von f in der angegebenen Form existiert.

zu (¢) Betrachten wir zunéchst den Fall @ ¢ {£3,+9}. Nach Teil (a) besitzt das Polynom f in diesem Fall
keine rationale Nullstelle. Ist f das Polynom dennoch reduzibel in Q[z], dann ist es nach dem Gaufi’schen
Lemma auch reduzibel in Z[z]. Es gibt also in Z[z] eine Zerlegung von f in zwei Nicht-Einheiten g, h.
Da f normiert und somit insbesondere primitiv ist, ist keines der Polynome g, h eine Konstante. Da f
keine rationale Nullstelle besitzt, muss es sich bei g und h um Polynome vom Grad 2 handeln. Aber in

Teil (b) wurde gezeigt, dass eine solche Zerlegung nicht existiert.

Also ist f iiber @ irreduzibel. Als Polynomring iiber einem Kérper ist Q[x] ein Hauptidealring. Daraus
folgt, dass jedes Hauptideal, das von einem irreduziblen Element erzeugt wird, maximal ist. Also ist (f)

ein maximales Ideal in @[], und folglich ist Q[z]/(f) ein Korper.

Betrachten wir nun den Fall a € {£3,+9}. Wie in Teil (a) gezeigt, besitzt f dann eine Nullstelle r € Z.
Es gibt also ein Polynom ¢g € Q[z] mit grad(g) = 3 und f = (z—7)g. Nehmen wir an, dass f, eventuell mit
Vielfachheiten, mindestens zwei rationale Nullstellen besitzt. Nach Teil (a) miissten diese Nullstellen r, s

dann beide ganzzahlig sein. Es wire dann (z —r)(x — s) ein Teiler von f in Z[z]; das Polynom wiirde also



in zwei Faktoren vom Grad 2 zerfallen. Aber dies wurde in Teil (b) ausgeschlossen. Folglich besitzt f mit
Vielfachheiten genau eine rationale Nullstelle, und g besitzt keine rationale Nullstelle. Wegen grad(g) = 3

folgt daraus, dass g in Q[z] irreduzibel ist. Als Polynom vom Grad 1 ist & — r ebenfalls irreduzibel.

Als voneinander verschiedene, normierte irreduzible Polynome sind x —r und g teilerfremd. Folglich sind
auch die Hauptideale (z —r) und (g) in Q[z] teilerfremd. Durch Anwendung des Chinesischen Restsatzes
erhalten wir einen Isomorphismus Q[z]/(f) = Q[z]/(z—7)x Q[z]/(g). Da x—r und g irreduzibel sind, sind
(wie bereits oben bemerkt) die Hauptideale (z — r) und (g) maximal, und die Faktorringe Q[z]/(x — r)
und Q[z]/(g) sind Kérper. Also ist Q[x]/(f) isomorph zu einem direkten Produkt zweier Korper. Aus
der Vorlesung ist bekannt: Ist h € Q[z] irreduzibel und a € C eine Nullstelle von h, dann ist Q(«)
zum Faktorring Q[z]/(h) isomorph. Das Polynom h stimmt bis auf eine Konstante ungleich null mit
dem Minimalpolynom von « iiber Q iiberein. Daraus folgt [Q(«) : Q] = grad(h), und folglich ist auch
Q[z]/(h) ein Erweiterungskérper vom Grad grad(h) iiber Q. Insbesondere sind also Q[z]/(z — r) und

Q[z]/(g) Erweiterungen von Q vom Grad 1 bzw. 3.



Aufgabe H20T3A2

Es sei U eine Untergruppe einer endlichen einfachen Gruppe G vom Index n = (G : U) > 3.

(a) Zeigen Sie, dass G isomorph zu einer Untergruppe der S, ist.

Hinweis: Betrachten Sie eine geeignete Operation von G.
(b) Zeigen Sie, dass |G| ein Teiler von 1n! ist.

(¢) Begriinden Sie, ob die alternierende Gruppe As eine Untergruppe der Ordnung 15 besitzt.

Lésung:

zu (a)  Wir betrachten die Operation * von G auf der Menge G/U der Linksnebenklassen von U
gegeben durch g x (hU) = (gh)U fiir alle g,h € G. Laut Vorlesung existiert ein Homomorphismus
¢ : G — Per(G/U) gegeben durch ¢(g)(hU) = g * (hU) = (gh)U fir alle g,h € G. Als Kern eines
Gruppenhomomorphismus ist N = ker(¢) ein Normalteiler von G. Da G laut Angabe einfach ist, sind
nur die beiden Fille N = {e} und N = G moglich. Betrachten wir zunéchst den Fall N = G. Dann gilt
#(g) = idg,y fiir alle g € G. Wegen (G : U) > 3 gibt es in G /U insbesondere zwei verschiedene Elemente
hiU und hoU, mit hy, ho € G, und es ist (hohi ') * (R1U) = (hohy 'h)U = hoU. Aus ¢(hahi') = idg v
folgt aber andererseits (hahy ') *(hiU) = ¢(hohi")(hU) = idg v (hiU) = hiU # hoU. Der Widerspruch
zeigt, dass die Annahme N = G falsch war.

Also muss ker(¢) = N = {e} gelten, und folglich ist ¢ injektiv. Durch ¢ ist somit ein Isomorphismus
zwischen G und ¢(G) definiert. Folglich ist G isomorph zur Untergruppe ¢(G) von Per(G/U). Wegen
|G/U| = (G :U) =nist Per(G/U) isomorph zu S,,. Also ist G isomorph zu einer Untergruppe von S,,.

zu (b) Nach Teil (a) existiert ein Isomorphismus zwischen G und einer Untergruppe V von S,,. Durch
Komposition dieses Isomorphismus mit der Inklusionsabbildung V' < S,, erhalten wir einen injektiven
Homomorphismus ¢ : G — S,,. Wir zeigen, dass ¢¥(G) C A, gilt. Daraus folgt, dass G isomorph zur
Untergruppe ¢(G) von A, ist, und nach dem Satz von Lagrange ist |G| = |¢(G)| somit ein Teiler von

|A,| = inl.

Nehmen wir an, dass (G) keine Teilmenge von A,, ist. Durch Komposition von ¢ mit der Signumsabbil-
dung sgn : S,, — {£1} erhalten wir einen Homomorphismus « = sgno : G — {£1}. Wegen ¥(G) € A,
existiert ein ¢ € G mit a(g) = (sgn o ¥)(g) = —1, auBerdem gilt a(e) = (sgn o ¢)(e) = sgn(id) = 1
(wobei e das Neutralelement von G bezeichnet). Der Homomorphismus « ist also surjektiv. Nach dem
Homomorphiesatz fiir Gruppen induziert « einen Isomorphismus G /ker(a) 2 {£1}. Dabei ist ker(a) ein
Normalteiler von G, und wegen (G : ker(a)) = |G/ker(a)| = |[{£1}| = 2 gilt ker(e) € G. Da G laut
Angabe einfach ist, muss also ker(«) = {e} gelten. Damit wiire « injektiv, die Gruppe G also isomorph
zu einer Untergruppe von {+1}. Daraus wiirde |G| € {1,2} folgen. Aber wegen |G| = (G : U)|U| wiirde
daraus auch (G : U) € {1, 2} folgen, im Widerspruch zur Voraussetzung (G : U) > 3.

zu (c) Laut Vorlesung ist jede Gruppe der Ordnung 15 zyklisch. (Dies wurde aus den Sylowsiitzen
abgeleitet.) Wenn in Ay eine Untergruppe der Ordnung 15 existieren wiirde, dann auch ein Element
der Ordnung 15. Aber selbst in S; gibt es kein solches Element. Sei namlich ¢ € Sy ein beliebiges
nichttriviales Element, vom Zerlegungstyp (k1,..., k) mit r € N, k1 > ... > k. > 2und k1 + ... + k. < 5.
Wire ord(o) = 15, dann wiirde daraus kgV (k, ..., k) = 15 folgen. Dies wiirde bedeuten, dass mindestens
eine der Zahlen k; durch 3 und eine der Zahlen k; durch 5 teilbar ist. Aber dies ist wegen k1 +...+ k. <5
unmoglich, denn im Fall ¢ # j wére k1 + ... + &k, > 8, um im Fall 4 = j wére k; sogar durch 15 teilbar,
also k1 + ... + k. > 15. Also gibt es in S5 kein Element der Ordnung 15.



Aufgabe H20T3A3

Sei R ein Ring mit 1, und seien a,b € R. Es gelte ab = 1 und ba # 1. Insbesondere ist R also nicht
kommutativ. Ein Element x € R heifit nilpotent, falls es ein n € IN gibt mit 2™ = 0. Ein Element x € R
heiBit idempotent, falls 22 = z gilt.

(a) Zeigen Sie, dass das Element 1 — ba idempotent ist.

(b) Zeigen Sie, dass das Element b™(1 — ba) fiir n > 1 nilpotent ist.

(c) Zeigen Sie, dass es unendlich viele nilpotente Elemente in R gibt.
Lésung:

zu (a) Bsgilt (1—ba)? = (1—ba)(1—ba) = 1—ba—ba+ (ba)(ba) = 1—2ba+b(ab)a =1—2ba+b-1-a =
1 —2ba+ba=1-ba.

zu (b) Sei n € IN. Dass das Element b™(1 — ba) nilpotent ist, ergibt sich durch die Rechnung

(b"(1 —=ba))> = (1 —ba)b"(1 —ba) = (" =b"Tla)d" —b"Ta) =
b2n _ bn+1abn _ b2n+1a + b"“ab"“a — b2n _ bn+1(ab)bn—l _ b2n+la + bn+1(ab)bna —
b2n _ bn+1 . 1 ) bnfl _ b2n+1a + bn+1 .1 bna — b2n _ b2n _ b2n+1a + b2n+1a — 0

zu (c) Nach Teil (b) ist b"(1—ba) fiir jedes n € IN nilpotent. Es geniigt also zu zeigen, dass diese Elemente
voneinander verschieden sind. Nehmen wir an, es gibt m,n € IN mit m < n und (1 — ba) = b"(1 — ba).
Ein einfacher Induktionsbeweis zeigt, dass a’b’ = 1 gilt. Denn fiir £ = 1 gilt diese Gleichung laut Angabe,
und setzen wir sie fiir ein £ € IN voraus, dann folgt a‘*16*! = a(a’b*)b=a-1-b = ab = 1. Multiplizieren
wir die Gleichung von oben auf beiden Seiten von links mit a™, dann erhalten wir a™b™(1 — ba) =
a™bmb" "™ (1 — ba). Wie soeben gezeigt, folgt daraus 1 — ba = b"~™(1 — ba). Multiplizieren wir diese

Gleichung ein weiteres Mal von links mit a, dann folgt
a(l —ba) =ab" ™1 —ba) = a— (ab)a=abb" ™ (1 —ba) =
a—a=b"""11-ba) = """ '1-ba)=0 = """ 1 —ba)=0
= 1-ba=0 = ba=1

im Widerspruch zur Voraussetzung in der Angabe. Also gilt " (1 — ba) = b"(1 — ba), und folglich
besteht die Menge {b™(1 — ba) | n € IN} aus unendlich vielen nilpotenten Elementen.



Aufgabe H20T3A4

Es sei I3 der Kérper mit 3 Elementen. Sei I das von 22 + 1 im Polynomring R = IF3[z] erzeugte Ideal.

(a) Zeigen Sie, dass K = R/I ein Korper ist, und ermitteln Sie die Anzahl der Elemente von K.

(b) Geben Sie eine Formel an fiir das multiplikative Inverse des Elements az+b+1 in R/I fiir a,b € T3,

falls es existiert.

(c) Geben Sie einen Erzeuger an fiir die multiplikative Gruppe K*.

Lésung:

zu (a) Das Polynom f = 22 +1 € F3[x] besitzt wegen f(0) =1#0, f(1)=2#0und f(2)=5=2#0
in I3 keine Nullstelle. Wegen grad(f) = 2 ist es somit irreduzibel in R = F3[x]. Als Polynomring iiber
einem Korper ist R ein Hauptidealring, und somit ist jedes Hauptideal, das von einem irreduziblen
Element erzeugt wird, ein maximales Ideal. Folglich ist I = (f) ein maximales Ideal in R, und daraus
wiederum folgt, dass K = R/I ein Korper ist. Aus der Vorlesung ist bekannt, dass fiir jeden Kérper k und
jedes Polynom ¢ € k[x] vom Grad n = grad(g) > 1 die Polynome vom Grad < n — 1 zusammen mit dem
Nullpolynom ein Repriisentantensystem von k[z]/(g) bilden. Wenden wir dies auf ¥ = F5 und g = f an, so
kommen wir zu dem Ergebnis, dass die Polynome der Form ax+b mit a,b € F3 ein Représentantensystem
von K = R/I bilden. Da es fiir jeden der Koeffizienten a, b jeweils drei Moglichkeiten gibt, existieren

insgesamt neun solche Polynome, und folglich besteht auch K = R/I aus neun Elementen.

zu (b) Da die Polynome der Form az + b mit a,b € F3 ein Reprédsentantensystem von K = R/I
bilden, sind durch ax + b+ I mit a,b € F3 die neun verschiedenen Elemente von K gegeben. Da es sich
bei K um einen Kérper handelt, ist das Nullelement 0 -z 4+ 0 4+ I = 0 + I das einzige Element in K,
das kein multiplikatives Inverses besitzt. Seien nun a,b € F3 mit (a,b) # (0,0). Wegen 22 + 1 € I gilt
22+ 14+ 1=0+1, was zu 22 + I = —1 + I umgeformt werden kann. Fiir alle ¢, d € F3 gilt

(ax +b+1)(cx+d+1) = acx®+bex+ade+bd+1 =
(ac+ D) (2> + 1)+ ((ad +be)x +bd+1) = (ac+I)(=1+1)+ ((ad+bc)x+bd+1) =
(mac+ 1)+ ((ad+bc)x +bd+ 1) = (bd—ac)+ (ad+ bc)x + I.

Das Einselement von K ist 1+ I, und es gilt (bd — ac) + (ad + be)z + I = 1 + I genau dann, wenn die
Gleichungen bd — ac = 1 und ad + be = 0 erfiillt sind. Betrachten wir zuniichst den Fall, dass a # 0 ist.

Dann kann ad + bc = 0 umgestellt werden zu d = —a~'bc. Durch Einsetzen in die Gleichung bd — ac = 1
erhiilt man ¢ = ;{—fb% d= a273-b2' Das multiplikative Inverse von ax + b+ I ist also in diesem Fall gegeben

durch (—a) )
—a
I.
a2+b2x+ a? + b? *
Betrachten wir nun den Fall a = 0. Wegen (a, b) # (0,0) ist dann b # 0, und die beiden Gleichungen von
oben vereinfachen sich zu bd = 1 und bc = 0. Wir erhalten in diesem Fall d = b~! und ¢ = 0, somit ist
(ar+b+ 1)t =cx+d+1=>b"1+1I. Dies zeigt, dass die Gleichung
(—a) b
1

a2—|—b2x+ a? + b? *
fiir das multiplikative Inverse auch in dieser Situation giiltig ist.

(ax+b+1)"1 =

zu (¢) Da K ein Korper bestehend aus neun Elementen ist, gilt |K*| = |[K\ {0} = |[K|-1=9—-1=38.
Seia=z+1+1 Danngilt o> = (z +1)2+ I =22 +20+1+1 = (-1)+22+1+1 =2z +1,
at=(?)?=2z+ 1) =4 +I=-1+Tund a® = (a?)? = (-1)?+ 1 =1+1 = 1x. Wegen o* # 1

und o® = 1x ist a ein Element der Ordnung 8.



Aufgabe H20T3A5

Gegeben ist das Polynom f =z — 322 + 3z — 6 € Q[x]. Weiter sei ¢ = €2™"/3 € C eine primitive dritte

Einheitswurzel.

(a) Zeigen Sie, dass f irreduzibel iiber @ ist.

(b) Zeigen Sie, dass ax = 1+ ¢*+/5 fiir k = 0, 1,2 die drei verschiedenen komplexen Nullstellen von f

sind.
(c) Zeigen Sie, dass L = Q(¥/5,¢) C C ein Zerfillungskorper von f ist.

(d) Zeigen Sie, dass die Galoisgruppe Gal(L|Q) isomorph zur symmetrischen Gruppe Ss ist.

Losung:
zu (a) Bsgilt 311,3|(=3),3]3, 3| (=6), aber 32 { (—6). Das Eisenstein-Kriterium, angewendet
auf die Primzahl 3, zeigt somit, dass f in Z[z] irreduzibel ist. Auf Grund des Gauf’schen Lemmas ist f

damit auch irreduzibel iiber Q.

zu(b) Seig = f(z+1) = (x+1)3=3(z+1)2+3(x+1)—6 = (23+322+32+1)— (322 +62+3)+(32+3)—6 =
23 — 5. Dann ist ¢*+/5 fiir k= 0,1,2

eine Nullstelle von g, denn es gilt jeweils g(¢¥v/5) = (¢Fv/5)3 =5 = (¢3)* - 5-5=1".5-5=10. Da
¢ eine primitive Einheitswurzel ist, sind die Elemente 1, ¢, (? verschieden, wegen /5 # 0 also auch die
Elemente ¢*3/5, k = 0,1,2. Da g als Polynom dritten Grades nicht mehr als drei komplexe Nullstellen
hat, ist {¢*V/5 | k = 0,1,2} somit die genaue Nullstellenmenge von g. Da fiir jedes o € C die Aquivalenz
gla) =0« f(1+a)=0gilt,ist N ={1+¢*V/5|k=0,1,2} = {a | k = 0,1,2} die dreielementige

Nullstellenmenge von f.

zu (¢) Da N = {a; | k = 0,1,2} die Menge der komplexen Nullstellen von f ist, ist Q(N) ein
Zerfallungskorper von f. Zu zeigen ist also Q(N) = Q(+/5, (). Die Inklusion ,,C¢ ist erfiillt, weil mit /5
und ¢ auch die Elemente ap = 14 ¢*¥/5 mit k € {0,1,2} in Q(¥/5,¢) liegen. Es gilt also N C Q(/5, (),
und daraus folgt auch Q(N) C Q(+/5,¢). Zum Nachweis von , D¢ bemerken wir zuniichst, dass mit
ap = 1+ /5 auch das Element ag — 1 = V/5 in Q(N) liegt. Aus a; = 14+¢+¥/5 € Q(N) folgt (/5 € Q(N),
und aus V/5,¢V/5 € Q(N) folgt ¢ = C\;;/gg € Q(N). Insgesamt gilt also {V/5,¢} € Q(N), und daraus folgt
Q(V/5,¢) € Q(N).

zu (d) Die Galoisgruppe Gal(L|Q) stimmt mit der Galoisgruppe Gal(f|Q) des Polynoms f iiberein,
weil L Zerfallungskorper von f ist. Da f drei verschiedene komplexe Nullstellen besitzt, ist diese Gruppe
laut Vorlesung isomorph zu einer Untergruppe von S3. Da L|Q eine endliche Galois-Erweiterung ist, gilt
auflerdem |Gal(L|Q)| = [L : Q).

Wir bestimmen deshalb den Erweiterungsgrad [L : Q]. Das Polynom g = 23 — 5 ist irreduzibel iiber
7, da das Eisenstein-Kriterium auf die Primzahl 5 angewendet werden kann. Nach dem Gauf’schen
Lemma ist g auch irreduzibel iiber Q. AuBerdem ist g normiert, und es gilt g(v/5) = 0. Somit ist
g das Minimalpolynom von /5 iiber Q, und es folgt [Q({/5) : Q] = grad(g) = 3. Wire das dritte
Kreisteilungspolynom h = 2% +z + 1 iiber Q(3/5) reduzibel, dann miissten wegen grad(h) = 2 die beiden
komplexen Nullstellen ¢ und ¢? in Q(+/5) liegen. Aber dies ist nicht der Fall, denn wegen /5 € R gilt
Q(¥/5) C R, aber die Zahlen ¢ = —% + % —3und ¢% = —% — %Jj3 sind nicht reell. Also ist h iiber
Q(+/5) irreduzibel, auBerdem normiert, und es gilt h(¢) = 0. Somit ist A das Minimalpolynom von ¢



itber Q(¥/5). Wir erhalten
L:QWB) = QRNQ:QVB)] = gadh) = 2,

und die Gradformel liefert [L : Q] = [L : Q(¥/5)] - [Q(/5) : Q] = 2-3 = 6. Somit ist auch |Gal(L|Q)| = 6.
Wie oben bemerkt, ist Gal(L|Q) isomorph zu einer Untergruppe U von Ss. Diese muss ebenfalls von
Ordnung 6 sein, und wegen |S;| = 6 folgt daraus U = S3. Damit ist insgesamt gezeigt, dass Gal(L|Q)

isomorph zu Ss ist.



Aufgabe F21T1A1
Seien Z[i] = {a + bi | a,b € Z} die GauBi’schen Zahlen und
N(a + bi) = a* + b

die iibliche Norm. Fiir «, 8 € Z[i] ist « ein Teiler von 8 (Notation « | ), falls § = v - « fiir ein v € Z]i]
gilt. Zeigen Sie:

(a) 4+ 5i ist ein Teiler von 14 — 3¢

(b) 34 7i ist kein Teiler von 10 + 3i

(¢) Fir a = a+ bi € Z[i] gilt: N(«) ist gerade < 1+ 1 teilt a.
Lésung:
zu (a) Es gilt

14— 3i (14— 3i)(4 — 5i) 41— 82 ) , .
= e = oy = (41-82) = 1-2
4+5i 4+ 5i)(4 — 50) 215 i ( i) i

Somit gilt in Z[¢] die Gleichung (1 — 2¢)(4 + 5¢) = 14 — 3i, und somit ist 4 + 5i in Z[i] ein Teiler von
14 — 3.

zu (b)  Allgemein gilt: Sind «, 8 € Z[i] und ist « ein Teiler von § in Z[i], dann ist N(«) ein Teiler
von N(B) in Z. Denn auf Grund der Teiler-Eigenschaft existiert ein v € Z[i] mit 8 = y«, und aus der
Multiplikativitdt der Norm folgt N(B) = N(v)N(a). Hier ist N(3 + 7i) = 32 + 7% = 9+ 49 = 58 und
N(10+3i) = 102+ 32 = 109. Aber 58 ist kein Teiler von 109 in Z, somit ist 3 + 7i kein Teiler von 10 + 3i
in Z[i].

Hinweis: Die Umkehrung der angegebenen Aussage ist im Allgemeinen falsch, d.h. aus N(«a)|N () folgt
im Allgemeinen nicht « | 8. Setzen wir beispielsweise « = 2 — ¢ und 8 = 2 + 4, dann ist N(«) ein Teiler
von N(B) wegen N (o) = N(B) = 5. Aber « ist kein Teiler von 8. Denn anderenfalls gébe es ein vy € Z]i]
mit 8 = ya, und folglich ware g =« in Z[i] enthalten. Tatséchlich aber gilt

B 2+ (2+1)2 34 4i

e
+
(S
~

a 2—i  (2+0)(2-49) = 22412
und somit g ¢ 7Zi).

zu (¢) ,<“ Gilt (1+4)|«, dann ist N(1 4 i) = 2 ein Teiler von N(«), und folglich ist N(«) gerade.
»=“ Ist N(a) = aa gerade, dann ist gibt es ein d € IN mit ad@ = 2d = (1+1)(1 —4)d. Somit ist 1+ ein
Teiler von ada in Z[i]. Weil N(141i) = 2 eine Primzahl ist, ist 1+4 laut Vorlesung in Z[i] irreduzibel. Weil
Z[i] auerdem ein euklidischer Ring ist, muss 1+ ¢ dariiber hinaus ein Primelement sein. Aus (1+1) | aa

folgt somit (1 +4) | « oder (1 +1) | a.

Im Fall (1+14) | a sind wir fertig. Betrachten wir nun den Fall (1 +4) | @ Dann gilt @ = (1 + %) fiir ein
v € ZJi], und komplexe Konjugation auf beiden Seiten liefert oo = (1 —4) = - (—i) - (1 4+ 4). Dies zeigt,

dass 1 + 7 auch in diesem Fall ein Teiler von « ist.



Aufgabe F21T1A2
Sei V ein K-Vektorraum und f : V — V eine K-lineare Abbildung. Es seien m > 1 und aq, ..., @y,—1 € K
gegeben mit

"4t f" P+ 4 aif+ag-idy =0,

wobel m minimal gewiihlt ist (d.h. es gibt keine solche Relation mit kleinerem m). Zeigen Sie:

(a) Ist ag = 0, so ist f nicht invertierbar.

(b) Ist ag # 0, so ist f invertierbar.

Lésung:

zu (a) Dies ergibt sich aus einer kurzen Rechnung im (in der Regel nicht-kommutativen) Ring End g (V).
Nehmen wir an, dass f invertierbar ist und ag = 0 ist. Dann kénnen wir die Gleichung f™ +a,,_1 f™  +
...+ a1 f = 0 auf beiden Seiten von links mit f~! multiplizieren und erhalten f™~ ' 4 @;_1 f™ 2 + ... +

ay - idy = 0. Aber diese Gleichung widerspricht der Minimalitdt von m.

zu (b) Auch dies kann durch eine Rechnung in Endg (V) gezeigt werden. Subtraktion von ag - idy und

anschliefende Multiplikation mit —ay ! auf beiden Seiten der Gleichung liefert

(—ag)fm + (= Lm=hy -t (=22 (B
() ap

ao)f = idy.

Es gilt also fog = idy mit g = (—ag ') ™ + (=) f 2 b+ (= 2) f 4 (—*2=1) -idy. Dies zeigt,

dass f in Endg (V) invierterbar ist.



Aufgabe F21T1A3

Sei K C L eine algebraische Korpererweiterung. Es sei « € L mit K(a) = L. Zu jedem Zwischenkorper

F ist pg das Minimalpolynom von « iiber FE.

(a) Zeigen Sie, dass [L : E] = deg(pg) fiir jeden Zwischenkorper E gilt.
(b) Seien E und F' zwei Zwischenkérper mit F' C E. Zeigen Sie, dass pg ein Teiler von pp in E[z] ist.

(c) Sei E ein Zwischenkorper. Sei F' der Zwischenkorper erzeugt von den Koeffizienten von pg. Zeigen

Sie, dass pg = pp gilt. Folgern Sie daraus, dass E = F ist.

Lésung:

zu (a) Fir jeden Zwischenkérper F von L|K gilt L = E(a). Denn wegen E C L und o € L gilt
die Inklusion ,,2“; andererseits ist L = K(a) wegen K C E C E(«) und o € E(a) ein Teilkorper
von E(«), also auch ,C* erfiillt. Da pr das Minimalpolynom von « iiber E ist, gilt laut Vorlesung
[E(a) : E] = deg(pg), somit auch [L : E] = deg(pg).

zu (b) Laut Vorlesung ist das Minimalpolynom pg ein Teiler jedes Polynoms f € E[z] mit f(a) = 0.
Dies wenden wir auf das Polynom f = pp an. Dieses Polynom liegt in F[z], ist wegen F' C E also auch

in E[z] enthalten, und es erfiillt die Bedingung pr(a) = 0. Also ist pg ein Teiler von pp.

zu (¢) Sei m = deg(pg), und seien ag, .., a,, € E die Koeffizienten von pg. Dann gilt nach Definition
(und wegen K C E sowie a; € E fiir 0 < j < m) die Inklusion F' = K(aq, ..., a,,) C E. Nach Teil (b) gilt
somit pg | pr. Andererseits gilt auch pg € F[z], weil die Koeffizienten von pg alle in F liegen, auerdem

pe(a) = 0. Somit ist pr auch ein Teiler von pg.

Dies zeigt insgesamt, dass sich pg und pp nur um einen Faktor in E* unterscheiden. Weil pg und pg
als Minimalpolynome beide normiert sind, muss dieser Faktor gleich 1 sein. Daraus folgt pr = pg. Weil
E und F beides Zwischenkérper von L|K sind, gilt L = F(a) = E(«), wie in Teil (a) gezeigt. Daraus
folgt [L: F] = [F(«) : F] = deg(pr) = deg(pr) = [E(a) : E] = [L : E]. Mit der Gradformel, angewendet

auf den Zwischenkorper E der Erweiterung L|F, erhalten wir

] ~L:F
R = g = b

Aus F C F und [E : F] = 1 wiederum folgt F' = E.



Aufgabe F21T1A4

Gegeben sei die Gruppe der invertierbaren 3 x 3-Matrizen iiber dem Korper mit 2 Elementen

G = GL3(F2).

(a) Verifizieren Sie, dass G die Ordnung 168 hat.

(b) Bestimmen Sie eine 2-Sylowgruppe von G.

Hinweis: Betrachten Sie die Dreiecksmatrizen in G.

(c) Wieviele 2-Sylowgruppen hat G?

Hinweis: Betrachten Sie den Stabilisator einer 2-Sylowgruppe.

Lésung:

zu (a) Sei A € Mjsp, eine 3 x 3-Matrix iiber Iy, und seien v1,v2,v3 € F3 die Spaltenvektoren von
A. Laut Vorlesung ist A genau dann invertierbar, also in G enthalten, wenn das Tupel (v, va,v3) linear
unabhingig ist. Dies wiederum ist genau dann der Fall, wenn v; € F3 \ {Opz}, v € F3 \ lin{v;} und
vy € I3\ lin{vy, vy} gilt. Fiir die Wahl von v; gibt es |F3 \ {Ops} = 23 — 1 = 7 Moglichkeiten, danach
noch |3 \ lin{v; }| = 23 — 2! = 6 Méglichkeiten fiir die Wahl von v, und nach Wahl von (v1,v2) noch
|F3\lin{vy, va }| = 23 —22 = 4 Méglichkeiten fiir vs. Ingesamt gibt es also 7-6-4 = 168 linear unabhéngige
Tupel, und somit gilt auch |G| = 168.

zu (b)  Wegen 168 = 23 . 3! . 7! sind die 2-Sylowgruppen von G genau die Untergruppen von G der
Ordnung 8. Wir zeigen, dass

1 a b
P = 0 1 ¢ a,b,CEFg
0 0 1

eine Untergruppe der Ordnung 8 von G ist. Zun#chst ist klar, dass die Teilmenge P aus 2* = 8 Elementen
besteht, da es fiir die Wahl von a, b, ¢ € 5 in einer Matrix der angegeben Form jeweils zwei Moglichkeiten

gibt. Die Gleichung

1 a b 1 a3 b 1 a+a; b+4ac+b
0 1 ¢ 0 1 ¢ = 0 1 c+c
0 0 1 0 0 1 0 0 1

fir a,b,c,a1,b1,c1 € Fy zeigt, dass das Produkt zweier Elemente aus P wiederum in P enthalten, die
Teilmenge P unter der Verkniipfung von G also abgeschlossen ist. Zu zeigen ist noch die Abgeschlossenheit
unter Inversenbildung. Sei dazu A € P vorgegeben. Als Element der endlichen Gruppe G besitzt A eine
endliche Ordnung m. Die Gleichung A™~1.- A = A™ = E (wobei E die Einheitsmatrix bezeichnet) zeigt,
dass A™~! = A~! gilt, und auf Grund der Abgeschlossenheit von P unter der Verkniipfung von G ist
A™=! und somit auch A~! in P enthalten. Insgesamt ist P also eine Untergruppe der Ordnung 8 von G

und somit eine 2-Sylowgruppe.

zu (¢) Der Stabilsator der 2-Sylowgruppe P aus Teil (b) unter der Operation von G auf der Menge
der 2-Sylowgruppen durch Konjugation ist der Normalisator Ng(P) von P in G, und die Anzahl der
2-Sylowgruppen ist durch vo = (G : Ng(P)) gegeben. Aus der Definition der Normalisators ergibt
sich unmittelbar, dass P C Ng(P) gilt. Wir zeigen, dass umgekehrt auch Ng(P) C P erfiillt ist. Sei

dazu T' € Ng(P) vorgegeben, und bezeichnen wir die drei Spalten von 7' mit u,v,w. Auf Grund der



Invertierbarkeit von T ist B = (u,v,w) eine geordnete Basis I3, und laut Vorlesung ist T' die Matrix
des Basiswechsels 72 von B zur Einheitsbasis & = (ey, e2,e3). Nach Definition des Normalisators gilt
TAT~! € P fiir alle A € P. Dabei ist jeweils TAT ! = Mpg(¢a), die Darstellungsmatrix der linearen
Abbildung ¢4 : F3 — F3, v’ — Av’ beziiglich der Basis B. Wegen TAT ! € P fiir beliebiges gibt es

jeweils a, b, c € Fy mit

1 a b
Mpg(pa) = TAT' = 01 ¢
0 0 1

An der ersten und zweiten Spalte dieser Matrix kann abgelesen werden, dass jeweils ¢4(u) = u und
pa(v) = au+ v gilt; die Differenz ¢ 4(v) — v ist also jeweils in lin(u) enthalten. Wir betrachten nun in P

speziell die Elemente

110 1 01 1 00
A1=10 1 0 , A2=10 1 0 und Az =0 1 1
0 0 1 0 0 1 0 0 1
Fiir den Vektor u = (uq,us,us3) gilt nun insbesondere
U1 + ug Uy u1 + us Uy
U2 = ¢A1 (u) = | u2 und U2 = ¢A2 (U) = | u2 )
us us us us
also up = uz = 0. Fiir den Vektor v = (v, v2,v3) liegt die Differenz
0 V1 U1
U3 = Vg +v3 | — | V2 = Pas(v) —v
0 VU3 U3

in lin(u) C lin(ey), es gilt also vz = 0. Dies zeigt, dass die Matrix 7' die Form

uyp v w1

N~
I
(en]]

V2 W2

[en]]

(_) ws
hat. Weil T invertierbar ist, miissen die Diagonaleintriige 1, v und ws gleich 1 sein. Also ist T' insgesamt

in P enthalten. Damit ist die Gleichheit Ng(P) = P nachgewiesen, und es folgt vo = (G : Ng(P)) =
(G:P)= % = % = 21. Es gibt also genau 21 2-Sylowgruppen in G.



Aufgabe F21T1A5

Sei K ein Koérper der Charakteristik 0 und K(«, 8)|K eine endliche Galois-Erweiterung. Seien weiter
K(a)|K und K (B)|K Galois-Erweiterungen, sowie K (a)NK(8) = K. Setze G = Gal(K (a, 5)| K (a+5)).

Zeigen Sie:

(a) Firoc e Ggilt: (o) —a=5—-0(Bf) e K

(b) Esist K(a+ 8) = K(a, §).

Hinweis zu (b): Berechnen Sie zuniichst o7 (o) unter Verwendung von (a).

Lésung:

zu (a) Sei o € G. Als Automorphismus von K (a, §) ist o vertriglich mit der Addition. Auerdem wird
das Element o+ (3 auf sich selbst abgebildet, da o nach Definition von G ein K(a + 8)-Automorphismus
ist. Daraus folgt insgesamt o + 8 = o(a + ) = o(a) + o(B), was zu o(a) — @ = f — o(5) umgeformt

werden kann.

Die Einschrinkung o|g () kann als K-Homomorphismus K(a) — K(a,3) aufgefasst werden, somit
auch aus K-Homomorphismus in einen algebraischen Abschluss von K(«, ). Weil K(a)|K als Galois-
Erweiterung insbesondere normal ist, handelt es sich bei o| K(a) Somit um einen K-Automorphismus von
K(a). Es gilt also o(a) € K(«) und o(a) — a € K(a). Genauso zeigt man, dass § — o(f) in K(3) liegt.
Insgesamt ist o(a) —a = 8 — o(B) somit in K(«) N K(B) = K enthalten.

zu (b)  Sei 0 € G. Wegen o(a) — a € K gilt 0%(a) — o(a) = o(o(a) — a) = o(a) — a, was zu
0?(a) = 20(a) — a umgeformt werden kann. Anwendung von o auf beide Seiten liefert o3(a) = 202(a) —
o(a) = 2(20(a) — a) — o(a) = 4o(a) — 2a — o(a) = 30(a) — 2a. Wir beweisen nun durch vollstdndige
Induktion, dass

c™(a) = mo(a)—(m—1)a fiir alle m € IN gilt.

Fiir m = 1 ist die Gleichung wegen o'(a) = o(a) = 1-o(a) — (1 — 1)« offenbar erfiillt. Sei nun m € NN,

und setzen wir die Gleichung voraus. Durch Anwendung von o auf beide Seiten erhalten wir

o™ a) = o(mola)—(m—-1a) = mo*(a)—(m—1)o(a) =

m(20(a) —a)— (m—1)o(a) = 2mo(a)—ma—(m—-1o(a) = (m+1o(a)—ma ,
wodurch die Gleichung fiir m 4 1 bewiesen ist.

Nach Voraussetzung ist K («, 8)|K und damit auch K(«, 8)|K(a+ () eine endliche Galois-Erweiterung.
Daraus folgt, dass die Galois-Gruppe G dieser Erweiterung eine endliche Ordnung n besitzt, und somit
o™ = idg(a,p) gilt. Mit Hilfe der soeben bewiesenen Gleichung erhalten wir o = idg(q,5) (@) = 0" () =
no(a) — (n — 1)a, was zu na = no(a) und a = o(«) umgestellt werden kann. Dieselbe Argumentation
zeigt, dass auch o(8) = § gilt. Weil der K-Homomorphismus o auf K(«, ) durch die Bilder von a und
B bereits eindeutig festgelegt ist, folgt o = idg (o, 5). Weil o als Element von G beliebig vorgegeben war,
haben wir damit gezeigt, dass Gal(K (., B)|K(a+ B)) = G = {idg(a,p)} gilt- Da K(a, 8)|K eine Galois-
Erweiterung ist, folgt daraus Gal(K (e, 8)| K (a+5)) = [K(a, 8) : K(a+8)] = 1 und K(«, 8) = K(a+5).



Aufgabe F21T2A1

(a) Begriinden Sie, dass die Permutation

1 2 3 45 6 7 8 9
7T 5 8 3 9 1 6 4 2

in der alternierenden Gruppe Ag liegt.

(b) Zeigen Sie, dass ¢(n) fiir n > 3 stets gerade ist - hierbei bezeichne ¢ die Eulersche ¢-Funktion.

(c) Begriinden Sie, dass in einem Integritéitsbereich R aus e?

folgt.

= e, wobei e € R, stets e =0 oder e =1

(d) Bestimmen Sie den Korpergrad [Q(¥/7 - e=27/5) : Q).

Lésung:

zu (a) Das Element o besitzt die Darstellung o = (176)(259)(384) als Produkt disjunkte Zyklen.
Bekanntlich hat fiir n € IN und 2 < k < n jeder k-Zykel in S, das Signum (—1)*~!. Daraus folgt
sgn(o) = sgn((176)(259)(384)) = sgn((176)) -sgn((259)) -sgn((384)) = (-1)2-(-1)2-(-1)2=1. Da

Ag genau aus den Elementen von Sg mit positivem Signum besteht, folgt o € Ag.

zu (b) Sein € Nmitn >3 und n=2°[]._, p{* die Primfaktorzerlegung von n (wobei r € Ny, p1, ..., pr
ungerade Primzahlen, e € Ny und ey, ...,e, € IN sind). Auf Grund der Rechenregeln fiir die Eulersche
p-Funktion gilt

T T

pin) = o) [[ew) = e@)]]p " @i— 1.

i=1 i=1

Wegen n > 3 gilt e > 2 oder r > 1. Im Fall e > 2 ist der Faktor p(2¢) = 2¢~! gerade, im Fall r > 1 ist

e1—1

p7 " (p1 — 1) gerade. In beiden Fillen ist ¢(n) also eine gerade Zahl.

zu (c) Angenommen, es gilt e? = ¢ und e # 0. Die Gleichung kann zu e(e — 15) = €2

— e = 0r umge-
stellt werden. Da R ein Integritdtsbereich und e laut Annahme ungleich Oy ist, kann die Kiirzungsregel

angewendet werden und liefert e — 1 = O, was wiederum zu e = 1i dquivalent ist.

zu (d) Seig=2°—7 € Q[z] und a = /7-e~2"/5. Dann gilt g(a) = g(V/7-e=27/%) = (J/T-e=27/5)5 7 =
(/7)% - (e72/5)> —7=7-¢72" —7=17-1-"T7=0. Nach dem Eisenstein-Kriterium, angewendet auf die
Primzahl p = 7, ist g in Q[z] irreduzibel, auflerdem normiert. Insgesamt ist g also das Minimalpolynom
von « iiber @, und es folgt [Q(«) : Q] = grad(g) = 5.



Aufgabe F21T2A2
Sei K ein Korper und K¥ die Menge aller Abbildungen K — K. Es sei die Abbildung
¢: Klz] = K%, feof)

betrachtet, wobei ¢(f)(a) = f(a) fir alle a € K gelte. Beweisen Sie:

(a) Genau dann ist ¢ injektiv, wenn K unendlich ist.

(b) Genau dann ist ¢ surjektiv, wenn K endlich ist.

Lésung:

zu (a) ,=“ Angenommen, ¢ ist injektiv, der Kérper K aber endlich. Dann ist K% eine endliche Menge,
denn fiir jedes o € K¥ ist der Definitionsbereich K von « endlich, und fiir jedes ¢ € K gibt es jeweils
nur endlich viele Moglichkeiten fiir das Bild a(c) (ndmlich |K| Stiick). Dagegen ist K[z] unendlich, da
zum Beispiel die Polynome z™ mit n € INg alle verschieden sind. Es gibt aber keine injektive Abbildung

von einer unendlichen in eine endliche Menge.

»,<=“ Bekanntlich sind K[z] und K¥ beides K-Vektorriume. Wir zeigen, dass durch ¢ eine lineare
Abbildung gegeben ist. Seien dazu f,g € K[z] und A € K vorgegeben. Dann gilt fiir alle a € K jeweils

e(f+9)a) = (f+9)a) = fla)+gla) = o(f)a)+eg)a) = (p(f)+e@)a) ,

also p(f+g) = p(f)+¢(g). Ebenso gilt fiir alle a € K jeweils o(Af)(a) = (Af)(a) = Af(a) = Xp(f)(a) =
(Ap(f))(a) und somit @(Af) = Ap(f). Damit ist die Linearitidt nachgewiesen.

Setzen wir nun voraus, dass K unendlich ist. Fiir die Injektivitdt von ¢ geniigt es auf Grund der Li-
nearitit zu zeigen, dass ker(¢) = {0k} gilt. Die Inklusion ,,0* ist (ebenfalls auf Grund der Linearitét)
offensichtlich. Zum Nachweis von ,,C“ sei f € ker(y) vorgegeben. Dann ist ¢(f) € K% die Nullabbildung,
es gilt also p(f)(a) = Ok fiir alle @ € K. Da K unendlich ist, hat f also unendlich viele Nullstellen. Wire
f # 0k und n = grad(f) € Ny, dann hitte f laut Vorlesung in K hochstens n Nullstellen. So aber muss

f das Nullpolynom sein. Damit ist die Injektivitéit von ¢ nachgewiesen.

zu (b) ,=% Nehmen wir an, ¢ ist surjektiv, der Kérper K aber unendlich. Sei a € K beliebig gew#hlt
und o € KX gegeben durch a(a) = 1x sowie a(c) = Ok fiir alle ¢ € K \ {a}. Da ¢ laut Annahme
surjektiv ist, existiert ein f € K[z] mit ¢(f) = a. Wegen f(a) = ¢(f)(a) = a(a) = 1k ist f nicht das
Nullpolynom. Andererseits besitzt f wegen f(c) = ¢(f)(c) = a(c) = 0k fiir alle ¢ € K \ {a} unendlich
viele Nullstellen. Wie in Teil (a) gezeigt, folgt daraus, dass f das Nullpolynom ist, im Widerspruch zu
unserer vorherigen Feststellung. Der Widerspruch zeigt, dass unsere Annahme falsch war und aus der

Surjektivitdt von ¢ die Endlichkeit des Korpers K folgt.

»,<“ Unter der Voraussetzung, dass K endlich ist, beweisen wir die Surjektivitit von . Sei ¢ = | K],
und seien ai,...,ay € K die Elemente von K. Wir zeigen zunéchst, dass fir jedes ¢ € {1, ..., ¢} jeweils
ein Polynom f; € Klz] mit fi(a;) = 1x und f;(a;) = Ok fiir alle j # i gibt. Setzen wir zunéchst
fi= [1;.:(z — a;), dann gilt fi(ai) # 0k und f;(aj) = O fiir j # i. Definieren wir nun f; = fi(a;) =1 fi,
dann folgt f;(a;) = 1x und f;(a;) = Ok, insgesamt also f;(a;) = 0;; fiir 1 < j < n (wobei §;; wie {iblich

das Kronecker-Delta bezeichnet).

Sei nun a € KX vorgegeben und f = >"7 | a(a;)fi. Dann gilt fiir alle 1 < j < n jeweils

flag) = D ala)fila;) = Y ala)d; = ale)

i=1 i=1



also o(f)(a) = f(a) = a(a) fiir alle a € K und somit ¢(f) = a. Da KX beliebig vorgegeben war, ist

damit ist die Surjektivitéit von ¢ nachgewiesen.



Aufgabe F21T2A3

Sei R ein (nicht notwendig kommutativer) Ring mit 1. Ein Element z € R heifit nilpotent, falls es ein

n € IN mit ™ = 0 gibt.

(a) Zeigen Sie: Ist der Ring R kommutativ, und ist u € R eine Einheit sowie € R nilpotent, so ist

u + x eine Einheit.

(b) Es sei R der Ring der 2 x 2-Matrizen iiber Q. Geben Sie mit Begriindung ein Beispiel fiir eine

Einheit © € R und ein nilpotentes Element = € R an derart, dass u + = keine Einheit ist.

Lésung:

zu (a) Wir zeigen durch vollstéindige Induktion, dass folgende Aussage fiir alle n € IN gilt: Ist u eine
Einheit und = € R ein Element mit 2z = 0, dann ist u + x eine Einheit. Fiir n = 1 ist diese Aussage
offenbar erfiillt. Ist nimlich € R ein Element mit ' = 0, dann ist v + 2 = u +2' = u+0 = u
eine Einheit. Sei nun n € IN vorgegeben, und setzen wir die Aussage fiir dieses n voraus. Sei x € R ein

Element mit 2"*! = 0 und u € R*. Zu zeigen ist, dass es sich bei u + 2 um eine Einheit handelt.

2

Setzen wir y = —?, dann gilt (u + 2)(u — x) = u? — 2% = u? + y. Das Element y erfiillt die Bedingung

y™ = 0. Denn wegen n > 1 ist n — 1 > 0, und es folgt y" = (—z?)" = (—1)"2?" = (—1)"z" ta"T! =
(=1)"z"~1 .0 = 0. Weil die Einheiten in R multiplikativ abgeschlossen sind, ist mit u auch u? eine
Einheit. Auf Grund der Induktionsvoraussetzung ist also (u + x)(u — z) = u? + y somit eine Einheit. Es
gibt also ein ¢ € R mit (u + z)(u — x)e = 1. Definieren wir ¢’ = (u — x)e € R, dann folgt (u + z)e’ = 1.

Dies zeigt, dass auch u + x eine Einheit ist. Der Induktionsschritt ist damit abgeschlossen.

zu (b) Seien zum Beispiel u,z € R gegeben durch

0 -1 01
u = und z = .
L) o 0)

Wegen det(u) =1 # 0 ist u eine invertierbare Matrix und somit eine Einheit in R. Auflerdem ist

S LR O

und x somit nilpotent. Andererseits gilt

e L - (Y

aber wegen det(u + ) = 0 ist u + z nicht invertierbar und somit keine Einheit in R.



Aufgabe F21T2A4

(a) Zeigen Sie, dass die Galois-Gruppe einer galois’schen Korpererweiterung L|K vom Grad 143 stets

zyklisch ist.

(b) Sei L|K eine galois’sche Korpererweiterung vom Grad 55 mit nichtabelscher Galois-Gruppe. Zeigen
Sie: Es gibt genau einen echten Zwischenkérper M von L|K, so dass M|K eine Galois-Erweiterung
ist. Berechnen Sie den Grad [M : K].

Lésung:

zu (a) Sei G = Gal(L|K), und fiir jede Primzahl p sei v, die Anzahl der p-Sylowgruppen von G. Da L|K
eine endliche Galois-Erweiterung ist, gilt |G| = [L : K] = 143 = 11 - 13. Auf Grund des 3. Sylowsatzes
gilt 113 | 11, also v13 € {1,11}, andererseits aber auch 13 = 1 mod 13. Wegen 11 # 1 mod 13 folgt
v13 = 1. Ebenso gilt vy | 13, also v11 € {1,13}, auBerdem v1; = 1 mod 11. Wegen 13 =2 # 1 mod 11
folgt v1; = 1.

Sei nun U die einzige 11- und N die einzige 13-Sylowgruppe von G. Wir zeigen, dass G ein inneres
direktes Produkt von U und N ist. Wegen v1; = 113 = 1 folgt aus dem 2. Sylowsatz U < G und
N < G. Wegen G = 111 - 13! ist (nach Definition der p-Sylowgruppen) |U] = 11 und |N| = 13, und aus
geT(|U|,|N|) = ggT(11,13) = 1 folgt U N N = {idy}. Zu zeigen bleibt noch, dass das Komplexprodukt
H = UN mit G ibereinstimmt. Wegen N <J G ist H jedenfalls eine Untergruppe von G, und wegen
UCHund N C H sind U und N beides Untergruppen von H. Nach dem Satz von Lagrange ist |H|
somit ein gemeinsames Vielfaches von |U| = 11 und |N| = 13. Es folgt |H| > kgV(11,13) = 143 = |G|,
und wegen H C G folgt daraus G = H = UN.

Der Nachweis, dass G ein inneres direktes Produkt von U und N ist, ist damit abgeschlossen, und laut
Vorlesung folgt daraus G = U x N. Als Gruppen von Primzahlordnung sind U und N zyklisch. Daraus
folgt U = Z/11Z und N = Z/13Z, und wir erhalten G = Z/117Z x Z/13Z. Wegen ggT(11,13) = 1
kann schliellich der Chinesische Restsatz angewendet werden, und wir erhalten G = Z,/143Z. Damit ist
gezeigt, dass es sich bei G um eine zyklische Gruppe handelt.

zu (b) Nach Voraussetzung ist G = Gal(L|K) eine nicht-abelsche Gruppe. Da L|K eine endliche Galois-
Erweiterung ist, gilt auferdem |G| = [L : K| = 55. Wiederum sei v, fiir jede Primzahl p die Anzahl der
p-Sylowgruppen von G. Nach dem 3. Sylowsatz gilt v1; | 5, also v11 € {1,5}, auflerdem v;; = 1 mod 11.
Wegen 5 # 1 mod 11 folgt v1; = 1. Ebenso gilt v5 | 11, also v5 € {1, 11}. Wir betrachten zunéchst den Fall
vs5 = 1 und zeigen, dass in diesem Fall G eine abelsche Gruppe ist, im Widerspruch zur Voraussetzung.
Sei dazu U die einzige 11- und N die einzige 5-Sylowgruppe. Wortwortlich wie im im letzten Teil (wobei
die Primzahl 13 lediglich durch die Primzahl 5 zu ersetzen ist) zeigt man, dass G =2 U x N gilt. Wegen
|G| = 5111 ist U] = 11 und |N| = 5. Die Gruppen U und N sind also beide von Primzahlordnung und
als solche zyklisch, somit auch abelsch. Daraus folgt, dass auch U x N und G abelsche Gruppen sind,

was der Voraussetzung widerspricht.

Der Fall v5 = 1 ist durch den Widerspruch also ausgeschlossen, und es folgt vs = 11. Sei nun M = LY,
der Fixkorper der Untergruppe U von G = Gal(L|K). Nach dem Hauptsatz der Galoistheorie gilt dann
U = Gal(L|M). Als einzige 11-Sylowgruppe ist U ein Normalteiler von G. Daraus folgt, dass M|K eine

Galois-Erweiterung ist. Auflerdem gilt

G 55
G _ B _

M:K] = (G:U) = 0] 1



Nehmen wir nun an, dass M’ ein weiterer, von M verschiedener, echter Zwischenkérper von L| K ist mit
der Eigenschaft, dass M'|K galoissch ist. Sei V = Gal(L|M"). Wegen K C M’ C L gilt {id,} CV C G.
Somit ist |V ein echter Teiler von |G| = 55 grofer als 1. Die einzigen solchen Teiler sind 5 und 11.
Betrachten wir zunéchst den Fall |[V| = 11. Dann ist V eine 11-Sylowgruppe von G, und wegen v;; = 1
folgt V' = U. Mit dem Hauptsatz der Galois-Theorie erhalten wir M’ = LY = LY = M, im Widerspruch

zu unserer Annahme M’ # M.

Betrachten wir nun die andere Méglichkeit, |[V| = 5. Dann ist V eine 5-Sylowgruppe von G. Wegen
vs =11 > 1 kann V kein Normalteiler von G sein. Andererseits folgt aber aus der Annahme, dass M'|K
eine normale Teilererweiterung von L|K ist, die Normalteiler-Eigenschaft von V' = Gal(L|M’). Dieser
Widerspruch zeigt, dass auch der Fall |V| = 5 ausgeschlossen ist und somit kein Zwischenkérper M’ #£ M

mit den angegebenen Eigenschaften existiert.



Aufgabe F21T2A5

(a) Sei K ein Kérper, n > 1 eine natiirliche Zahl und A eine beliebige n x n-Matrix iiber K. Zeigen Sie:

Es existiert eine endliche Kérpererweiterung L|K derart, dass A einen Eigenwert A € L besitzt.

(b) Begriinden Sie, dass L = Q[z]/(z3+xz+1) ein Korper ist. Zeigen Sie, dass o = [z] ein Eigenwert der
linearen Abbildung f : L? — L3, f(u,v,w) = (—w,u — w,v) ist, und geben Sie einen Eigenvektor

zum Eigenwert o an.

Lésung:

zu (a) Sei xa € K|[z] das charakteristische Polynom von A und f € K|[z] ein iiber K irreduzibler Faktor
von A. Laut Vorlesung existiert eine endlich Korpererweiterung L|K, so dass f in L eine Nullstelle
A besitzt. Wegen f | x4 ist A auch eine Nullstelle von x4, und als Nullstelle des charakteristischen

Polynoms von A ist A € L ein Eigenwert von A.

zu (b) Das Polynom g = x3 + x + 1 ist irreduzibel iiber Q. Wire es niamlich reduzibel, dann hitte es
wegen grad(g) = 3 eine Nullstelle » € Q. Da g in Z[x] ist und normiert ist, miisste r € Z gelten und
r den konstanten Termin 1 von g teilen. Es miisste also r € {£1} gelten. Aber wegen g(—1) = —1 # 0
und ¢g(1) = 3 # 0 sind +1 keine Nullstellen von g; damit ist die Irreduzibilitéiit von g nachgewiesen. Als
Polynomring iiber einem Korper ist Q[z] ein Hauptidealring, und auf Grund der Irreduziblitit von g ist
das Hauptideal (g) ein maximales Ideal in Q[z]. Daraus wiederum folgt, dass L = Q[z]/(g) ein Korper

ist.

Seien ey, €2, e3 die Einheitsvektoren in L3. Es gilt f(e;) = f(1,0,0) = (0,1,0) = ey, f(ea) = f(0,1,0) =
(0,0,1) = e5 und f(e3) = £(0,0,1) = (—1,—1,0) = —e; — e2. Somit ist die Abbildung f gegeben durch

L3 L3 v+ Av, wobei A € Mjsys 1, die Matrix mit den Spalten e, e3, —e1 — ez bezeichnet, also

00 -1
A = 1 0 -1
01 0

Das charakteristische Polynom von f ist somit gleich dem charakteristischen Polynom von A, und dieses

ist gegeben durch

z 0 1
xXa = det(zE—A4) = det|-1 2z 1 = 2240+1-0—(—2)-0 = 2°4+z+1
0 -1 =z

wobei E € Mjys 1 die Einheitsmatrix bezeichnet. Es gilt also x4 = g. Als Nullstelle von x4 ist « ein
Eigenwert von f. Die Eigenvektoren zum Eigenwert « sind genau die Elemente ungleich dem Nullvektor
in Eig(f,a) = Eig(A, ) = ker(A — aF). Wir bestimmen einen solchen Vektor durch Anwendung des
Gauf3-Algorithmus.

—a 0 —1 1 —a -1 1 —« -1
1 —a -1 — 0 1 —« — 0 1 -« —
0 1 - —a 0 -1 0 —a? —a-1
1 —«o -1 —a —1 1 0 —a?2-1
1 - =10 1 —« — 0 1 —«



Die beiden ersten Zeilen der umgeformten Matrix rechts entsprechen den Gleichungen z; = (a? + 1)x3
und o = axs. Dies zeigt, dass zum Beispiel (a? + 1,,1) ein Eigenvektor zum Eigenwert A ist. Wir

iiberpriifen diese Ergebnis durch eine Proberechnung. Es gilt

-1 a?+1 -1 o +a a?+1
_1 [0 = a2 = a2 = o [0 s
0 1 « o 1

wobei im vorletzten Schritt in der ersten Komponente des Vektors noch zu beachten ist, dass a® + o =

(@ +a+1)-1=g(a)—1=0-1= -1 gilt.



Aufgabe F21T3A1

(a) Zeigen Sie, dass durch
K =TFq[t]/(* - 2)
ein Korper mit 343 Elementen gegeben wird.
(b) Bestimmen Sie das Minimalpolynom der komplexen Zahl z = m + ei iiber R.
(¢) Zeigen oder widerlegen Sie, dass das Polynom

f =222 £10521% + 152 + 45

iiber folgenden Korpern irreduzibel ist:

Losung:

zu (a) Das Polynom f =3 —2 =t +5 € IF7[z] besitzt in IF; keine Nullstelle, denn es gilt f(0) =5
) =620, /@) =T5=620, f(3) =T =140, /(1) =T =620, f(5) = f(-2) = 31
und f(6) = f(—1) =4 # 0. Wegen grad(f) = 3 folgt daraus, dass f iiber IF'7 irreduzibel ist. Da IF[t] als

Polynomring iiber einem Koérper ein Hauptidealring ist, ist jedes von einem irreduziblen Element erzeugte

£0
£0

Ideal maximal. Also ist (f) ein maximales Ideal, und K = IF7[t]/(f) ist ein Korper. Aus der Vorlesung ist
auflerdem bekannt: Ist K ein Korper und 0 # g € K[z] vom Grad n, dann bilden die Polynome vom Grad
<n — 1 zusammen mit dem Nullpolynom ein Représentantensystem von K[z]/(g). Insbesondere bilden
die Polynome vom Grad < 2 also ein Repréisentantensystem von IF7[¢]/(f). Jedes dieser Polynome hat die
Form ax? + bx + ¢ mit eindeutig bestimmten a, b, ¢ € F;. Fiir jeden der Koeffizienten gibt es also genau
sieben Moglichkeiten, und 72 = 343 mogliche Kombinationen. Dies zeigt, dass das Reprisentantensytem,

und damit auch der Faktorring K = F7[t]/(f), aus genau 343 Elementen besteht.

zu(b) Esgiltz=n+ei=z—7m=¢ci= (z—7)?%=—€?= 22 —2mz + 7% + ¢ = 0. Dies zeigt, dass
7 + ei eine Nullstelle des Polynoms f = 22 — 27z + 72 + €2 € R[] ist. AuBerdem ist f normiert. Wre f
iiber R reduzibel, dann miisste wegen grad(f) = 2 die Nullstelle 7 + ei in R liegen. Aber dies ist wegen
Im(m + ei) = e # 0 nicht der Fall. Insgesamt ist damit gezeigt, dass f das Minimalpolynom von 7 + ei
iiber R ist.

zu (c)(i) Die Primzahl 5 teilt nicht den Leitkoeffizienten 1 von f, wegen 5 mod 105, 5 | 15, 5 | 45
aber jeden anderen Koeffizienten des Polynoms, und 52 ist kein Teiler von 45 = 32 - 5. Also folgt die
Irreduzibilitdt von f iiber Z aus dem Eisenstein-Kriterium. Nach dem Gauf3’schen Lemma ist f damit

auch irreduzibel tiber Q.

zu (¢)(ii) Aus der Analysis ist bekannt, dass jedes reelle Polynom ungeraden Grades mindestens eine
reelle Nullstelle besitzt. Der Grad 2021 von f ist ungerade. Als Polynom vom Grad > 1 mit mindestens
einer Nullstelle in R ist f iiber R reduzibel (also nicht irreduzibel).

zu (c)(iii) Bsgilt f(1) = 12021 +105- 113 +15-1+45=1+105+15+45=1+1+1+1=4=0. Als
Polynom vom Grad > 1, das in IFy eine Nullstelle besitzt, ist f iiber IFo reduzibel.



zu (c)(iv) Sei @ = ¢ + (f). Identifizieren wir Q mit einem Teilkérper von K durch die die injektive

Abbildung Q — K, a+— a+ (f), dann erhalten wir

fla) = a® 110502+ 15a+45 = (4 ()2 +105(t + ()> +15(t + (f)) + (45 + (f))
2020 105t + 15t + 45+ (f) = f+(f) = 0+(f) = O

Es handelt sich bei f also um ein Polynom in K[z] vom Grad > 1, das mit « in K eine Nullstelle besitzt.

Daraus folgt, dass f iiber K reduzibel ist.

zu (c)(v) Als Polynomring iiber einem Korper ist Q[t] ein Hauptidealring. Weil f nach Teil (c)(i) in
Q[t] irreduzibel ist, ist das Hauptideal (f) in Q[t] ein maximales Ideal. Daraus folgt, dass der Faktorring
K = Q[t]/(f) ein Kérper ist.



Aufgabe F21T3A2

(a) Bestimmen Sie alle Nullstellen (mit Vielfachheiten) des Polynoms f = z* + 2 iiber Fj.
(b) Bestimmen Sie die Galois-Gruppe von f iiber F3.

(c) Sei av eine Nullstelle von g = 2* +2 in einem algebraischen Abschluss von IF5. Zeigen Sie, dass dann

auch 2a, 3a und 4o Nullstellen von ¢ sind.
(d) Zeigen Sie, dass g iiber F5 irreduzibel ist.

(e) Berechnen Sie die Galois-Gruppe von g iiber Fs.

Lésung:
zu (a) Esgilt f(0) =2#0, f(1) =3 =0und f(2) = 18 = 0. Die Ableitung von f ist f’ = 42% = 23, und
es gilt f/(1) =1# 0 und f/(2) = 8 = 2 # 0. Insgesamt zeigt dies, dass 1 und 2 die einzigen Nullstellen

von f in IF3 sind, jeweils mit Vielfachheit 1.

zu (b)  Aus Teil (a) folgt, dass f eine Zerlegung der Form f = (z — 1)(z — 2)g besitzt, mit einem
normierten, irreduziblen Polynom vom Grad 2. Sei ]F‘g‘lg ein algebraischer Abschluss von I3 und « € Fglg
eine Nullstelle von g. Da & — « ein Teiler von g in F3(«a)[x] ist, existiert ein Polynom h € F3(«)[z] vom
Grad 1 mit g = (z — a)h. Das Polynom g zerfillt iiber F3(«) also in Linearfaktoren, ebenso das Polynom
f. Andererseits wird der Korper F3(«) iiber I3 durch die Nullstellen von f erzeugt, da « nicht nur eine

Nullstelle von g, sondern auch eine Nullstelle von f ist.

Insgesamt handelt es sich bei Fz(«) also um einen Zerfillungskorper von f iiber F3, und es folgt
Gal(f|F3) = Gal(IF5(«)|IF3). Das Polynom g ist normiert, irreduzibel und hat « als Nullstelle. Es ist also
das Minimalpolynom von « iiber I3, und folglich gilt [F5(«) : 3] = grad(g) = 2. Aus der Vorlesung ist
bekannt, dass fiir jeden endlichen Kérper F' jede Erweiterung E|F von einem endlichen Grad n galoissch
ist, und dass jeweils Gal(E|F) = Z/nZ gilt. Damit erhalten wir Gal(f|F3) = Gal(F3(«a)|F3) = Z/2Z.

zu (c) In Fygilt 24 =1
also g(ca) = (ca)* +2 =

zu (d) Sei h € F5[z] das Minimalpolynom von « iiber F5 und d = [F5(«) : F5]. Dann gilt grad(h) =
[F5(a) : F5] = d. Als d-dimensionaler IF5-Vektorraum besteht IF5(a) aus 5% Elementen. Bezeichnen wir
den in Teil (¢) erwihnten algebraischen Abschluss, in dem « sich befindet, mit F2'®, dann stimmt F5 ()
also mit dem eindeutig bestimmten Zwischenkdrper Fga von ]FgIg |5 mit 5¢ Elementen iiberein. Die
multiplikative Gruppe F, besteht aus 5¢ — 1 Elementen. Wegen g(0) = 2 # 0 ist a # 0, und folglich ist

o in F7, enthalten.

Wegen g € Fs[x] und g(a) = 0 ist h ein Teiler von g, es gilt also d = grad(h) < grad(g) = 4 und somit
d € {1,2,3,4}. Wegen g(a) = 0 gilt auBerdem a* =3 #1,a%=(3)2=9=4#1und a!® =42 = 1.
Dies zeigt, dass « in F;d ein Element der Ordnung 16 ist. Nach dem Satz von Lagrange muss 16 also ein
Teiler von 5¢ — 1 sein. Da 16 keine der Zahlen 5' — 1 =4, 52 — 1 = 24, 5% — 1 = 124 teilt, muss d = 4
sein. Aus grad(h) = 4 = grad(g), h | g und der Tatsache, dass h und g beide normiert sind, folgt g = h.

Als Minimalpolynom eines iiber F5 algebraischen Elements ist ¢ in F5[x] irreduzibel.

zu (e) Nach Teil (c) sind «,2a,3a,4a alles Nullstellen von g in F2'2. Da die Elemente 1,2,3,4 in
IF5 verschieden und « # 0 ist, sind auch die vier angegebenen Nullstellen verschieden. Durch z — ca

mit ¢ € {1,2,3,4} sind also vier verschiedene Linearfaktoren von g in F2'%8[z] gegeben, und wegen



grad(g) = 4 folgt daraus (z — ) (x — 2a)(z — 3a) (z — 4a). Dies zeigt, dass g iiber IF5(c) in Linearfaktoren
zerféllt. Andererseits wird F5(a) iiber F5 durch die Nullstellen von g erzeugt, da « eine Nullstelle
von g ist. Insgesamt handelt es sich bei F5(a) also um den Zerfillungskérper von ¢ iiber Ty, und es
folgt Gal(g|F5) = Gal(IF5(a)|F5). Da g nach Teil (d) das Minimalpolynom von « iiber F5 ist, gilt
[F5(c) : 5] = grad(g) = 4. Auf Grund des in Teil (b) erwihnten Satzes aus der Vorlesung folgt daraus
Gal(g|IF5) = Gal(IF5(«)|F5) = Z/47Z.



Aufgabe F21T3A3

Seien G eine endliche Gruppe und ¢ : G — H ein surjektiver Gruppenhomomorphismus auf eine weitere

Gruppe H.

(a) Zeigen Sie, dass H auflosbar ist, wenn G auflosbar ist.

(b) Zeigen Sie, dass H entweder trivial oder einfach ist, wenn G einfach ist.

Lésung:

zu (a) Laut Vorlesung gilt: Ist G eine Gruppe und N ein Normalteiler von G, so ist G genau dann
auflosbar, wenn die Gruppen N und G/N beide auflosbar sind. Setzen wir nun voraus, dass G auflésbar
ist, und sei N = ker(p). Da ¢ ein Epimorphismus von Gruppen ist, existiert nach dem Homomorphiesatz
fiir Gruppen ein Isomorphismus G/N 2 H. Aus der Auflésbarkeit von G folgt nun die Auflésbarkeit von
G/N, und wegen G/N = H ist damit auch H auflosbar.

zu (b) Da G einfach ist, besitzt G genau zwei Normalteiler, ndmlich {e} und G. Bereits in Teil (a) haben
wir festgestellt, dass G/N = H gilt, mit N = ker(p). Als Kern eines Gruppenhomomorphismus ist N ein
Normalteiler von G. Es gilt also entweder N = G oder N = {e}. Im ersten Fall folgt H =2 G/G = {e},
die Gruppe H ist also trivial. Im zweiten Fall gilt H = G/{e} = G. Da G einfach ist, folgt in dieser

Situation aus H = G, dass auch H einfach ist.



Aufgabe F21T3A4

Sei R ein kommutativer Ring. Ein Element a € R heifit nilpotent, wenn o™ = 0 fiir ein n € IN gilt.

(a) Begriinden Sie, warum in einem Korper K das einzige nilpotente Element a das Element a = 0 ist.
(b) Zeigen Sie, dass das Nilradikal
n={a € R| a ist nilpotent }
ein Ideal ist.

(c) Zeigen Sie, dass das Nilradikal in jedem Primideal p des Ringes R enthalten ist.

(d) Berechnen Sie das Nilradikal des (endlichen) Rings Z/¢Z., wobei £ > 1 eine natiirliche Zahl ist.

Losung:

zu (a) Sei K ein Kérper und Ok sein Nullelement. Wegen 0} = Ok ist Ox jedenfalls nilpotent. Sei
nun a € K ein beliebiges nilpotentes Element. Dann gilt a” = Ok fiir ein n € IN; wir diirfen annehmen,
dass n die kleinste natiirliche Zahl mit dieser Eigenschaft ist. Es gilt dann a" ! # O, andererseits aber
a"1-a=a" =0g. Weil K als Kérper insbesondere ein Integritétsbereich ist, folgt daraus a = Og. Dies

zeigt, dass es neben Ox keine weiteren nilpotenten Elemente in K gibt.

zu (b) Zu zeigen ist, dass das Nullelement Or in n enthalten ist, und dass fiir beliebige a,b € n und
r € R auch a+b und ra in n liegen. Aus 0% = Og folgt unmittelbar O € n. Seien nun a,b €nund r € R
vorgegeben. Dann existieren m,n € N mit ™ = b™ = 0. Es folgt (ra)™ = r™a™ = r"™ - 0g = Og und
somit ra € n. Zum Nachweis von a + b € n diirfen wir nach eventueller Vertauschung von a und b die
Ungleichung m < n voraussetzen. Es gilt dann auch ¢ = a™ - a"™™ = 0g - a"~™ = Og. Auf Grund des

Binomischen Lehrsatzes gilt
2n

2 ,
(a+b)?" = Z(]:L a®" ko,

k=0
Fir 0 < k < 2n gilt jeweils entweder k > n oder 2n — k > n. Im ersten Fall ist b* = b . b =
k

2n—k n—k

Op - b " = 0p, im zweiten a =a"-a = Ogr - a" " = 0g. Daraus folgt, dass jeder einzelne

Summand (2]:”) a®"~FbF gleich null ist, also (a + b)?™ = 0p und damit a + b € n gilt.

zu (¢) Sei p ein beliebiges Primideal von R und a € n. Dann gilt ™ = Og fiir ein n € IN, und da p als
Ideal von R das Nullelement Og enthélt, folgt a™ € p. Wir beweisen nun durch vollstédndige Induktion
iiber n, dass fiir alle n € IN aus a™ € p jeweils a € p folgt. Fiir n = 1 ist dies unmittelbar klar. Sei nun
n € IN, und setzen wir die Aussage fiir n voraus. Sei a € R ein Element mit a"*! € p. Aus a™ -a € p folgt
a™ € p oder a € p, da p ein Primideal ist. Im Fall a € p ist der Induktionsschritt bereits abgeschlossen.

Im Fall @™ € p konnen wir die Induktionsvoraussetzung anwenden und erhalten ebenfalls a € p.

zu (d) Sei ¢ = []._, p{’ die Primfaktorzerlegung von ¢, wobei r € Ny ist und ps, ..., p, verschiedene
Primzahlen bezeichnen. Sei £y = [[;_, p;. Wir zeigen, dass das Nilradikal n von Z/(¢) durch n = (¢y+{Z)
gegeben ist. Zum Nachweis von , 2% sei a+£Z € ({y+£Z) vorgegeben, mit a € Z, und e = max{ey, ..., &, }.
Dann gibt es ein m € Z mit a + (Z = (m + {Z)(Ly + {Z) = mly + £Z und ein s € Z mit a = mly + s.

Mit £ ist auch a ein Vielfaches von £y, es gilt also a = t£; fiir ein ¢ € Z.. Aulerdem ist

6 = (Hm) = II» = <pr_e“'> (Hp?) = <pr‘6">-€
i=1 i=1 i=1 i=1 i=1



ein Vielfaches von ¢. Dies zeigt, dass auch a® ein Vielfaches von ¢ ist. In Z/(¢) gilt also (a + (Z)° =
a® + 47 = 0 + {Z. Dies zeigt, dass a + ¢Z im Nilradikal n von Z/(¢) enthalten ist.

Zum Nachweis von ,, C“ setzen wir nun a+¢7Z € n voraus, mit a € Z. Dann gilt a"+0Z = (a+{Z)" = 0+LZ
fiir ein n € IN. Somit ist a” ein Vielfaches von £. Fiir ¢ € {1,...,r} ist p; jeweils ein Teiler von ¢, damit
auch von a™ und (da p; eine Primzahl ist), auch von a. Insgesamt sind p1, ..., p, also Primteiler von a.
Somit ist auch deren Produkt £y ein Teiler von a, es gilt also a = sly und a + 0Z = (s + {Z)({y + (Z) fiir
ein s € Z. Dies zeigt, dass a + ¢Z im Hauptideal (¢y + ¢Z) von Z/({) enthalten ist.



Aufgabe F21T3A5

(a) Geben Sie mit Begriindung eine mogliche Abbildungsmatrix des Frobenius-Homomorphismus
F ]F25 — ]F25 s

aufgefasst als Endomorphismus des IF'5-Vektorraums o5, an.

(b) Bestimmen Sie die Anzahl der Unterkorper, die der endliche Korper Fg; besitzt.

Lésung:

zu (a) Sei Fglg ein algebraischer Abschluss von Fa5 (und damit insbesondere ein algebraischer Abschluss
von F5). Sei f = 22+ 2 € Fs[z] und a € Fglg eine Nullstelle von f. Dann ist f das Minimalpolynom
von « iiber 5. Denn wegen f(0) =2 # 0, f(1) =3 #0, f(2)=6=1+#0, f(3) =11 =1 # 0 und
f(4) =18 = 3 # 0 besitzt f in 5 keine Nullstellen, ist wegen grad(f) = 2 somit iiber F5 irreduzibel.
Auflerdem ist f normiert, und es gilt f(a) = 0. Auf Grund der Eigenschaft von f als Minimalpolynom gilt
[F5(a) : F5] = grad(f) = 2. Als 2-dimensionaler F5-Vektorraum besteht IF5(a) aus 52 = 25 Elementen.
Aus der Vorlesung ist bekannt, dass die Erweiterung F§1g|IF5 fiir jedes d € IN genau einen Zwischenkorper

Fsa mit 5¢ Elementen besitzt.

Es muss somit Fo5 = F5() gelten. Da das Minimalpolynom f von « iiber 5 vom Grad 2 ist, ist laut
Vorlesung durch (1, ) eine geordnete Basis von F5(a) als F5-Vektorraum gegeben. Wir bestimmen nun
die Darstellungsmatrix des Frobenius-Endomorphismus F : Fps — Fa5, v +— 7° beziiglich dieser Basis.
Die erste Spalte der Darstellungsmatrix ergibt sich durch die Rechung F(1) = 1° =1=1-14+0"a.
Wegen f(a) = 0 gilt o = —2 = 3. Die zweite Spalte der Darstellungsmatrix erhiilt man nun durch die

Rechnung
Fla) = o = a*a*>a = 33.a0a = 9.a = 4.0 = 0-1+4-a.

Insgesamt ist die Darstellungsmatrix von F' beziiglich (1, «) also durch

10 b
_ gegeben.
0 4

zu (b) In der Vorlesung wurde gezeigt: Ist p eine Primzahl, IF), der Kérper mit p Elementen und IF;lg
ein algebraischer Abschluss von IF,,, dann gibt es fiir jedes n € IN genau einen Zwischenkérper F,» von
F2'8|F,, mit p™ Elementen. Dabei gilt Fym C Iy fiir m, n € IN jeweils genau dann, wenn m ein Teiler von
n ist. Insbesondere ist die Anzahl der Zwischenkérper von IFy»|IF,, also gleich der Anzahl der natiirlichen
Teiler von n. Da I, der Primkoérper von IFy,» ist, ist dies zugleich auch die Anzahl der Unterkérper von
F,n. Die Zahl 4 besitzt in IN genau drei Teiler (1, 2 und 4), somit hat der Kérper 34 = Fg; genau drei
Unterkérper (ndmlich F3 = F31, Fg = F32 und Fg; = F34).



Aufgabe H21T1A1

Sei R ein kommutativer Ring (mit 1).

(a) Geben Sie die Definition des grifiten gemeinsamen Teilers (ggT) zweier Elemente a,b € R an.
(b) Begriinden Sie, dass in einem faktoriellen Ring je zwei Elemente einen ggT haben.
(c) Begriinden Sie, dass je zwei Elemente des Polynomrings Q[z,y] einen ggT haben.

(d) Zwei Elemente a,b € R heilen teilerfremd, wenn 1 ein ggT von a und b ist. Sie heiflen relativ prim,
wenn es u,v € R gibt mit ua + vb = 1. Zeigen Sie: Sind a,b € R relativ prim, dann sind sie auch

teilerfremd.

(e) Geben Sie zwei Elemente a,b € Q[z,y] an, die teilerfremd sind, aber nicht relativ prim.

Lésung:
zu (a) Ein Element d € R wird als grifiter gemeinsamer Teiler von a und b bezeichnet, wenn d
ein gemeinsamer Teiler von a und b ist, also d | @ und d | b gilt, und wenn d’ | d fiir jeden weiteren

gemeinsamen Teiler d’ von a und b erfiillt ist.

zu (b) Sei R ein faktorieller Ring und P C R ein Reprisentantensystem der Primelemente von R (was
bedeutet, dass P aus Primelementen besteht und jedes Primelement aus R zu genau einem Element
aus P assoziiert ist). Aus der Vorlesung ist bekannt, dass jedes Element aus R dann eine eindeutige
Darstellung der Form anpeppvp besitzt, mit ¢ € R*, v, € Ny fiir alle p € P und v, = 0 fiir alle bis
auf endlich viele p € P. Sind nun a,b € R zwei beliebige Elemente ungleich null und a = EH,} cp P,
b= ull,epp” die zugehdrigen eindeutigen Darstellungen (mit e, € R*), dann ist laut Vorlesung
durch Hpeppmi“{”W“’P} ein ggT von a und b gegeben.

zu (¢) Nach Teil (b) geniigt es zu zeigen, dass Q[z,y] ein faktorieller Ring ist. Laut Vorlesung ist jeder
Polynomring iiber einem faktoriellen Ring wiederum faktoriell. Als Polynomring {iber einem Korper
ist Q[z] ein Hauptidealring, somit insbesondere ein faktorieller Ring. Also ist auch Q[z,y] = Q][y]
faktoriell.

zu (d) Selen a,b € R relativ prim. Dann gibt es nach Definition u,v € R mit ua + vb = 1. Offenbar
ist 1 ein gemeinsamer Teiler von a und b (denn es gilt a = 1-a und b = 1-b). Sei nun d ein weiterer
gemeinsamer Teiler von a und b. Dann ist d auch ein Teiler von ua und vb, und damit auch ein Teiler von
ua + vb = 1. Damit ist nachgewiesen, dass 1 ein ggT von a und b ist, die Elemente a, b also teilerfremd

sind.

zu () Seia =x und b = y. Wir zeigen zunéichst, dass 1 ein grofiter gemeinsamer Teiler von a und b ist.
Dass 1 ein gemeinsamer Teiler dieser beiden Elemente ist, ist wiederum offensichtlich. Sei nun d € Q|z, y]
ein weiterer gemeinsamer Teiler von a und b. Wegen d | = existiert ein u € Q[z, y] mit z = ud. Betrachten
wir v und z als Polynome iiber dem Ring Q[z] in der Variablen y, so ist « ein Polynom vom Grad null,
und aus der Gleichung x = ud folgt, dass auch der Grad von u im Polynomring Qz][y] gleich null ist.
Dies bedeutet also, dass der Grad von u in der Variablen y gleich null ist. Ebenso folgt aus der Relation
d | y, dass der Grad von d in der Variablen z gleich null ist. Somit ist das Polynom d insgesamt ein
Konstante (wegen ud = x # 0 ungleich null), also eine Einheit in Q[x,y]. Es folgt d | 1; also sind = und
y tatséchlich teilerfremd in Q[z, ).



Nehmen wir nun an, dass 2 und y relativ prim sind. Dann géibe es Polynome u, v € Q[z, y] mit uz+vy = 1.
Aber der konstante Term auf der linken Seite dieser Gleichung ist gleich 0, wihrend der Termin auf der
rechten Seite gleich 1 ist. Also kann eine solche Gleichung nicht gelten. Die Elemente z und y sind also

nicht relativ prim zueinander.



Aufgabe H21T1A2

Sei V' ein unendlich-dimensionaler R-Vektorraum, auf dem eine positiv definite symmetrische Bilinear-
form (-,-) definiert ist. Wir schreiben |jv|| = /{v, v).

Es seien vy, ...,v, € V. Zeigen Sie: Der Schwerpunkt s = %(vl + ...+ v,) ist das eindeutig bestimmte
Element v € V, fiir das >-7_, [|v — v;||* minimal wird.

Hinweis: Schreiben Sie v als v = s + w.

Lésung:
Sei v € V beliebig vorgegeben und w = v — s. Wir beweisen die Gleichung

n n
Dolv—ul> = D lls—oll? .
j=1 j=1

Daraus folgt unmittelbar, dass die Summe 7", [[v — v;||* genau dann minimal ist, wenn w = 0, also

v =sist. Fiir 1 <j <n gilt jeweils

lo—vil? = lls—vj+wl> = (s—vi+tws—vj+w) =
(s —vj, 8 —v;) + (s —vj,w) + (w, s —v;) + (w,w) = (s—vj,5—vj)+2(s —vj,w) + (w,w)

= s —vl1* + llwl® + 2(s — v, w).

Auflerdem ist

n

Z(s—vj,w> = Z(S,tu)—Z(vj,w) = n(s,w>—<Zvj,w> =

j=1 j=1 j=1

n{s,w) — (ns,w) = n(s,w)—n(s,w) = 0.

Insgesamt erhalten wir also

n n n n
Dolo—wl® = Do ls—ulP Y wlP+2) (s —vjw) =
j=1 j=1 j=1 j=1

n n
Sls vl +alw+2.0 = > |ls— v +nfuwl?.
j=1

Jj=1



Aufgabe H21T1A3

Sei K ein Korper. Fiir Polynome f,g € K[xz] sei f o g das Polynom f(g(x)). Beweisen oder widerlegen
Sie durch ein Gegenbeispiel, ob folgende Aussage fiir alle Kérper K richtig sind.

(a) Vf,g € K[x] : (f irreduzibel = f o g irreduzibel)
(b) Vf,g € K[z]: (f o g irreduzibel = f irreduzibel)

(¢) Vf,g € Klx]: (f og irreduzibel = ¢ irreduzibel)

Lésung:
zu (a) Diese Aussage ist falsch. Sei zum Beispiel K = Q, f = x und g = #2. Dann ist f als lineares
Polynom iiber einem Korper irreduzibel. Es gilt aber f o g = f(2?) = 22, und dieses Polynom ist

2

reduzibel, denn z* = x - x ist eine Zerlegung in Nicht-Einheiten. (Die Einheiten im Ring Q[z] sind genau

die konstanten Polynome ungleich null.)

zu (b) Diese Aussage ist wahr. Denn nehmen wir an, f,¢g € Q[z] sind Polynome mit der Eigenschaft,
dass f o g irreduzibel, f aber nicht irreduzibel ist. Dann ist f entweder eine Einheit oder reduzibel.
Im ersten Fall wire f konstant. Dann wiire auch f o g eine Konstante und somit eine Einheit in Q[x],
insbesondere kein irreduzibles Element. Im zweiten Fall gédbe es eine Zerlegung f = f1 f> von f in Nicht-
Einheiten. Durch fog = f(g(z)) = (fif2)(9(z)) = fi(9(z))f2(9(x)) = (f109) - (f209) ist dann ebenfalls
eine Zerlegung in Nicht-Einheiten gegeben. Da nédmlich f; und f> keine Konstanten sind, kénnen die
Polynome f; o g und f5 o g nur dann konstant sein, wenn g eine Konstante ist. Aber dann wire auch

f o g konstant, im Widerspruch zur Voraussetzung, dass f o g irreduzibel ist.

zu (c) Diese Aussage ist falsch. Sei zum Beispiel K = Q, f = v+ 1 und g = 2%. Dann ist fog =
f(g(x)) = 22 + 1. Dieses Polynom ist irreduzibel, da es vom Grad 2 ist und keine rationale Nullstelle

besitzt; wegen (f o g)(a) = a® +1 > 0 fiir alle a € R besitzt es noch nicht einmal eine Nullstelle in R.

2

Andererseits ist g irreduzibel, denn 2= = x - x ist eine Zerlegung in Nicht-Einheiten.



Aufgabe H21T1A4

(a) Wir betrachten die additiven Gruppen Z C Q. Zeigen Sie: Die Faktorgruppe Q/Z ist unendlich,
aber jede endlich erzeugte Untergruppe von Q/Z ist endlich.

(b) Sei A ={f:7Z — Z,x — ar+b | a = £1,b € Z}. Zeigen Sie: A ist eine Gruppe mit der
Hintereinanderschaltung von Abbildungen als Verkniipfung, und diese Gruppe ist isomorph zum
semidirekten Produkt der (additiven) Gruppe Z mit der (multiplikativen) Gruppe {£1}, wobei
{#£1} auf Z durch Multiplikation operiert.

Lésung:

zu (a) Um nachzuweisen, dass Q/Z unendlich ist, zeigen wir, dass durch 27" + Z mit n € IN unendlich
viele verschiedene Elemente von Q/Z gegeben sind. Wire die Menge {27" 4+ Z | n € IN} endlich, dann
gibe es my,n € N, m < n mit 27 + Z = 27" 4 Z. Dies wire gleichbedeutend mit 27™ € 27" 4 Z,
also 27™ = 27" 4 q fiir ein a € Z, was zu a = 27" — 27" umgeformt werden kann. Im Fall a = 0 wire
27 =2""und m = —log,(27™) = —log,(27") = n, im Widerspruch zur Voraussetzung. Im Fall a # 0
ist einerseits |a| > 1, andererseits aber m > 1 und somit |27 — 27" < 27™ < % < 1, was der Gleichung

a = 27" — 27" ebenfalls widerspricht.

Sei nun U eine endlich erzeugte Untergruppe von Q/Z und {r; +7Z | 1 <i <t} ein endliches Erzeugen-
densystem von U, mit r; € Q fiir 1 <47 < tund t € Ng. Wir schreiben r; = Zﬁ mit a; € Z und b; € N, fiir
1 <i < t. Setzen wir d = kgV(by, ..., b;), dann gelten d; = bi €eNundr;+Z = aidi-(é—l—Z) € (é—l—Z) fiir
1<i<t.Ausri+7Z,..,n+7Z € (:+7Z) folgt U C (1+7Z) (da {r\+7Z, ...,r,+Z} ein Erzeugendensystem

von U ist).

Um zu zeigen, dass U endlich ist, geniigt es also nachzuweisen, dass die Gruppe (é +7Z) endlich ist. Dazu
wiederum geniigt es zu iiberpriifen, dass die Gruppe in der endlichen Menge {5 +Z|reZ,0<r<d}
enthalten ist. Jedes Element in (3 +Z) hat die Form n- (4 +7Z) = 2 +7Z, mit n € Z. Division von n durch
d mit Rest liefert ein ¢ € Z und ein r € {0, ...,d — 1} mit n = qd +r. Wegen 5 — 5 = =" = % =q€Z
gilt 5 +7 = % +7. Das Element 7 +7 ist also tatséchlich in der angegebenen endlichen Menge enthalten.

zu (b) Fiir jedes a € {£1} und jedes b € Z sei fqp : Z — Z die Abbildung gegeben durch f(z) = ax+b
fir alle z € Z.

(i) Die Abbildung fo : Z — Z ist fiir alle a € {1} und b € Z jeweils bijektiv, es gilt also A C Per(Z).

(ii) Es ist A eine Untergruppe von Per(Z) (und somit insbesondere eine Gruppe).

(iii) Durch ¢ : Z — A, b — f1 und ¢ : {£1} — A sind injektive Homomorphismen definiert. Setzen
wir N = ¢(Z) und U = ¢({£1}), dann sind N und U also Untergruppen von A, und es gilt Z = N
und {+1} ¢ U.

(iv) Bei A handelt es sich um ein inneres semidirektes Produkt von N und U. (Zusammen mit den
Isomorphismen aus Teil (iii) folgt daraus, dass A isomorph zu einem semidirekten Produkt von Z
und {£1} ist.)

(v) Esgilt fooo fipo f(;é = f1,qp fiir alle @ € {£1} und b € Z. (Daraus folgt, dass {£1} auf Z bei der
Bildung des semidirekten Produkts durch Multiplikation operiert.)



zu (i) Sei a € {£1} und b € Z. Wir zeigen, dass f, : Z — Z bijektiv ist. Fiir alle z,y € Z gilt die
Aquivalenz az + b=y ax=y—-bosz=a'(y-b) e r=a'y+(—a bz = fa-1,—a-16(Yy)-

Dies zeigt, dass fo-1,_,-1; eine Umkehrabbildung von fq, und fq; somit bijektiv ist.

zu (ii)) Das Neutralelement von Per(Z) ist die identische Abbildung idz, und fiir alle x € Z gilt
idz(z)=2z=1-2+0= f1o(x). Wegen 1 € {£1} und 0 € Z ist idz = f1,0 somit in A enthalten. Seien
nun f,g € A vorgegeben. Dann gibt es a,c € {£1} und b,d € Z mit f = f,, und g = f. 4. Zu zeigen ist
fog€ Aund f~! € A. Wir haben bereits unter (i) festgestellt, dass die Umkehrabbildung von f = f,
durch f~!' = f,-1 _,-1, gegeben ist. Wegen a € {1} und b € Z gilt a~! € {+1} und —a~'b € Z, und
dies zeigt, dass f~1 = fa—1,—q-1p in A enthalten ist. AuBerdem gilt fiir alle x € Z jeweils

(fog)x) = (fapofea)®) = foplcx+d) = alecx+d)+0b
= (ac)x + (ad + b) = fac,ad+b($)~

Wegen a,c € {£1} und b,d € Z gilt ac € {£1} und ad + b € Z, und damit folgt f o g = fucadrs € A

Insgesamt ist die Untergruppen-Eigenschaft von A damit nachgewiesen.

zu (iii) Seien by, by € Z vorgegeben. Fiir alle z € Z gilt (f1, © f1,5,)(2) = fi,p, (@ +b2) = (x+b2)+b1 =
2+ (b1+b2) = f1,6,+b, (x) und somit ¢(by+ba) = f1,p,+b, = f1,6, 01,6, = ¢(b1)0od(b2). Alsoist ¢ : Z — A,
b — f1 ein Gruppenhomomorphismus. Zum Nachweis der Injektivitét sei b € ker(¢) vorgegeben. Zu
zeigen ist b = 0. Das Neutralelement in N ist die identische Abbildung, wegen b € ker(¢) gilt also
fi,b = ¢(b) = idgz. Es folgt b=0+b = f1,(0) = idz(0) = 0.

Seien nun aj,as € {£1} vorgegeben. Fiir alle z € Z gilt (fa,,0 © fas,0)(®) = fas0(a2x) = a1(azx) =
(a1a2)T = fa,a,,0(z) und somit ¥ (a1a2) = fayas,0 = fay,0© faz,0 = Y(a1) o P(az). Alsoist ¢ : {£1} — A,
a + fq0 ein Gruppenhomomorphismus. Um zu zeigen, dass v injektiv ist, sei a € ker(¢) vorgegeben.
Zu zeigen ist a = 1. Das Neutralelement in U ist die identische Abbildung, wegen a € ker(v) gilt also
fao =%(a) =idz. Esfolgt a =a-1= f, (1) =idz(1) = 1.

Als Bilder von Gruppen unter Gruppenhomomorphismen sind N = ¢(Z) und U = ¢({£1}) Untergrup-
pen von A. Durch ¢ ist ein Isomorphismus Z = N gegeben, denn aufgefasst als Abbildung ¢ : Z — N
ist ¢ surjektiv, auBerdem (wie bereits oben gezeigt) injektiv und ein Homomorphismus. Aus demselben
Grund ist durch ¢ ein Isomorphismus {£1} 2 U definiert.

zu (iv) In Teil (iii) wurde bereits gezeigt, dass N und U Untergruppen von A sind. Zu zeigen bleibt,
dass N ein Normalteiler von A ist und auBerdem die Gleichungen N N U = {idz} und NU = A erfiillt
sind. Zum Nachweis der Normalteiler-Eigenschaft seien f € A und n € N vorgegeben. Zu zeigen ist
fono f~t € N. Auf Grund der Voraussetzungen gibt es a € {+1} und b,d € Z mit f = f,; und
n = fi 4. Fir alle z € Z gilt

(Fonof (@) = (favofraofit)@) = (fapofraofur aw)@) =
(fapo fra)a o+ (—a™)) = fapla™'w+(—a7'b)+d) =
ala e+ (—a7D)+d)+b = z+(-b)+tad+b = z+ad
und somit fono f~! = f; 44 € N. In der Gleichung N N U = {idz} ist die Inklusion , 2% offensichtlich
(da N und U als Untergruppen von A beide das Neutralelement enthalten). Zum Nachweis von ,,C¢ sei
f € NNU vorgegeben. Wegen f € IV gibt es ein b € Z mit f = f1 4, und wegen f € U existiert ein
a € {1} mit f = fo0. Esfolgt b=0+b= f1,(0) = fo,000)=a-0+0=0unda=a-1+0= f,0(1) =
fip(1) =14 b= 1. Ingesamt gilt also f = f19. Wegen fio(z) =1-24+0 =2 =idg(z) fir alle z € Z

erhalten wir f = idy.



In der Gleichung NU = A ist ,,C* offensichtlich (weil N und U nach Definition Teilmengen von A sind).
Zum Nachweis von ,, 0% sei f € A vorgegeben, f = f,, mit a € {£1} und b € Z. Fiir alle z € Z gilt
(fip o fao)(x) = fiplaz +0) = ax + b = fup(x). Wegen f1, = ¢(b) € N und fo0 = ¥(a) € U folgt
f=fap=Ffrp0 fap € NU.

zu (v)  Wir haben bereits unter (iv) nachgerechnet, dass fo 4 0 f1,4° fg; = f1 qq fiir alle ¢ € {£1} und
b,d € Z gilt. Insbesondere gilt also f, 00 f10 f;é = f1,a fiir alle @ € {1} und b € Z.



Aufgabe H21T1A5

Sei Q C K C C, wobei K eine galoissche Korpererweiterung von Q vom Grad 2021 ist. Zeigen Sie:

(a) Es gibt Zwischenkérper Q C L; C K, j € {1,2}, mit [Ly : Q] = 43 und [Ly : Q] = 47, die iiber Q

galoissch sind.

(b) Sei a € K, so dass K = Q(«) gilt, und sei f das Minimalpolynom von « iiber Q. Dann zerfillt f

iiber R in Linearfaktoren.

Lésung:

zu (a) Sei G = Gal(K|Q). Weil K|Q eine Galois-Erweiterung vom Grad 2021 ist, gilt |G| = [K : Q] =
2021 = 43 - 47. Fir jede Primzahl p sei v, die Anzahl der p-Sylowgruppen von G. Auf Grund des 3.
Sylowsatzes gilt v47 | 43, da 43 eine Primzahl ist also vy € {1,43}, auerdem v47 = 1 mod 47. Wegen
43 # 1 mod 47 folgt v47 = 1. Ebenso gilt vy3 | 47, da 47 eine Primzahl ist also v43 € {1,47}, auBBerdem
43 = 1 mod 43. Wegen 47 = 4 £ 1 mod 43 folgt v43 = 1.

Sei nun N; die einzige 47- und N, die einzige 43-Sylowgruppe, auflerdem L; jeweils der Fixkorper von
N;, also L; = K™i fiir j = 1,2. Wegen G = 43' - 47" gilt |N;| = 47 und |Ns| = 43, nach Definition
der p-Sylowgruppen. Auf Grund der Ergéinzungen zum Hauptsatz der Galoistheorie gilt [L; : Q] = (G :
Ny) = \‘151‘\ = % = 43 und ebenso [Ls : Q] = (G : Ny) = \|N7G2‘| = % = 47. Da N; als einzige 47-
Sylowgruppe ein Normalteiler von G ist, liefert der zugehorige Fixkorper eine galoissche Teilerweiterung

L1|Q von K|Q. Aus demselben Grund ist auch L3|Q eine Galois-Erweiterung.

zu (b) Laut Angabe ist die Erweiterung K|Q galoissch, also insbesondere normal. Das Polynom f ist
als Minimalpolynom von « iiber Q in Q[z] irreduzibel, auBlerdem besitzt es in K = Q(«a) eine Nullstelle

(ndmlich «). Weil K|Q normal ist, zerfillt f iiber K also in Linearfaktoren.

Weil f das Minimalpolynom von « ist, gilt auflerdem grad(f) = [Q(«) : Q] = [K : Q] = 2021. Weil f
ein Polynom ungeraden Grades ist, besitzt es in R eine Nullstelle 5. Weil f {iber K in Linearfaktoren
zerfillt, enthilt K alle Nullstellen von f, insbesondere die Nullstelle 8. Es gilt also § € K und (da K
eine Erweiterung von @ ist) somit auch Q(8) C K. Da f (als Minimalpolynom von « iiber Q) normiert
und irreduzibel ist, folgt aus f(8) = 0, dass f auch das Minimalpolynom von § iiber @ ist. Es gilt also
[Q(B) : Q] = grad(f) = [K : Q]. Zusammen mit Q(8) C K folgt daraus K = Q(f). Damit ist gezeigt,
dass f auch iiber Q(8) in Linearfaktoren zerfillt. Wegen 8 € R gilt Q(8) C R. Also zerfillt f erst recht

iiber R in Linearfaktoren.



Aufgabe H21T2A1

Sei G eine Gruppe, und seien a, b, ¢ Elemente aus G.

(a) Zeigen Sie, dass a und a~! dieselbe Ordnung haben.
(b) Zeigen Sie, dass ab und ba dieselbe Ordnung haben.
(c) Zeigen Sie, dass abc und bea dieselbe Ordnung haben.

(d) Geben Sie Elemente a, b, c in der symmetrischen Gruppe Ss an, so dass abc und bac nicht dieselbe

Ordnung haben.

(e) Zeigen Sie, dass es in einer nichtkommutativen Gruppe G stets Elemente a,b, ¢ gibt, so dass abc

und bac nicht dieselbe Ordnung haben.

Lésung:

zu (a) Ist ord(a) unendlich, dann muss auch a~' unendliche Ordnung haben. Denn ansonsten géibe es
ein n € IN mit (a=1)" = e, wobei e das Neutralelement von G bezeichnet. Auf Grund der Potenzgesetze
fiir Gruppenelemente wiirde dann a” = o= (=" = ((a=1)")~' = e~! = e gelten. Somit hiitte auch a

unendliche Ordnung, im Widerspruch zur Voraussetzung.

Somit kénnen wir uns auf den Fall beschrinken, dass m = ord(a) endlich ist. Sei n = ord(a~!). Wegen
(ahH)m =a™™ = (™)' = e ! = eist n = ord(a™!) ein Teiler von m. Umgekehrt ist wegen a™ =
((a=1)")~t = e~ = e auch m = ord(a) ein Teiler von n. Damit ist insgesamt ord(a) = m = n = ord(a™?!)

nachgewiesen.

zu (b) Sei ¢ : G — G gegeben durch die Konjugation mit a~!, also durch ¢(g) = a~!ga fiir alle g € G.
Laut Vorlesung ist eine solche Abbildung ein Automorphismus von G. Auflerdem ist bekannt, dass die
Ordnung von Gruppenelementen unter Isomorphismen erhalten bleibt. Wegen ¢(ab) = a~!(ab)a = ba

haben die Elemente also ab und ba dieselbe Ordnung.

zu (c) Sei ¢ wie in Aufgabenteil (b) definiert. Aus der Gleichung ¢(abc) = a~!(abc)a = bea ergibt sich

wie in Teil (b), dass die Elemente abc und bca dieselbe Ordnung haben.

zu (d) Seia=(12),b=(13)undc=(123).Dann gilt abc = (12)o(13)0(123)=(132)0(123)=1id,
andererseits bac = (1 3) 0 (1 2)0(123)=(123)0o(123)=(132).Esist also einerseits ord(abc) = 1,
andererseits aber ord(bac) = 3 (weil in S,, jeder k-Zykel von Ordnung k ist, fiir allen € Nund 2 < k < n).

zu (e) Ist G eine nichtkommutative Gruppe, dann gibt es Elemente a,b mit ab # ba. Sei ¢ = (ab)™! =
b=la~!. Dann ist einerseits abc = (ab)(ab)™' = e (wobei e wiederum das Neutralelement von G be-
zeichnet), andererseits bac = (ba)(b~ta~1). Hitten abc und bac dieselbe Ordnung, dann miisste wegen
ord(abc) = ord(e) = 1 auch die Ordnung von bac gleich 1 sein, das Element bac also mit dem Neutralele-
ment iibereinstimmen. Aber daraus wiirde sich (ba)(b=*a™!) = e = bab~! = a = ba = ab ergeben, im

Widerspruch zur Voraussetzung. Also haben die Elemente abc und bac verschiedene Ordnung.



Aufgabe H21T2A2

(a) Bestimmen Sie das Minimalpolynom m von /2 iiber Q. Zeigen Sie, dass m iiber Q[+/2] nicht in

Linearfaktoren zerfallt.

(b) Sei F5 der endliche Korper mit fiinf Elementen. Geben Sie einen Isomorphismus ¢ : F5[v/2] —
IF5[v/3] explizit an.

Lésung:

zu (a) Zunichst zeigen wir, dass m = 23 —2 gilt. Das Polynom f = 2% —2 liegt in Q[z], ist normiert, und
es erfiillt die Bedingung f(v/2) = 0. AuBerdem ist es nach dem Eisenstein-Kriterium (angewendet auf
die Primzahl p = 2) irreduzibel tiber Z und damit nach dem Gauf’schen Lemma auch irreduzibel iiber
Q. Insgesamt handelt es sich also um das Minimalpolynom von /2 iiber @, es gilt also m = f = 2% — 2.
Nun besitzt m neben /2 auch die komplexe Nullstelle ¢V/2, mit { = €2™/% = —1 4 1,/=3, denn es gilt
¢3 = 1 und somit m(¢V/2) = (CV/2)° —2 = 3(V2)? —2=1-2—2 = 0. Wiirde m bereits iiber Q[¢/2] in
Linearfaktoren zerfallen, dann miissten alle komplexen Nullstellen von m in Q[+/2] liegen, insbesondere
die Nullstelle ¢ /2. Aber dies ist nicht der Fall, denn wegen J2eR gilt Q[\g/i] C R, aber andererseits
hat ¢ /2 den Imaginérteil %\/5\3@ ungleich null und ist somit nicht in R enthalten.

zu (b) Das Polynom f = 2% — 2 = 22 +
die Rechnung f(0) = 3 # 0, f(T) 4+
in 5 keine Nullstellen; wegen grad(f) =
und f(v2) = (V2)? =2 =2 —2 = 0 gilt, ist f insgesamt das Minimalpolynom von /2 iiber F5. Laut
Vorlesung existiert somit ein Isomorphismus ¢ : Fs[z]/(f) — Fs[v/2] gegeben durch ¢(g + (f)) = g(v/2)
fiir alle g € Fs[z].

3 € F5[z] ist das Minimalpolynom von /2 iiber F5. Denn wie
0, f(2)=2#0, f(3) =2 #0, f(4) = 4 # 0 zeigt, besitzt f

2 folgt daraus die Irreduzibilitdt. Da f auflerdem normiert ist

Im nichsten Schritt bestimmen wir eine Quadratwurzel aus 2 in F5[v/3]. Fiir alle a,b € F5 gilt die

Aquivalenz
(a+bV3)?2=2 & a>+2abV3+(V3)2=2 & a®+3b +2abV2=2.

Die letzte Gleichung ist zum Beispiel erfiillt, wenn wir ¢ = 0 und b = 2 setzen. Tatséchlich ist (2v/3)? =
22.3=4-3=12 =2, d.h. das Element 2/3 € IF5[y/3] ist eine Quadratwurzel aus 2.

Auf Grund der universellen Eigenschaft des Polynomrings gibt es einen eindeutig bestimmten Ringhomo-
morphismus ¢ : F5[z] — F5[v/3] mit ¢|p, = idp, und ¢ (z) = 2¢/3, nimlich den Auswertungshomomor-
phismus gegeben durch 1(g) = g(2v/3). Dieser Homomorphismus ist surjektiv, denn wegen v|p, = idp,
ist der Teilring F5 im Bild enthalten, und wegen ¢(3z) = 3 - (2v/3) = 6 - v/3 = v/3 auch das Element
V/3, insgesamt also der komplette Ring F5[/3]. Dariiber hinaus gilt ker(y)) = (2% — 2) = (f). Denn
die Rechung ¥(f) = f(2v3) = (2V/3)2 =2 = 2 — 2 = 0 zeigt zunichst, dass das Hauptideal (f) im
Kern enthalten ist. Weil f = 22 — 2, wie oben gezeigt, ein in IF5[x] irreduzibles Polynom und IF5[z] als
Polynomring iiber einem Kérper ein Hauptidealring ist, handelt es sich bei (f) um ein maximales Ideal.
Somit ist ker(t)) 2 (f) nur moglich, wenn ker(¢)) = (1) und ¢ somit die Nullabbildung ist. Aber dies ist

=

wegen |, = idp, nicht der Fall. Damit ist die angegebene Gleichung bewiesen.

Der Homomorphiesatz fiir Ringe zeigt nun, dass ¢ einen Isomorphismus ¢ : Fs[z]/(f) — Fs[v/3]
induziert, gegeben durch (g + (f)) = ¥(g9) = ¢(2v/3). Durch Komposition der beiden Isomorphis-
men ¢~ : F5[v2] — Fslz]/(f) und ¢ : F5[z]/(f) — F5[v/3] erhalten wir nun einen Isomorphismus
o =1 o ¢~ L. Dieser ist explizit gegeben durch a(g(v/2)) = (¥ 0 ¢71)(9(v/2)) = ¥(g + (f)) = 9(2V/3) fiir
alle g € 5[], insbesondere ist a(v/2) = 2v/3.



Aufgabe H21T2A3

Es sei L|K eine Korpererweiterung vom Grad 2.

(a) Zeigen Sie, dass L|K stets normal ist.
(b) Zeigen Sie, dass L|K im Fall char(K) # 2 stets separabel ist.

(¢) Geben Sie (mit Begriindung) jeweils ein Beispiel fiir eine separable und eine inseparable Kérperer-

weiterung vom Grad 2 im Fall char(K) = 2 an.

Hinweis fiir den zweiten Teil:

Betrachten Sie den rationalen Funktionenkdrper k() iiber einem Korper k.

Lésung:

zu (a) Sei f € Klz] ein iiber K irreduzibles Polynom, das in L eine Nullstelle o besitzt. Zu zeigen ist,
dass f iiber L in Linearfaktoren zerfillt. Da K («) ein Zwischenkérper von L|K ist, gilt 2 = [L : K] =
[L: K(a)]-[K(a): K] auf Grund der Gradformel, also [K(«) : K] | 2 und somit [K(«) : K] € {1,2}. Da
f irreduzibel iiber K und « € L eine Nullstelle von f ist, folgt grad(f) = [K(«) : K] € {1,2}. Im Fall
grad(f) = 1 ist das Polynom f selbst linear und somit nichts zu zeigen. Im Fall grad(f) = 2 ist z — «
wegen f(a) = 0 ein Teiler von f in L[z], es existiert also ein h € K[z] mit f = (z — «)h, und wegen

grad(f) = 2 muss grad(h) = 1 gelten. Also zerféllt f auch in diesem Fall {iber L in Linearfaktoren.

zu (b) Sei L|K eine Erweiterung mit char(K) # 2 und [L : K| = 2. Zu zeigen ist, dass jedes Element
aus L iiber K separabel ist. Sei also a € L vorgegeben und f € K[z] das Minimalpolynom von « iiber
K. Zu zeigen ist, dass es sich bei f um ein separables Polynom handelt, also ggT(f, f') = 1 gilt. Auf
Grund der Gradformel gilt [L : K(a)] - [K(«) : K] = [L : K] = 2. Daraus folgt [K(«) : K] | 2 und
somit grad(f) = [K(a) : K] € {1,2}. Im Fall grad(f) = 1 ist f’ die Ableitung eines normierten linearen
Polynoms, also f/ =1 und ggT(f, f’) = 1 somit erfiillt.

Im Fall grad(f) = 2 gibt es a,b € K mit f = 22 + ax + b. Es gilt dann f’ = 22 + a. In diesem Fall sind
f und f’ nur dann nicht teilerfremd, wenn f’ ein Teiler von f und somit —%a € K eine Nullstelle von f
ist. (Dabei ist zu beachten, dass in K wegen char(K) # 2 die 2 nicht das Nullelement ist und somit 1
in K existiert.) Aber dies wiirde der Tatsache widersprechen, dass f als Minimalpolynom von « iiber K

irreduzibel ist. Also ist f auch in diesem Fall separabel.

zu (¢) Sei K = Fy und L = Fy, der Kérper mit zwei bzw. vier Elementen. Da o der gemeinsame
Primkérper von K und L ist, gilt char(K) = char(L) = 2. Wegen 4 = 22 gilt laut Vorlesung [L : K| = 2.
AuBlerdem ist bekannt, dass jede algebraische Erweiterung eines endlichen Korpers separabel ist. Weil L

endlich ist, ist L|K eine endliche und somit auch eine algebraisch und separable Erweiterung.

Sei nun L = F(t) der rationale Funktionenkérper iiber Fo und K der von ¢? iiber IFy erzeugte Teilkorper,
also K = IF5(t?). Wieder ist IFy der gemeinsame Primkorper von K und L, es gilt also auch hier char(K) =
char(L) = 2. Wir zeigen nun, dass f = 2? — > € K|z] das Minimalpolynom von ¢ iiber K ist. Das
Polynom ist normiert, und es gilt f(t) = 2 —t? = 0. Wire es reduzibel, dann miisste wegen grad(f) = 2
die Nullstelle ¢ bereits in K enthalten sein. Aus der Vorlesung ist bekannt, dass die Elemente in K
die Form % haben, mit u,v € Fy[z] und v # 0. Es giibe also solche Polynome u,v mit % = t,
was zu u(t?) = tv(t?) umgeformt werden kann. Aber eine solche Gleichung in Fa[t] ist unméglich, weil

grad(u(t?)) = 2 - grad(u) eine gerade, grad(tv(t?)) = 2 - grad(v) + 1 jedoch eine ungerade Zahl ist.

Dies zeigt, dass f irreduzibel und insgesamt tatsichlich das Minimalpolynom von ¢ iiber K ist. Auflerdem



gilt L = K(t), denn wegen Fy C K und ¢t € K(t) gilt L = Fy(t) C K(t), und wegen K C Lund t € L
andererseits auch K(t) C L. Es folgt [L : K] = [K(t) : K] = grad(f) = 2. Aber die Erweiterung L|K ist
nicht separabel. Denn wegen ggT(f, f') = ggT(f,2x) = ggT(f,0) = f sind f und f’ nicht teilerfremd,
das Polynom f € K|z| also nicht separabel und folglich (weil f das Minimalpolynom von ¢ iiber K ist)
das Element ¢ € L nicht separabel iiber K.



Aufgabe H21T2A4

Zu betrachten seien die Korpererweiterungen Q(«) und Q(5) von @, wobei
a=\1+vV2€¢R ud B=i\/Vv2-1€Cist.

(a) Bestimmen Sie jeweils das Minimalpolynom von « und S iiber Q.

(b) Bestimmen Sie die Grade [Q(«) : Q] und [Q(8) : Q]. Entscheiden Sie, ob die beiden Erweiterungen

verschieden sind.
(¢) Entscheiden und begriinden Sie, ob die Q(«)|Q und Q(5)|Q jeweils normal sind.

(d) Bestimmen Sie die Automorphismengruppen Autq(Q(«)) und Autg(Q(8)).

Lésung:

zu (a) Zunéchst bestimmen wir das Minimalpolynom von « iiber Q. Die Rechnung

a=\1+v2 = ?=14+V2 = a?-1=V2 = (®-12=2 =

at—2024+1=2 = a*-2a°-1=0

zeigt, dass a eine Nullstelle von f = 2% — 222 — 1 € Q[z] ist. Wir zeigen, dass f iiber Q irreduzibel
ist. Da f in Z[x] liegt und normiert ist, ist jede rationale Nullstelle von f ganzzahlig und ein Teiler des
konstanten Terms —1. Die einzigen mégichen rationalen Nullstellen sind also +1. Es gilt aber f(1) =
f(=1)=1—-2—-1= -2+ 0, also besitzt f keine rationale Nullstelle. Wire f dennoch iiber Q reduzibel,
dann auch iiber Z. Es giibe also zwei nicht-konstante Polynome g, h € Z[z] mit f = gh. Da f normiert
ist, konnen auch g und h normiert gewéhlt werden, und das Produkt der konstanten Terme von g und h
muss —1 sein. Da —1 = 1-(—1) bis auf Reihenfolge die einzige Zerlegung von —1 in ganzzahlige Faktoren
ist, konnen wir nach eventueller Vertauschung von g und h davon ausgehen, dass der konstante Term
von g gleich 1 und der konstante Term von h gleich —1 ist. Da f keine rationale Nullstelle besitzt, ist
keiner der Faktoren g, h vom Grad 1. Es muss also grad(g) = grad(h) = 2 gelten. Insgesamt haben damit
gezeigt, dass g = 2 + axr + 1 und h = 22 + bz — 1 ist, mit geeigneten a,b € Z. Weiter gilt

=22 -1 = f = gh = (P+ar+1)(z?+br—1)
= 24 (a+b)2® + abaz® 4+ (—a + b)z — 1.
Durch Koeffizientenvergleich erhalten wir a + b = —a + b = 0 und ab = —2. Die Addition der ersten
beiden Gleichungen liefert 2b = 0 und b = 0, woraus dann aber ab = 0, im Widerspruch zu ab = —2. Es

gibt also keine Zerlegung von f der angegebenen Form, und insgesamt ist damit die Irreduzibilitidt von

f nachgewiesen.
Nun bestimmen wir noch das Minimalpolynom von § iiber Q. Es gilt
B=i\JV2-1 = p=-V2-1)=1-vV2 = F£-1=-v2 = B*-1)%*=2
= pt-282+1=2 = pt-282-1=0.

Es gilt also auch f(8) = 0, und wie wir bereits oben festgestellt haben, ist f normiert und irreduzibel

iiber Q. Dies zeigt, dass f auch das Minimalpolynom von S iiber @ ist.

zu (b) Da f nach Teil (a) sowohl das Minimalpolynom von « als auch das Minimalpolynom von /3 ist,

gilt [Q(a) : Q] = grad(f) = 4 und ebenso [Q(B) : Q] = grad(f) = 4. Es ist aber Q(«a) # Q(S), denn



wegen o € R gilt Q(a) C R; andererseits ist Q(3) wegen v/v2 —1 € R und 8 = iv/v2—1 ¢ R kein
Teilkorper von R.

zu (¢) Angenommen, Q(«)|Q ist eine normale Erweiterung. Dann zerfiillt jedes iiber @ irreduzible
Polynom, das in Q(«) eine Nullstelle hat, iiber Q(«) in Linearfaktoren. Das Polynom f = 2% — 222 — 1
ist, wie wir in Teil (a) gesehen haben, iiber Q irreduzibel, und es besitzt in Q(«) eine Nullstelle, ndmlich
a. Auf Grund unserer Annahme zerfillt f somit iiber Q(«) in Linearfaktoren. Dies bedeutet, dass alle
komplexen Nullstellen von f bereits in Q(«) enthalten sind, unter anderem auch die Nullstelle 8. Aber
wie in Teil (b) gezeigt wurde, gilt einerseits Q(«) C R, andererseits aber § ¢ R. Damit kann § auch kein
Element von Q(«) sein, und folglich ist Q(«)|Q nicht normal.

Nehmen wir nun an, dass Q(8)|Q eine normale Erweiterung ist. Da f auch in Q(8) eine Nullstelle
besitzt, ndmlich 5, kommen wir erneut zu dem Ergebnis, dass f iiber Q(8) in Linearfaktoren zerfillt.
Damit ist dann die Nullstelle @ in Q(8) enthalten, und es folgt Q(«) C

Ergebnis [Q(a) : Q] =4 = [Q(B) : Q] aus Teil (b) folgt daraus Q(a) = Q(B). Aber dies hiitte 5 € Q(«)

zur Folge, was wir bereits ausgeschlossen haben. Somit ist auch die Erweiterung Q(5)|@Q nicht normal.

Q(B). Zusammen mit dem

zu (d) Zunéchst zeigen wir, dass die vier komplexen Nullstellen von f durch +«, £ gegeben sind. Weil
f nur Terme mit geraden Exponenten enthiilt, gilt neben f(a) = f(8) = 0 auch f(—«a) = f(a) = 0 und
f(=B) = f(B) = 0. Desweiteren sind die Elemente +a, =4 alle verschieden. Denn wegen f(0) # 0 gilt
a, B # 0 und somit —«a # «, —f # . Auch die Gleichungen = +a und —f3 = +a sind ausgeschlossen,
denn wie wir in Teil (b) gesehen haben, sind +« im Gegensatz zu + reelle Zahlen. Durch +a, +8 sind
also vier komplexe Nullstellen von f gegeben, und wegen grad(f) = 4 kann es keine weiteren Nullstellen

in C geben.

Weil die Erweiterung Q(«)|Q von « erzeugt wird, ist jedes Element o € Autq(Q(a)) bereits durch das
Bild o(«) festgelegt. Auflerdem muss o aus Q-Automorphismus die Nullstelle « von f € Q[z] wiederum
auf eine Nullstelle von f abbilden. Es gibt fiir o(«) also nur die vier Moglichkeiten {+a,+0}. Wie in
Teil (c) gezeigt wurde, ist aber § kein Element von Q(«), und daraus folgt auch 8 ¢ Q(«) (denn mit
—p wire auch 8 = —(—/) in Q(«) enthalten). Im Fall o(a) = B oder o(a) = —f wiire o also keine
Abbildung Q(a) — Q(«) und erst recht kein Automorphismus.

Somit ist nur o(a) € {+a} moglich, d.h. Autq(Q(«)) besitzt nicht mehr als zwei Elemente. Weil f iiber
Q irreduzibel ist und +« Nullstellen von f sind, liefert der Fortsetzungssatz einen Q-Homomorphismus
71 Q(a) = € mit 1(a) = —a. Wegen —a = 11(a) € Q(a) gilt mi(a) € Q(o) und damit auch
71(Q(a)) € Q(a) (da 7 ein Q-Homomorphismus ist). Jeder Kérperhomomorphismus ist injektiv, und als
injektiver Endomorphismus des endlich-dimensionalen @-Vektorraums Q(«) ist 71 auch bijektiv. Damit
ist insgesamt 71 € Autq(Q(a)) nachgewiesen. Ein weiterer Q-Homomorphismus ist die Identitét idg(q)
(die wegen 7(«) # « von 7 verschieden ist). Da es in Autq(Q(«)) nicht mehr als zwei Elemente gibt,
haben wir damit insgesamt Autq(Q(a)) = {idg(a), 71} gezeigt. Weil neben 8 ¢ Q(«) nach Teil (c) auch
a ¢ Q(B) gilt, kann auf analoge Weise gezeigt werden, dass Autq(Q(3)) = {idg(s), 72} gilt, wobei 75 den
eindeutig bestimmten Q-Automorphismus von Q(S8) mit m2(5) = —f bezeichnet.



Aufgabe H21T2A5

(a) Sei G eine Gruppe und Aut(G) deren Automorphismengruppe. Zeigen Sie, dass folgende Abbildung
wohldefiniert ist und einen Gruppenhomomorphismus darstellt.
c:G—=Aw(G) , g e, x e grg!]
(b) Bezeichne S5 die symmetrische Gruppe des Grades 3. Beweisen Sie, dass die Automorphismen-

gruppe Aut(Ss3) zur Gruppe Ss isomorph ist.

Lésung:

zu (a) Fiir den Nachweis, dass ¢ eine wohldefinierte Abbildung ist, miissen wir zeigen, dass ¢, fiir jedes g €
G ein Element aus Aut(G) ist. Fiir jedes g € Gist ¢, : G — G, x — gzg~' ein Gruppenhomomorphismus,
denn es gilt ¢(hi1ha) = g(h1h2)g™" = (gh1g™')(ghag™") = c4(h1)cy(he) fiir alle hy, he € G. AuBerdem
ist ¢4 fiir jedes g € G bijektiv, denn durch cg_1 ist jeweils eine Umkehrabbildung von ¢, gegeben: Fiir
alle h € G gilt (cy-1 0 ¢g)(h) = cg-1(cg(h)) = cy-1(ghg™") = g 'ghg~'g = ehe = h = idg(h) und
ebenso (cg 0 cy-1)(h) = ¢4(gh(g7) ™) = g9~ hgg™" = ehe = h = idg(h), also ¢;-1 0 ¢; = idg und

cg © cg—1 = idg. Insgesamt ist ¢, damit fiir jedes g € G' ein Automorphismus von G.

Nun muss noch gezeigt werden, dass durch G — Aut(G), g — ¢4 ein Gruppenhomomorphismus gegeben
ist. Seien g1,go € G vorgegeben. Fiir jedes h € G gilt (cy, 0 cg,)(h) = ¢4, (cgo(h)) = g, (g2hgy ") =
gl(g2hg2_1)gl_1 = (9192)}7’(9192)_1 = Cg1g2 (h’) Daraus fOlgt 6(9192) = Cg1gs = Cgy O Cgy = C(gl) 0 6(92)'

zu (b) Nach Teil (a) existiert ein Gruppenhomomorphismus ¢ : S3 — Aut(S3), 0+ [, : T+ oTo 1]
Wir zeigen, dass ¢ injektiv und surjektiv ist. Zum Nachweis der Injektivitéit sei o € ker(c) vorgegeben.
Zu zeigen ist 0 = id. Wegen o € ker(c) gilt ¢, = ¢(0) = idg,, also o70™! = ¢, (1) = idg, (1) = 7 fiir
alle 7 € S3. Dies ist gleichbedeutend mit o7 = 7o fiir alle 7 € S3, d.h. o ist im Zentrum Z(S3) von Ss
enthalten. Aber wegen (12)o(13)=(132)#(123)=(13)o(12)und (12)0(23)=(123)#(132)=
(2 3)o(1 2) sind die Transpositionen (1 2), (1 3), (2 3) keine Elemente des Zentrums, und die Ungleichungen
(123)0(12)=(13)#(23)=(12)0(123)und (132)0(12)=(23)(13)=(12)o(132) zeigen,
dass Z(S3) auch keine 3-Zykel enthiilt. Es gilt also Z(S3) = {id}. Damit ist ¢ = id und die Injektivitit
von o nachgewiesen. (Eventuell ist auch aus der Vorlesung bekannt, dass Z(S,,) fiir n # 2 ein triviales

Zentrum besitzt.)

Durch {(1 2),(1 2 3)} ist ein zweielementige Erzeugendensystem von S3 definiert. Setzen wir ndmlich
U= ((12),(123)), dann ist die Ordnung von U wegen (1 2) € U ein Vielfaches von ord((1 2)) = 2
und wegen (1 2 3) € U auch ein Vielfaches von ord((1 2 3)) = 3. Insgesamt ist |U| also ein Vielfaches
von kgV(2,3) = 6 = |S5], und aus U C S3 und |U| > |S;| folgt U = S3. Weil die Gruppe S3 von
{(1 2),(1 2 3)} erzeugt wird, ist jedes ¢ € Aut(S;) durch die Bilder ¢((1 2)) und ¢((1 2 3)) bereits
eindeutig festgelegt. Aulerdem ist bekannt, dass ein Automorphismus jedes Gruppenelement jeweils auf
ein Element gleicher Ordnung abbildet. Fiir ¢((1 2)) kommen also nur die drei Transpositionen und fiir
¢((1 2 3)) nur die beiden 3-Zykel in Frage.

Dies zeigt, dass |[Aut(Ss)| aus hochstens 3 - 2 = 6 Elementen besteht. Andererseits besitzt Aut(S3) auf
Grund der Injektivitét von ¢ eine zu S3 isomorphe Untergruppe, namlich ¢(Ss). Wegen |c¢(S3)| = |S5] =
6 > |Aut(Ss)| und ¢(S3) € Aut(Ss) muss ¢(S3) = Aut(Ss) gelten. Durch ¢ ist also ein Isomorphismus
zwischen Ss und Aut(Ss3) definiert.



Aufgabe H21T3A1

Sei S5 die symmetrische Gruppe auf {1,2,3,4,5} und sei A5 < S5 die alternierende Gruppe. Zeigen Sie

die folgenden Aussagen:

(a) Sei U < S5 eine Untergruppe mit 3 oder 5 Elementen. Dann ist U < As.
(b) S5 hat genau 10 Untergruppen der Ordnung 3

(¢) S5 hat genau 6 Untergruppen der Ordnung 5

Losung:

zu (a) Sei zunédchst U eine Untergruppe mit |U| = 5. Auf Grund der Primzahlordnung 5 ist U zyklisch,
es gibt also ein Element o € S5 mit ord(c) = 5. Dieses Element ist ein 5-Zykel. Ist ndmlich (kq, ..., k)
der Zerlegungstyp von o (mit r,kq,....k. € N, ky > ... > k, > 2), dann gilt k1 + ... + k- < 5 und
kegV(ky, ..., k) = ord(c) = 5. Auf Grund der letzten Gleichung teilt die 5 zumindest eine der Zykellingen
k1, ..., kq; auf Grund der Ungleichung k1 4 ...+ &, < 5 ist dies nur fiir r = 1 und k; = 5 moglich. Da o ein
5-Zykel ist, gilt sgn(o) = (—1)°~1 = (=1)* = 1 und somit o € A5. Daraus wiederum folgt U = (o) < As.

Betrachten wir nun den Fall |[U| = 3. Auch 3 ist eine Primzahl, die Untergruppe U somit zyklisch, U = o
fiir ein o € S5 mit ord(c) = 3. Sei (ky, ...k,-) wie oben der Zerlegungstyp von o. Wegen kgV (k1, ..., k) = 3
gilt 3 | k; fiir ein ¢ € {1,...,7}. Wegen ky + ... + k, < 5 folgt daraus zunéichst r = 1, k; = 3 oder r = 2,
k1 = 3, ko = 2. Im zweiten Fall wire aber ord(c) = kgV(3,2) = 6, im Widerspruch zu ord(c) = 3. Also
bleibt r = 1, k; = 3 als einzige Moglichkeit, und o ist ein 3-Zykel. Es folgt sgn(c) = (—=1)3"! = (-1)? =1

und ¢ € As, und wiederum erhalten wir U = (o) < As.

zu (b) Wir haben bereits in Teil (a) festgestellt, dass jede Untergruppe der Ordnung 3 von Ss zyklisch
ist. Jede solche Gruppe enthélt ¢(3) = 2 Elemente der Ordnung 3, und umgekehrt ist jedes o € S5 mit
ord(o) = 3 in genau einer zyklischen Untergruppe der Ordnung 3 enthalten, némlich in (o). Es gibt also
doppelt so viele Elemente der Ordnung 3 wie Untergruppen der Ordnung 3. Die Anzahl der 3-Zykel in S;
ist gleich (g) -(3—=1)! =102 = 20, denn fiir den Tréiger des 3-Zykels, eine dreielementige Teilmenge von
Ms ={1,2,...,5} gibt es (g) Mboglichkeiten, und nach Wahl des Trégers gibt es noch (3—1)! Moglichkeiten
fiir den 3-Zykel. Die Anzahl der Untergruppen der Ordnung 3 ist also gleich % -20 = 10.

zu (c) Aus Teil (a) wissen wir auch bereits, dass jede Untergruppe der Ordnung 5 zyklisch ist. Jede
solche Gruppe enthilt ¢(5) = 4 Elemente der Ordnung 5, und umgekehrt ist jedes o € S5 mit ord(o)
in genau einer zyklischen Untergruppe der Ordnung 5 enthalten, ndmlich in (o). Es gibt also viermal so
viele Elemente der Ordnund 5 wie Untergruppen der Ordnung 5. Die Anzahl der 5-Zykel in S ist gleich
(5—1)! = 24, denn der Tréger eines 5-Zykels ist zwangsldufig die gesamte Menge M5 = {1,2,...,5}, und
allgemein gibt es in S, jeweils genau (k — 1)! k-Zykel mit festem Tréger, fiir alle k,n € N mit 2 < k < n.
Die Anzahl der Untergruppen der Ordnung 5 ist also gleich i -24 = 6.



Aufgabe H21T3A2

Es sei p eine Primzahl und F,, = Z/pZ der endliche Kérper mit p Elementen. Wir betrachten die Menge

{6

von 2 x 2-Matrizen iiber dem Korper IF,,.

acFy, bele}

(a) Zeigen Sie, dass G C GLo(IF,) ist.
(b) Zeigen Sie, dass G eine Gruppe ist.
(¢) Bestimmen Sie alle Primzahlen p, fiir die G abelsch ist.

(d) Bestimmen Sie alle Primzahlen p, fiir die G zu einer symmetrischen Gruppe S,, isomorph ist.

Lésung:

zu (a) Fiir alle a € )X und alle b € I, gilt

a b _ _
det [ _ _ = a1 = a 0.

a b
Dies zeigt, dass die Matrix ((_) 1) jeweils invertierbar ist, also in GLo(IF,) liegt.

zu (b) Wegen Teil (a) geniigt es zu zeigen, dass G eine Untergruppe von GLg(IF,) ist. (Denn jede
Untergruppe von GLy(IF,) ist insbesondere eine Gruppe.) Das Neutralelement von GLy(IF,) ist die Ein-

10 - _
heitsmatrix ( >7 und wegen 1 € ¥ und 0 € IF;, ist diese in G enthalten.

Seien nun A, As € G vorgegeben. Dann gibt es a1, as € ]F; und by, by € IF), mit

b b
A1 = 0;1 71 U.Ild AQ = 012 ? .
0 1 0 1
Auf Grund der Gleichung

Ad a1 by as bo - ajaz  arbs + by
1 0 1)\0 1 0 1

und ajag € IF;, a1bs + by € I, ist auch A; A5 in G enthalten. Wegen

[25] b1 afl —a;lbl B i 6
0 1 0 1 01

ay

und a; ' € Iy, —ay; by € T, ist auch A7 = ( .

1 -1
— b
a{ 1) in G enthalten.
1

zu (c) Im Fall p = 2 gilt [Ff| = 1 und [IF,| = 2. Jedes Element aus G ist durch die beiden Eintriige
a € F) und b € T, eindeutig festgelegt. Daraus folgt |G| = 1-2 = 2, und als Gruppe von Primzahlordnung

ist G zyklisch, insbesondere abelsch. Sei nun p eine ungerade Primzahl. Dann gibt es ein a € I}’ ungleich

=5 )

1, und die Matrizen

N~
=
=
(oW
N
Il
N
Ol
=0



sind beides Elemente von G. Wegen

L 10 I O IR (I R O

gilt aber TA # AT wegen a # 1. Fiir jede ungerade Primzahl p ist die Gruppe G also nicht abelsch.

[en]]

Sl
=1
o Q
=l

zu (d) Sei p eine beliebige Primzahl. Jedes Element der Gruppe G ist durch die Eintrige a € )\ und
b € I, eindeutig festgelegt. Da es fiir a jeweils p — 1 und fiir b jeweils p Moglichkeiten gibt, gilt |G| =
p(p—1). Nehmen wir nun an, G ist isomorph zu S, fiir ein n € IN. Dann folgt p(p—1) = |G| = |S,| = nl.
Da der Primfaktor p in n! vorkommt, muss n > p gelten. Ist nun p > 5, dann ergibt sich der Widerspruch
n!>pl>pp—1)(p—2) > p(p—1)-3 > p(p—1). Somit ist G = S,, nur fiir p € {2, 3} moglich. In Teil (c)
haben wir bereits festgestellt, dass G im Fall p = 2 zyklisch von Ordnung 2 ist, und dasselbe gilt auch
fiir S;. Da je zwei zyklische Gruppen derselben Ordnung isomorph sind, folgt G = .S, fiir p = 2.

Um zu zeigen, dass G im Fall p = 3 zu S5 isomorph ist, betrachten wir eine Operation von G auf einer
geeigneten dreielementigen Menge. Sei X = {(c,1) | ¢ € F3} = {(0,1),(1,1),(2,1)} C F2%}. Fiir alle

a€F; und b, c € Fy gilt
b b
“OE) = () ex
0 1 1 1

Dies zeigt, dass durch (A4,v) — Av eine Abbildung * : G x X — X definiert ist. Dabei handelt es sich
um eine Gruppenoperation, denn es gilt £ x v = Fv = v fiir alle v € X (wobei E die Einheitsmatrix
bezeichnet) und A * (Ag xv) = Ay * (A3v) = A1(Aqv) = (A1As)v = (A1 Ag) x v fiir alle A, Ay € G und
v € X. Laut Vorlesung liefert die Operation einen Gruppenhomomorphismus ¢ : G — Per(X), gegeben
durch ¢(A)(v) = Axv = Aw fiir alle A € G und v € X. Dieser Homomorphismus ist injektiv. Sei ndmlich
A € ker(¢) vorgegeben,

b
A(g ) mit a € F3 und b € F.

1
Dann gilt ¢(A4) = idx und Av = ¢(A)(v) = idx(v) = v fiir alle v € X. Aus den Gleichungen

b a b\ (0 0 a+b a b\ (1 1
1 0 1 1 1 1 0 1 1 1
folgt dann b =0 und a +b =1, also a = 1 und b = 0 und somit A = E.

Wegen |X| = 3 gilt Per(X) = S5 und |Per(X)| = |S5] = 6 = |G|. Aus dieser Gleichheit und der
Injektivitdt von ¢ folgt, dass ¢ bijektiv ist. Also ist ¢ ein Isomorphismus, und es gilt G = Per(X) = S5
im Fall p = 3.



Aufgabe H21T3A3

Sei L|K eine endliche Kérpererweiterung und sei o € L. Zeigen Sie:

(a) Das Minimalpolynom f,, der K-linearen Abbildung ¢, : L — L, x — axz, ist gleich dem Minimal-

polynom g, von « iiber K.

(b) Ist L = K(«), so stimmen das charakteristische Polynom und das Minimalpolynom von ¢,, iiberein.

Lésung:

zu (a) Wir zeigen, dass fiir jedes Polynom f € K[z] genau dann f(a) = 0 gilt, wenn die K-lineare
Abbildung f(¢s) : L — L die Nullabbildung ist, also f(¢a) = Opndax(z) gilt. Nach Definition ist f,
das eindeutig bestimmte, normierte Polynom minimalen Grades mit fo(¢a) = Ogndj(z), und go ist
das eindeutig bestimmte, normierte Polynom minimalen Grades mit g,(«) = 0. Aus der behaupteten

Aquivalenz folgt also die Ubereinstimmung von f, und gq.

Sei also f € K|[z] vorgegeben, f = apz™ + ... + a1z + ag mit n € N und ayg, ...,a, € K. Ist f(a) =0,
dann folgt Y"}'_, ara® = 0. Fiir alle 8 € L erhalten wir

flea)(B) = <Zaw§> B) = D aph(B) = > ard*s
k=0 k=0 k=0
= fle):p = 08 = 0,

wobei im dritten Schritt verwendet wurde, dass ¢, (3) = a8 und ¢* (8) = o* 3 fiir alle k € Ny gilt. Aus
f(@a)(B) = 0 fiir alle 3 € L folgt f(¢a) = Opnd,(r)- Setzen wir nun diese Gleichung umgekehrt voraus,

dann gilt insbesondere

0 = Opnde(r)(1) flea)(1) = (Z%@ﬁ) 1 = (area) (1)
k=0

n n
= Zakakl = Zakak = fla)
k=0 k=0

also f(a) = 0. Damit ist die behauptete Aquivalenz insgesamt bewiesen.

zu (b) Aus der Linearen Algebra ist bekannt, dass fiir jeden Endomorphismus eines endlich-
dimensionalen K-Vektorraums V' das Minimalpolynom stets ein Teiler des charakteristischen Polynoms

ist. Auflerdem ist der Grad des charakteristischen Polynoms immer gleich der Dimension von V.

Das Minimalpolynom f, von ¢, ist also ein Teiler des charakteristischen Polynoms x,, von ¢,. Da
L|K eine endliche Erweiterung ist, und K(a) wegen o € L ein Zwischenkérper von L|K, ist auch
n = [K(a) : K] endlich. Aus der allgemeinen Aussage zum Grad des charakteristischen Polynoms
folgt grad(x,,) = dimg K(a) = [K(«) : K] = n, wobei dimg K () die Dimension von K(«a) als K-
Vektorraum bezeichnet. Nach Teil (a), und weil g, das Minimalpolynom von « ist, gilt andererseits
n = [K(a) : K] = grad(g.) = grad(fa). Da f, ein Teiler von x, ist, die beiden Polynome aber

andererseits denselben Grad haben, stimmen sie iiberein.



Aufgabe H21T3A4

Es sei Fy der Kérper mit zwei Elementen und f = 2* + 2 + 1 € Fa[z].

(a) Zeigen Sie, dass f irreduzibel ist.

(b) Sei K = Fqz]/(f) = Fa(a) mit « = Z die durch Adjunktion einer Nullstelle von f entstandene
algebraische Korpererweiterung von IFy. Zeigen Sie, dass « ein Erzeuger der multiplikativen Gruppe
K> ist.

(¢) Zeigen Sie: In K[z] gilt f = (z — a)(z — o?)(z — a*)(z — ab).

Lésung:
zu (a) Wegen f(0) =1# 0und f(1) = 3 = 1 # 0 besitzt f in IF5 keine Nullstelle. Ist f dennoch reduzibel
in Fa[z], dann muss das Polynom wegen grad(f) = 4 das Produkt zweier irreduzibler Polynome vom

Grad 2 sein. Das einzige irreduzible Polynom vom Grad 2 iiber F5 ist bekanntlich 2% 4+ 2 + 1. Es gilt aber
(2 +r+D)2?+z+1) = 4283 +2°2 423+ +ae4+22+2+1 = 242241 #£ f
Also ist f irreduzibel iiber IFs.

zu (b) Da f normiert und irreduzibel iiber IF5 ist und « als Nullstelle besitzt, ist f das Minimalpolynom
von « iiber 5. Daraus folgt [K : Fo] = grad(f) = 4. Es ist K also ein vierdimensionaler Fo-Vektorraum
und besteht als solcher aus 2* = 16 Elementen. Die multiplikative Gruppe K* = K \ {0} enthilt somit
16 — 1 = 15 Elemente. Wegen f(0) # 0 ist « ungleich null, also in K* enthalten. Das Element « ist
genau dann ein Erzeuger von K*, wenn es ein Element der Ordnung 15 ist. Wegen |K*| = 15 ist
ord(a) jedenfalls ein Teiler von 15. Es gilt ord(a) = 15 genau dann, wenn o # 1 und o® # 1 gilt. Die
Gleichung o3 = 1 ist ausgeschlossen, denn ansonsten wiire « eine Nullstelle des Polynoms 22 — 1. Weil das
Minimalpolynom von « aber vom Grad 4 ist, existiert kein Polynom ungleich null mit einem kleineren
Grad als 4, das « als Nullstelle hat. Nehmen wir nun an, es gilt a® = 1. Wegen a* +a+1 = f(a) =0
git o' = -1—-a=1+a Ausa*-a=a®=1folgt also a® +a = (o« +1)-a =1 = —1 und somit
a? +a+1=0. Es wiire a also eine Nullstelle von x? + x + 1, was wiederum ausgeschlossen ist, weil das

Minimalpolynom von «a vom Grad 4 ist.

zu (¢) Das Polynom g = (x — a)(z — o?)(z — a*)(x — o®) € KJz] ist vom Grad 4, normiert, und
besitzt « als Nullstelle. Wenn wir zeigen kénnen, dass g dariiber hinaus in Fy[z] enthalten ist, dann ist
g insgesamt das Minimalpolynom von « {iber F9, und aus der Eindeutigkeit des Minimalpolynoms folgt
g = f.Sei ¢ : K — K der Frobenius-Automorphismus definiert durch () = 4?2 fiir alle v € K. Aus
der Vorlesung ist bekannt, dass jedes v € K genau dann in Fs liegt, wenn () = v gilt. Wir koénnen
v zu einem Automorphismus des Polynomrings K[x] fortsetzen, indem wir v auf die Koeffizienten der
Polynome anwenden. Bemerken wir noch, dass wegen |K*| = 15 und a € K* die Gleichungen o'® = 1

und a'® = o gelten, so erhalten wir

plg) = (z—p@)(@—p@*)(@—p")(z-p@®) =
(z—a®)(z = (*)*)(@ — (")) (@ = (0)?) = (z-a*)(@-a)(z-a")(z—a')
9

= (z- a2)(ac - a4)(x — 048)(:10 — al) =

Alle Koeffizienten von g bleiben also unter der Anwendung von ¢ unveréndert. Sie liegen also in Fg, und

damit gilt tatséchlich g € Fa[z].



Aufgabe H21T3A5

Seien m und n zwei positive ganze Zahlen mit ggT(m,n) = 1. Fiir jede positive ganze Zahl a sei

Co = €2™/% € C; (, ist eine primitive a-te Einheitswurzel. Beweisen Sie die folgenden Aussagen:

(a) Q(Cma Cn) = Q(Cmn)
(©) QGn) NQ(G) =Q

Lésung:

zu (a) Zu zeigen ist G, Cn € Q(Cmn) WA Cn € Q(Cm, € ). Die ersten Aussage ist wegen ¢, = €2™/™ =
(e2mt/tmmhyn — ¢n e Q(Cnp) und ¢, = 2" = (2mH/mn)ym — ¢m e Q(C,,y,) offenbar erfiillt. Fiir
die zweite Aussage bemerken wir zunichst, dass wegen ggT(m,n) = 1 und auf Grund des Lemmas von

Bézout ganze Zahlen a,b mit am + bn = 1 existieren. Es folgt % =424 % und

n

; (o b ; ;
Cmn _ eQﬂ'z/(mn) — 627r7, (&+-2) — e271'1(1/116271'117/m _ C’ZC?Z;L )

Dies zeigt, dass (myn in Q((mn, ¢n) enthalten ist.

zu (b) Laut Vorlesung gilt [Q({r) : Q] = ¢(¢) fur alle £ € IN, wobei ¢ die Eulersche ¢-Funktion
bezeichnet. Weil m und n teilerfremd sind, gilt o(mn) = @(m)p(n). Zusammen mit dem Ergebnis aus

Teil (a) erhalten wir

[QCm: ) : Q] = [Q(Gmn) : Q] = @(mn) = w(m)e(n) = [Q(¢n): Q- [Q(C) : Q).

zu (¢) Aus der Vorlesung ist bekannt, dass Q((¢)|Q fiir jedes ¢ € IN eine Galois-Erweiterung ist, und
dass ferner ein Isomorphismus ¢ : (Z/¢Z)* — Gal(Q((,)|Q) mit ¢(a + €Z) = o, fir alle a € Z mit
ggT(a,l) = 1 existiert, wobei o, € Gal(Q((,)|Q) jeweils den Automorphismus bezeichnet, der durch

04(¢¢) = ¢ eindeutig bestimmt ist.

Sei nun G = Gal(Q((mn)|Q). Auf Grund des Hauptsatzes der Galoistheorie geniigt es zu zeigen,
dass die Untergruppe Gal(Q((mn)|Q(¢m) N Q(¢,)) mit ganz G iibereinstimmt, denn dann stimmen
die zugehorigen Fixkorper Q bzw. Q((mn) N Q(¢,) iiberein. Sei also o € G vorgegeben; zu zeigen ist
o € Gal(Q(¢mn)|Q(Cm) N Q(Cn)). Fiir ein vorgegebenes v € Q((n) N Q(¢,) muss also die Gleichung
o(y) = v bewiesen werden.

Auf Grund der oben angebenen Beschreibung der Elemente von G existiert ein a € Z mit ggT(a, mn) = 1

und o(¢mn) = €%, Nach dem

Chinesischen Restsatzes existiert ein Isomorphismus ¢ : (Z/mnZ)* — (Z/mZ)* x (Z/nZ)* mit ¢(c+
mnZ) = (c+mZ,c+nZ) fiir alle c € Z. Seien b, ¢ € Z Reprisentanten der Urbilder b+mnZ = ¢~ (a+
mZ,1 +nZ) und c + mnZ = ¢~ (1 + mZ,a + nZ). Auf Grund der Definition von ¢ gilt b = a mod m,
b=1mod n, c =1 mod m und ¢ = a mod n. Es gibt also r,s,t,u € Z mit b = a + rm = 1+ sn und
¢ = 14+tm = a+un. Wegen ¢(bc+mnZ) = ¢p(b+mnZ)p(c+mnZ) = (a+mZ,1+nZ)(1+mZ,a+nZ) =
(a + mZ,a + nZ) = ¢(a + mnZ) und der Bijektivitit von ¢ gilt auch bc + mnZ = a + mnZ, also

bc = a mod (mn) und somit a = bc + vmn fiir ein v € Z.

Seien nun die Elemente p, 7 € G gegeben durch p(Gmn) = ¢y, und 7(Cnn) = €5,,,- Dann gilt

(PoT)(Cmn) = p(T(Cnn)) = p(Chn) = pGun)S = (;n)b = fncn =
mn = GuGn) T = G 1T = G = (G-



WEeil jedes Element aus G durch das Bild von (,, eindeutig festgelegt ist, folgt daraus ¢ = p o 7. Nun

gilt auflerdem

p(G) = o) = plln)™ = ()" = Qo= G = G =
Cn - (C:LL)S = (o~ ¥ = Cn-

Dies zeigt, dass ¢, im Fixkorper Q((mn){? enthalten ist, also auch Q(C,) € Q(Gunn)'® gilt. Wegen

v € Qn) NQG) S Q) S QCmn) ™ folgt p(7) = 7. Genauso beweist man auch die Gleichung
7(y) = 7. Denn zunéchst gilt

(Cm) = () = TGma)" = ()t = G = G = G
Cm * (grrnn)f = (m- 1 = Cm-

Das Element ¢, liegt also im Fixkérper von (1), es gilt somit Q(Crn) € Q(Cmn)(™. Wegen v € Q(Cn) N

Q(¢n) € QGm) S Q(Gmn) ™ folgt T(7) = 7. Insgesamt erhalten wir nun o(y) = (po7)(y) = p(r(7)) =
p(v) =, wie gewiinscht.



Aufgabe F22T1A1

Sei A € My q eine 2 x 2-Matrix mit rationalen Eintrdgen, so dass A" die Einheitsmatrix I ist fiir ein

n > 1. Sei m4 € Q[z] das Minimalpolynom von A. Zeigen Sie:

(a) Der Grad von m4 ist hochstens 2.
(b) Das Polynom my ist ein Teiler von 2™ — 1 in Q[x].

(¢) Wihlt man n > 1 minimal mit A™ = I, dann ist n € {1,2,3,4,6}.

Hinweis: Betrachten Sie geeeignete Kreisteilungspolynome.

Lésung:

zu (a) Laut Vorlesung ist jedes Polynom f € Q[z] mit f(A) = Oaq,,, €in Vielfaches vom Minimal-
polynom m 4. Nach dem Satz von Cayley-Hamilton erfiillt das charakteristische Polynom ¢4 von A die
Bedingung c4(A) = Oy, q, €s gilt also my | ca. Der Grad von cy stimmt mit der Zeilenanzahl (oder der

Spaltenanzahl von A {iberein, ist also gleich 2. Aus m4 | ¢4 folgt somit grad(ma) < 2.

zu (b) Das Polynom f = 2™ —1 € Q[z] erfiillt ebenfalls die Bedingung f(A) = A" —1Is = Iy —Is = Oy, 4

Daraus folgt, dass m 4 ein Teiler von f ist.

zu (c) Sein € IN minimal mit A" = I5. Nach Teil (b) ist das Minimalpolynom m 4 € Q[z] von A ein Teiler
von z™ — 1. Weil die irreduziblen Faktoren von 2™ — 1 in Q[z] laut Vorlesung die Kreisteilungspolynome
®, sind, wobei d € IN die Teiler von n durchlduft, muss m 4 ein Produkt dieser Kreisteilungspolynome
sein. Setzen wir f = 2™ — 1, dann gilt ggT(f, f/) = ggT(z™ — 1,nz" ") = 1. Das Polynom f besitzt
also keine mehrfahren komplexen Nullstellen, und wegen m4 | f gilt dasselbe fiir m 4. Die irreduziblen
Faktoren von my4 sind also alle verschieden. Da nach Teil (a) auflerdem die Ungleichung grad(ma) < 2
gilt, muss m4 entweder selbst ein Kreisteilungspolynom vom Grad 1 oder 2, oder ein Produkt zweier

verschiedener Kreisteilungspolynome vom Grad 1 sein.

Die einzigen linearen Kreisteilungspolynome sind ®; =z —1 und &3 =z +1. Im Fall myg = ®; ist n = 1.
Im Fall mg = @y ist A+ I, =0, also A = —Iy # I, und A? = (—1,)? = I, woraus n = 2 folgt. Im Fall
ma = (z —1)(x + 1) = 2% — 1 gilt ebenfalls n = 2. Die einzige verbleibende Méglichkeit ist ma = @,
wobei d € N mit p(d) = grad(®,) = 2 ist. Ist d = [[;_, py* die Primfaktorzerlegung von d (mit r € IN,
Primzahlen py, ...,p, und Exponenten ey, ...,e, € N), dann folgt [[/_, p{" ' (p; — 1) = ¢(d) = 2. Dies
zeigt, dass p; < 3 fiir alle ¢ gilt, es ist also d = 2°13°2 mt e;,es € Ny und (e,es) # (0,0). Im Fall
e1 >0, e =0ist d =2° und 2! = ¢(d) = 2, also ¢ =2 und n = 4. Im Fall e; = 0 und ey > 0
ist d = 3% und 2-3%7! = p(d) = 2, also e = 1 und n = 3. Im Fall e, ey > 0 schlieBlich erhalten wir
20171, 9. 30271 = 9e13e2—1 = (d) = 2, was nur fiir (e1,e2) = (1,1) und n = 6 mdglich ist. Insgesamt ist

damit n € {1,2,3,4,6} nachgewiesen.



Aufgabe F22T1A2

(a) Bestimmen Sie die letzten drei Ziffern von 7404404,
(b) Es sei ¢ die Eulersche ¢-Funktion. Zeigen Sie, dass ¢(n?) = np(n) fiir alle n € IN gilt.

(c) Es sei p eine Primzahl mit p ¢ {2,5}. Zeigen Sie, dass p eine der Zahlen 9, 99, 999, 9999, ... teilt.

Lésung:

zu (a) Die letzten drei Ziffern einer natiirlichen Zahl in Dezimaldarstellung héngen nur von der Restklasse
der Zahl modulo 1000 ab. Es geniigt deshalb, das Bild von n = 7494404 in 7 /10007 zu bestimmen. Mit
7 ist auch n teilerfremd zu 1000, also ist 7 = n + 1000Z ein Element von (Z/1000Z)*. Die Ordnung der
primen Restklassengruppe (Z/1000Z)> ist ¢(1000) = ¢(8)¢p(125) = 4-100. Daraus folgt 740 = 1. Wegen
404404 = 4 mod 400 existiert ein m € IN mit 404404 = 400m + 4. Damit erhalten wir n = 7404404 —
7400mtd — (7400ym 74 — m 74 = 19° = 2401 = 401. Dies zeigt, dass 4, 0 und 1 die letzten drei Ziffern

von n sind.

zu (b) Sein = [[;_, p{ die Primfaktorzerlegung von n, mit r € INg, Primzahlen py, ...,p, und ey, ..., e, €
IN. Dann gilt

p(n®) = w(Hzﬁ“) = JIewiy = TIp“"'wi-1 = JIpps -1
=1 i=1 =1 =1

T s s T
= Tl 1Ie -1 = J[ef-Ile) = nem).
=1 =1 =1 =1

zu (¢) Als Primzahl ungleich 2 und 5 ist p teilerfremd zu 10. Dies zeigt, dass 10 = 10 + pZ in der
primen Restklassengruppe (Z/pZ)* ist. Da es sich dabei um eine endliche Gruppe handelt, besitzt das
Element 10 eine endliche Ordnung. Es existiert also ein m € N mit 10" = 1 in (Z/pZ)*. Daraus
wiederum folgt 10™ = 1 mod p, was zu p | (10™ — 1) dquivalent ist. Die Primzahl p ist also ein Teiler

von 10" — 1 =99....99, der Zahl, deren Dezimaldarstellung aus genau m-mal der Ziffer ,9“ besteht.

Beispiel: Sei p = 61. Dann hat 10 = 10 + 617 in (Z/617)* die Ordnung 60. Dies zeigt, dass 61 ein

Teiler von

10 —1 = 999999999999999999999999999999999999999999999999999999999999  ist.



Aufgabe F22T1A3

Man betrachte die symmetrische Gruppe Sy des Grades 4 und

Vo o= {id, (12)(34), (13)(24), (14)(23)} < S

(a) Zeigen Sie, dass V ein zu Z/27Z x Z./27. isomorpher Normalteiler in Sy ist.
(b) Zeigen Sie, dass Sy/V zu S3 isomorph ist.
(c) Beweisen Sie, dass Sy keinen Normalteiler der Ordnung 8 hat.

(d) Bestimmen Sie alle Untergruppen und alle Normalteiler der Faktorgruppe Sy/V'.

Lésung:

zu (a) Zunichst zeigen wir, dass V eine Untergruppe von Sy ist. Das Neutralelement id von Sy ist
in V enthalten. Seien nun 0,7 € V vorgegeben; zu zeigen ist c o7 € V und ¢~ € V. Wie man leicht
iiberpriift, gilt p? = id fiir alle p € V. Daraus folgt, dass jedes Element in V sein eigenes Inverses ist

' = g in V liegt. Ist 0 = id, dann folgt 0 o 7 = 7, und dieses Element ist in V'

und insbesondere o~
enthalten. Ist 7 = id, dann gilt ¢ o 7 = ¢ und somit ebenfalls 0 o 7 € V. Im Fall 0,7 # id zeigt die

folgende Verkniipfungstabelle, dass o o 7 in V' enthalten ist.

o Jaaey|aney|ayes) |
(12)(3 4) id  |aaes3) a3y
1324 aoes | d a6

(14)(23) || 13)(24) | (12)(34) id

Als Gruppe der Primzahlquadratordnung 4 ist V' abelsch. Nach dem Hauptsatz iiber endlich erzeugte
abelsche Gruppen ist V' isomorph zu einem direkten Produkt zyklischer Gruppen, also isomorph zu
Z./AZ oder Z /27 x Z/2Z. Da jedes Element in V sein eigenes Inverses ist, gibt es in V' nur Elemente
der Ordnung 1 und 2, und folglich ist V' isomorph zu Z/27 x Z./27Z.

Nun zeigen wir noch, dass V' ein Normalteiler von Sy ist. Laut Vorlesung sind zwei Elemente in S, genau
dann zueinander konjugiert, wenn sie denselben Zerlegungstyp besitzen. Die drei Elemente # id in V
sind die einzigen Doppeltranspositionen in Sy, also die einzigen Elemente vom Zerlegungstyp (2, 2). Seien
nun o € Sy und 7 € V vorgegeben; zu zeigen ist c ot oo™l € V. Ist 7 € V' \ {id}, dann ist mit 7 auch

1

das zu T konjugierte Element o o 7 0o 0! eine Doppeltransposition, und es folgt coT oo™t € V. Im Fall

T =1id, ist ¢ o 7 0 0! gleich id und somit ebenfalls in V enthalten.

zu (b) Sei X =V '\ {id}. Wie wir in Teil (a) gesehen haben, ist mit ¢ € Sy und 7 € X auch coroo~!
wieder in X enthalten. Durch (o,7) + o o7 oo~ ! ist also eine Abbildung - : Sy x X — X definiert.

Dabei handelt es sich um eine Gruppenoperation von S, auf X. Sind ndmlich 01,09 € Sy und 7 € X

1

vorgegeben, dann gilt id- 7 =7oido7 ! =707 ! =id und

o1-(og-7) = 01-(0207002_1) = 010(0207'002_1)001_1 =

(c1009)oTo(01009)™ Y = (01009) T

Laut Vorlesung erhélt man durch die Operation einen Gruppenhomomorphismus ¢ : Sy — Per(X),

definiert durch ¢(o)(7) =07 = o o7Too L. Dabeiist V im Kern von ¢ enthalten, denn weil V abelsch

1 1

ist, gilt fiir alle 0,7 € V jeweils ¢(0)(7) =coT00 !t =0oc o, und somit ¢(c) = idx fiir allec € V.

Somit induziert ¢ einen Homomorphismus ¢ : Sy/V — Per(X).



Wenn wir zeigen konnen, dass ¢ surjektiv ist, dass folgt daraus direkt, dass S;/V = S5 gilt. Denn wegen
| X| = 3 gilt Per(X) = S5 und somit [Per(X)| = |Ss| = 6. Ebenso ist [Sa/V] = (Sy: V) = 54l = 2t =6,
und als surjektive Abbildung zwischen gleichméchtigen Mengen ist ¢ auch bijektiv. Insgesamt ist ¢ also

ein Isomorphismus, und es folgt S4/V = Per(X) = Ss.

Beweisen wir also noch die Surjektivitit von ¢. Das Element (1 2 3) € Sy ist ein Element der Ordnung
3, also muss die Ordnung von ¢((1 2 3)) gleich 1 oder 3 sein. Wegen ¢((1 2 3))((1 2)(3 4)) = (12 3)o0
(12)34)0(123)71=(123)0(12)(34)0(132)=(14)(23)# (12)(34)isto((123))#id
und somit ein Element der Ordnung 3 in Per(X). Ebenso zeigt die Rechung ¢((1 2))((1 3)(2 4)) =
(12)0(13)(24)0(12)"t=(12)0(13)(24)0(12)=(14)(23)#(13)(24),dass ¢((1 2)) in Per(X)
ein Element der Ordnung 2 ist. Die Ordnung des Bildes im(¢) muss also ein gemeinsames Vielfaches von
2 und 3 sein. Aus [im(¢)| > kgV(2,3) = 6 = |Per(X)| und im(¢) C Per(X) folgt im(¢) = Per(X) und

somit die Surjektivitit von ¢.

Anmerkung:
Setzt man als bekannt voraus, dass S3 bis auf Isomorphie die einzige nicht-abelsche Gruppe der Ordnung
6 ist, kommt man schneller zum Ziel. Wie oben zeigt man zunéchst, dass auch die Faktorgruppe S;/V
von Ordnung 6 ist. AnschlieBend iiberpriift man noch, dass S4/V nicht-abelsch ist, zum Beispiel, indem
man nachrechnet, dass

(12)V-(13)V # (13)V-(12)V

gilt. Das Element auf der linken Seite ist gleich ((1 2) o (1 3))V = (1 3 2)V, das auf der rechten Seite
ist gleich ((13)o(12))V = (12 3)V. Wiren die Elemente gleich dann miisste (1 3 2)71 0 (12 3) in V
liegen. Tatséchlich aber gilt (132)710(123)=(123)0(123)=(132)¢V.

zu (¢) Wegen |S4| = 24 = 23 - 3 sind die Untergruppen der Ordnung 8 genau die 2-Sylowgruppen von
Sy. Gébe es eine 2-Sylowgruppe, die Normalteiler ist, so wére dies laut Zweitem Sylowsatz die einzige
2-Sylowgruppe. Nun ist bekanntlich die Diedergruppe D, eine Untergruppe der Ordnung 8 von Sy, und
diese enthélt zwei Elemente der Ordnung 4. Wére dies die einzige Untergruppe der Ordnung 8, dann
gibe es also nur zwei Elemente der Ordnung 4 in S4. Offensichtlich gibt es aber mehr als zwei solche
Elemente, zum Beispiel (1 2 3 4), (143 2) und (1 3 2 4).

zu (d) Nach Teil (b) ist Sy/V isomorph zu Ss. Bekanntlich besitzt S5 genau drei verschiedene Unter-
gruppen der Ordnung 2 und genau je eine Untergruppe der Ordnung 1, 3 und 6. Dabei sind die drei
Untergruppen der Ordnung 2 keine Normalteiler, die tibrigen drei Gruppen sind Normalteiler. Auf Grund
der Isomorphie besitzt Sy/V die gleiche Untergruppenstruktur.

Das Neutralelement von Sy /V ist eg, )y = V, und offenbar ist {V} die eindeutig bestimmte Untergruppe
der Ordnung 1 von S4/V. Ebenso ist S4/V die eindeutig bestimmte Untergruppe der Ordnung 6 von
S4/V. Wir betrachten in S4/V nun die Elemente ¢ = (1 2)V, g5 = (1 3)V, g3 = (1 4V und h =
(1 23)V. Wegen (1 2),(13),(14) ¢V gilt g1 # es,/v, 92 # es,yv und g3 # eg, v. Andererseits
gilt g7 = (1 2)?V =idV = eg, v, also ist g1 in S4/V ein Element der Ordnung 2. Ebenso zeigen die
Gleichungen g2 = (1 3)?V = idV = es,/v und g3 = (1 4%V =idV = es, /v, dass auch go und g3
Elemente der Ordnung 2 in Sy /V sind.



Durch (g1) = {eg,/v, 91}, (92) = {es,/v, 92} und (g3) = {eg, /v, g3} sind also Untergruppen von S;/V’

der Ordnung 2 gegeben. Wiirden zwei davon iibereinstimmen, dann wéren auch zwei der Elemente g1,
g2, g3 identisch. Aus g; = go wiirde (1 2)V = (1 3)V und (1 2)"!o (1 3) € V folgen. Aber dies ist
wegen (1 2)"to(13) = (12)o(13)=(132)¢ V nicht der Fall. Ebenso zeigen die Rechnungen
(12)7to(14)=(12)0o(14)=(142)¢Vund (13)"to(14)=(13)o(14)=(143)¢V,dass g1 # g3
und go # g3 gilt. Also sind {g1), {(g2) und (g3) die drei Untergruppen der Ordnung 2 von S4/V.

Es gilt h = (123)V #eg, /v wegen (123) ¢V, h? = (123)>V =(132)V #eg, v wegen (132) ¢V
und h? = (1 2 3)3V =idV = eg,/v- Also ist ord(h) = 3, und (h) ist eine Untergruppe der Ordnung 3

von S4/V. Insgesamt sind

{V} ’ <91> ) <92> ) <93> ) <h> und S4/V

also die sechs Untergruppen von S4/V, und {V}, (h), S4/V sind die drei Normalteiler.



Aufgabe F22T1A4

(a) Bestimmen Sie alle Ideale des Rings R = Z/2022Z. Bestimmen Sie darunter alle Primideale in R.
(b) Bestimmen Sie alle idempotenten Elemente des Rings R, d.h. alle Elemente a € R mit a® = a.
(c) Bestimmen Sie die Anzahl der Nullteiler in R.

(d) Bestimmen Sie ein n € IN mit n < 2022 und (Z/nZ)* = (Z,/20227Z)*.

Lésung:

zu (a) Sei 7 : Z — 7/2022Z der kanonische Epimorphismus und I = (2022). Nach dem Korrespon-
denzsatz der Ringtheorie ist durch J — w(J) eine Bijektion gegeben zwischen den Idealen J von Z mit
J 2 I und den Idealen von Z/20227Z. Die Ideale von Z haben alle die Form (n) mit n € INg, und es gilt
(n) D I genau dann, wenn 2022 in (n) liegt, was wiederum genau dann der Fall ist, wenn n ein Teiler
von 2022 ist. An der Primfaktorzerlegung 2022 = 2 - 3 - 337 liest man ab, dass 2022 genau acht Teiler
in INy besitzt, ndmlich 1, 2, 3, 6, 337, 674, 1011 und 2022. Die Ideale von 7 /20227 sind somit gegeben
durch (1), (2), (3), (6), (337), (674), (1011) und (2022) = (0) = {0}.

Wir zeigen, dass allgemein gilt: Ist R ein Ring, I ein Ideal von R und 7 : R — R/I der kanonische
Epimorphismus, so ist ein Ideal J von R mit J 2 I genau dann ein Primideal, wenn 7 (J) ein Primideal in
R/I ist. Ist J ein Primideal, dann gilt zunéichst 1z +1 ¢ 7(J), denn ansonsten wére 15 in 7= (7 (J)) = J
enthalten. Sind a + I,b+ 1 € R/I mit a,b € R und (a + I)(b+ I) € n(J), dann folgt ab+ I € w(J)
und ab € J. Weil J ein Primideal ist, folgt @ € J oder b € J, und daraus wiederum a + I € w(J)
oder b+ I € w(J). Also ist w(J) ein Primideal in R/I. Setzen wir dies nun umgekehrt voraus, dann
ist 1z ¢ J, denn ansonsten wire 1z/; = 7(1g) € 7(J). Seien nun a,b € R mit ab € J. Dann folgt
m(a)m(b) = w(ab) € 7(J), und daraus wiederum =(a) € w(J) oder w(b) € w(J), weil w(J) ein Primideal
ist. Wegen =1 (m(J)) = J folgt daraus wiederum a € J oder b € J. Dies zeigt, dass J ein Pprimideal in
J ist.

Bekanntlich sind die Primideale in Z genau das Nullideal und die Ideale der Form (p), wobei p die
Primzahlen durchliuft. Die einzigen Primideale, die (2022) enthalten, sind also (2), (3) und (337). Die
soeben bewiesene Aussage zeigt, dass (2), (3) und (337) somit die Primideale von Z /20227 sind.

zu (b) Weil 2022 = 2-3-337 gilt und die Zahlen 2, 3 und 337 paarweise teilerfremd sind, gilt Z/20227 =
7./27.x 7./ 3Z. x 7./ 3377 nach dem Chinesischen Restsatz. Ein Element (a, b, ¢) € Z/2Z x Z./37.x 7./ 337Z.
ist genau dann idempotent, wenn (a2, b?, &%) = (a,b,¢)? = (a,b,¢) gilt, was wiederum zu a> = a, b> = b
und ¢ = ¢ ist. Nun ist in einem Korper K fiir jedes a € K die Gleichung o? = a #quivalent zu
ala—1g) = 0k und damit zu « € {0k, 1x}. Weil 2, 3 und 337 Primzahlen sind, sind Z/2Z, Z/3Z und
7./3377. Korper. Also sind die Gleichungen a? = a, b®> = b, ¢ = ¢ dquivalent zu a € {0,1}, b € {0,1},
¢ € {0,1}. Insgesamt zeigt dies, dass in Z/20227 genau acht idempotente Elemente existieren, ndmlich
die Urbilder von

,1),(1,0,0),(1,0,1),(1,1,0),(1,0,1)

—~
=l
=l
(e]]
=
—~
=l
=l
=
S~—
—~
=l
=
(en]]
S—
—~
I
=

unter dem Isomorphismus Z/2022Z = Z./27 x Z./ 37, x 7,/ 337Z. Wir rechnen diese acht Urbilder nun aus.
Das Urbild von (0,0,0) ist das eindeutig bestimmte Element a + 20227 mit a = 0 mod 2, a = 0 mod 3
und a = 0 mod 337, und dies ist offenbar 0 4 20227Z. Genauso sieht man, dass 1 + 20227 das Urbild von
(1,1,1) ist.



Das Urbild a + 20227 von (0,0, 1) erfiillt @ = 0 mod 2, a = 0 mod 3 und a = 1 mod 337, was #quivalent
ist zu @ = 0 mod 6 und a = 1 mod 337. Die letzte Bedingung zeigt, dass a die Form 1+ 337k mit k € Z
haben muss. Wegen 337 = 1 mod 6 erfiillt 1+ 337 -5 = 1686 auch die Bedingung 1686 = 0 mod 6. Also
ist 1686 + 20227 das Ubild von (0,0,1).

Das Urbild a + 20227 von (0,1,0) erfiillt @ = 0 mod 2, a = 1 mod 3 und a = 0 mod 337, was
dquivalent ist zu a = 0 mod 674 und a = 1 mod 3. Es gilt 674 = 2 mod 3, also 1348 = 2-674 =4 =
1 mod 3. Also ist 1348 + 20227 das Urbild von (0,1,0). Durch analoge Rechnungen sieht man, dass
die Urbilder von (0,1, 1), (1,0,0),(1,0,1) und (1,1,0) durch 1012 + 20227, 1011 + 20227Z, 675 + 20227
und 337 + 20227 gegeben sind. Die idempotenten Elemente von 7Z/20227 sind also a 4+ 20227 mit
a€{0,1,337,675,1011,1012,1348,1686}.

zu (¢) Weil Z/2022Z ein endlicher Ring ist, ist jedes Element entweder Einheit oder Nullteiler. Laut
Vorlesung hat die Einheitengruppe (Z/20227.)* die Ordnung ¢(2022) = ¢(2)¢(3)¢(337) =1-2-336 =
772. Die Zahl der Nullteiler ist also gegeben durch |Z/20227Z| — |(7Z/20227.)* | = 2022 — 772 = 1350.

zu (d) Sei n = 1011; diese Zahl besitzt die Primfaktorzerlegung 3 - 337. Wegen (Z/27)* = {1} und
dem Chinesischen Restsatz gilt
(Z/nZ)* = (Z/3Z)* x (Z/33TZ)* = {1} x (Z/3Z)* x (Z/337Z)*
> (Z)2Z)° x (Z/3Z)* x (Z/33TL)* = (Z/2022Z)*.



Aufgabe F22T1A5

Fiir jedes n € IN sei a, = */2. Weiter seien A = {a,, | n € N} und K = Q(A). Zeigen Sie:

(a

) [Q(ay) : Q] = 2" fiir jedes n € IN
(b) [K: Q] =00

)

)

(C K= UnG]N Q(an)

(d) K ist eine algebraische Erweiterung von Q

Lésung:

zu (a) Das Polynom f,, = 22" — 2 € Z[z] ist normiert, nach dem Eisenstein-Kriterium (angewendet
auf die Primzahl 2) iiber @ irreduzibel, und es gilt f,(a,) = (*V/2)?" —2 =2 —2 = 0. Somit ist f, das
Minimalpolynom von a,, iiber Q, und es folgt [Q(a,) : Q] = grad(f,) = 2.

zu (b) Nehmen wir an, der Grad m = [K : Q] wére endlich. Wegen a,, € A C Q(A) = K ist Q(a,,) fiir
jedes n € IN ein Zwischenkorper von K|Q. Mit der Gradformel und dem Ergebnis von Teil (a) erhalten
wir

m = [K:Q = [K:Q(an)] [Qan):Q = [K:Q(an)] 2"

fiir alle n € IN. Die Zahl m € IN wire also durch 2™ teilbar fiir jedes n € IN, was offenbar unmdoglich ist.

zu (¢) ,2“ Wie bereits in Teil (b) festgestellt, ist Q(a,,) fir jedes n € IN ein Zwischenkdrper von
K|Q. Insbesondere gilt also Q(a,) € K fiir alle n € IN, und damit auch (J, .y Q(an) € K. ,C%  Sei
L =, ex Qay,). Fiir jedes m € N gilt a,, € Q(ar,) € L und damit A = {a,, | m € N} C L.

AuBlerdem ist L ein Zwischenkorper der Erweiterung R|Q. Zum Nachweis der Teilkorper-Eigenschaft
stellen wir zunéchst fest, dass 1 in Q(a;) C L enthalten ist. Seien nun «,8 € L vorgegeben. Dann
gibt es nach Definition von L natiirliche Zahlen m,n mit o € Q(a,,) und 8 € Q(a,). Nach eventueller

g2 manm _

Vertauschung von « und S kénnen wir m < n annehmen. Wegen a,, = 22 =927 =
227 = (V2 T =a) " € Qlan) gilt Qam) € Qan). Aus a € Q(an) € Qan) und § € Q(an)
sowie der Teilkorper-Eigenschaft von Q(a,) folgt nun, dass auch a — § und «f in Q(a,) und wegen
Q(an) € L damit auch in L enthalten sind. Im Fall o # 0 erhilt man ebenso a~! € Q(a,,) und
damit o~ ! € L. Damit ist der Nachweis der Teilkérper-Eigenschaft von L abgeschlossen. Auflerdem gilt

Q C Q(a1) € L.

Somit ist L tatséchlich ein Zwischenkorper von R|Q. Da auflerdem, wie bereits festgestellt, A C L gibt,
erhalten wir insgesamt K = Q(A) C L.

zu (d) Es geniigt zu zeigen, dass jedes o € K algebraisch iiber Q ist. Sei also o € K vorgegeben.
Auf Grund des Ergebnisses von Teil (¢) gilt a € Q(ay,) fiir ein n € IN. Nach Teil (a) ist Q(a,)|Q eine
endliche Erweiterung, und jede endliche Erweiterung ist laut Vorlesung algebraisch. Daraus folgt, dass

alle Elemente aus Q(a,,) algebraisch iiber Q sind, insbesondere auch das Element «.

alternative Losung:

Wie wir in Teil (a) festgestellt haben, ist a, fiir jedes n € IN jeweils eine Nullstelle des Polynoms
fn = 2" —1 € Q[z] und somit algebraisch iiber Q. Die Menge A besteht also aus Elementen, die
algebraisch iiber @ sind. Laut Vorlesung ist jede Korpererweiterung, die von Elementen erzeugt wird, die
iiber dem Grundkérper algebraisch sind, selbst eine algebraische Erweiterung. Wegen K = Q(A) ist die
Erweiterung K|Q somit algebraisch. (Vom Aufgabensteller war aber wohl nicht vorgesehen, dass man

dieses Resultat verwendet. Es wird eventuell nicht in jeder Algebra-Vorlesung behandelt.)



Aufgabe F22T2A1

Gegeben sei die komplexe 2 x 2-Matrix

Berechnen Sie die Matrix A2022,

Losung:

Es gilt

o (F 21 2\ _ (1 0N e
A_<0 —i)(O —¢>_<0 —1) @ A=@y=0cHn=~F,

wobei E die 2 x 2-Einheitsmatrix bezeichnet. Daraus folgt 42022 = A%4-505+2 — (44)505. A2 = F505. A2 —

A?=-FE.



Aufgabe F22T2A2

(a) Geben Sie eine nicht-abelsche Gruppe der Ordnung 100 an.
(b) Zeigen Sie mit Hilfe der Sylowsitze, dass jede Gruppe der Ordnung 100 auflésbar ist.

(c) Zeigen Sie, dass eine Gruppe der Ordnung 100 genau dann abelsch ist, wenn es in G lediglich eine

2-Sylowgruppe gibt.

Lésung:
zu (a) Laut Vorlesung ist die Diedergruppe D,, fiir alle n € IN mit n > 3 eine nicht-abelsche Gruppe
der Ordnung 2n. Also ist Dsq eine nicht-abelsche Gruppe der Ordnung 100.

zu (b)  Sei G eine Gruppe der Ordnung 100 = 22 - 52, und es sei v5 die Anzahl der 5-Sylowgruppen
von G. Auf Grund des Dritten Sylowsatzes gilt vs | 22, also v € {1,2,4}, auBerdem v5 = 1 mod 5.
Wegen 2,4 £ 1 mod 5 folgt daraus v5 = 1. Sei N die einzige 5-Sylowgruppe von G. Auf Grund des
Zweiten Sylowsatzes ist N ein Normalteiler von G. Als Gruppe der Primzahlpotenzordnung 52 ist N
eine auflésbare Gruppe. Auch die Ordnung der Faktorgruppe G/N ist eine Primzahlpotenz, némlich
|G/N| = (G :N) = % = 100 — 22 Somit ist auch G/N auflésbar. Aus der Auflésbarkeit von N und
G/N folgt die Auflosbarkeit von G. (Als Gruppen von Primzahlquadratordnung sind N und G/N sogar

abelsch, aber daraus folgt natiirlich nicht, dass G abelsch sein muss.)

zu (¢) Wieder sei G eine Gruppe der Ordnung 100, und fiir jede Primzahl p sei v, die Anzahl der p-
Sylowgruppen von G. Bereits in Teil (b) haben wir gesehen, dass G genau eine 5-Sylowgruppe N besitzt,
und dass N <G gilt. Laut Vorlesung besitzt G fiir jede Primzahl p mindestens eine p-Sylowgruppe. Wir

bezeichnen mit U eine beliebige 2-Sylowgruppe und beweisen nun die angegbene Aquivalenz.
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= Ist G abelsch, dann ist jede Untergruppe von G ein Normalteiler, insbesondere auch die 2-
Sylowgruppe U. Aus U <G folgt auf Grund des Zweiten Sylowsatzes vo = 1. <= Aus v, = 1 folgt mit
dem Zweiten Sylowsatz umgekehrt auch U <G. Wir zeigen nun, dass G ein inneres direktes Produkt von
N und U ist. Die Bedingung N,U < G haben wir bereits verifiziert. Auf Grund der Teilerfremdheit von
IN| =25und |U| =4 gilt NNU = {e}. Fiir den Nachweis der Gleichung G = NU stellen wir zunéchst
fest, dass NU wegen N,U <G eine Untergruppe von G ist (sogar ein Normalteiler). Aus N C NU folgt
mit dem Satz von Lagrange, dass |N| = 25 ein Teiler von |NU]| ist. Aus U C NU folgt ebenso 4 | |[NU].
Insgesamt ist |[NU| damit ein Vielfaches von kgV(25,4) = 100; insbesondere gilt |[NU| > 100 = |G]|.
Wegen NU C G folgt daraus NU = G.

Insgesamt ist G also tatséichlich ein inneres direktes Produkt von N und U. Laut Vorlesung folgt daraus
G =2 N x U. Als Gruppen von Primzahlquadratordnung sind N und U abelsch. Also ist auch N x U,

und auf Grund der Isomorphie auch G, eine abelsche Gruppe.



Aufgabe F22T2A3

Sei n € N und R ein kommutativer Ring (mit Einselement). Betrachten Sie fiir a,b € R das Ideal
I =(a,b) CR.

(a) Zeigen Sie: Aus a™ = b" = 0 folgt I*" = (0).

(b) Nehmen Sie an, dass 2 = 1+ 1 eine Einheit von R ist und dass ¢? = 0 fiir alle ¢ € I gilt. Zeigen
Sie, dass dann ab = 0 folgt.

(c) Geben Sie einen kommutativen Ring R mit Elementen a,b € R an, fiir welche a®> = b*> = 0 und
ab # 0 gilt. Begriinden Sie, dass diese beiden Bedingungen fiir den von Thnen angegebenen Ring
erfiillt sind.

Hinweis: Betrachten Sie R = Q[z,y]/I fiir ein geeignetes Ideal I.

Lésung:

zu (a) Wir zeigen durch vollstindige Induktion, dass S,, = {a" /b | 0 < j < m} fiir jedes m € IN ein
Erzeugendensystem des Ideals I™ ist. Dass S; = {a,b} das Ideal I' = I erzeugt, gilt laut Angabe. Sei
nun m € N, und setzen wir I"™ = (S,,) voraus. Wegen [™! = ™. [ ™ = (S,,) und I = (a,b) ist
laut Vorlesung S = {cd | ¢ € S,,,d € {a,b}} ein Erzeugendensystem von I"™*1. Diese Menge stimmt mit

Sm+1 Uberein, denn es gilt

S = {a"™ V- -a|0<j<mIu{a™ IV -b|0<j<m}
= {a™'IY | 0<j<m}u{a™TY-UFUPH 0 <5 <m)
= {a™M I [ 0<j<m}u{a™VTIY b 1<j<m+1}

= {a"MV [ 0<i<m+1} = Smir

Setzen wir nun voraus, dass a”™ = b" = 0 fiir ein n € N gilt. Fiir 0 < j < n gilt dann 2n—j > n und somit
a?=I.p =qa"-a" W =0-a""7 -1 =0, und fiir n < j < 2n erhalten wir a®* 77 -/ = ¢?" I H TP =

a3 . p=" .0 = 0. Insgesamt gilt damit So,, = {0}, und es folgt I*" = (Ss,,) = (0).

zu (b)  Auf Grund der Voraussetzungen gilt 2ab = 0+ 2ab+ 0 = a® + 2ab+b? = (a +b)? = 0. Weil 2 in
R eine Einheit ist, folgt daraus ab = 271(2ab) =271 .0=0.

zu (c)  Wir betrachten im Polynomring Q[z,y] das Ideal I = (22,4?) und setzen R = Q[z,y]/I. Es
seia=x+Tund b =y + I. Wegen 22 € I gilt > = 22 + I = I = Op, und aus y? € I folgt ebenso
b?> = y?> + I = I = Og. Nehmen wir nun an, dass auch ab = Og gilt. Dann folgt 2y + 1 = (z+ I)(y + 1) =
ab = Og = I und damit xy € I. Nach Definition des Ideals I wiirden dann Polynome f,g € Q[z,y]
existieren mit der Eigenschaft, dass die Gleichung zy = 22 f +y2g erfiillt ist. Aber das ist ausgeschlossen,
denn stellt man f und g auf der rechten Seite als Summe von Monomen dar, dann kommt weder in 22 f

noch in y2g ein Monom vor, dass genau einmal durch z und genau einmal durch y teilbar ist.



Aufgabe F22T2A4

Sei p eine Primzahl und n € IN. Seien I}, C F,» endliche Kérper mit p bzw. p™ Elementen.

(a) Sei zunéchst n = 2. Zeigen Sie: Fiir jedes a € Fp2 \ IF), gilt F)(a) = Fpe.
(b) Bestimmen Sie die Anzahl der Elemente a € Fj2 mit F,2 = Fj(a).

(c) Sei jetzt n = 6. Zeigen Sie, dass die Anzahl der Elemente a € F,s mit F,s = IF,(a) genau
pS — p3 — p? + p betrigt.

(d) Bestimmen Sie die Anzahl der irreduziblen, normierten Polynome f € F,[z] vom Grad 6.

Lésung:
zu (a) Seia € Fp2 \ I, vorgegeben. Wegen a € I ist IF)(a) ein Zwischenkorper von Iz |IF),. Laut
Vorlesung sind die Zwischenkorper dieser Erweiterung durch IF,« gegeben, wobei d € IN die Teiler von 2

durchléuft. Es ist somit nur F,(a) = F, oder F,,(a) = F)2 moglich. Im Fall F,(a) = F,, wire a € Fp, im

P
Widerspruch zur Voraussetzung. Also muss IF,(a) = 2 gelten.

zu (b) Zunéchst zeigen wir, dass umgekehrt aus 2 = I, (a) auch a € F 2 \ I, folgt. Auf Grund der
Gleichung muss offenbar a € IF,2 gelten. Wire a € I, dann wiirde F,(a) = IF, C F)» folgen. Also ist
a in Fp2 \ I, enthalten. Zusammen mit dem Ergebnis aus Teil (a) folgt, dass die Elemente a € IF)» mit
F,(a) = )2 genau die Elemente der Menge IF,2 \ IF), sind. Die Anzahl der Elemente in dieser Menge ist
gegeben durch |Fp2 \ Ip| = |Fp2| — [Fy| = p* — p.

zu (¢) Zunichst beweisen wir fiir alle a € Fje die Aquivalenz
IFp(a) = ]Fpe & ad ]sz @] Fps.

»= (durch Kontraposition) Ist a € I, UF s, dann folgt a € )2 oder a € IF)s. Im ersten Fall erhalten
wir Fp,(a) € Fp2 C Fpe, im zweiten IF,(a) € Fps C Fpe. In beiden Fillen gilt also Fp,(a) # Fpe.

»<=* Wegen a € I ist Fp,(a) ein Zwischenkérper von 6 |IF),. Die Zwischenkorper dieser Erweiterung
wobei d € IN die Teiler von 6 durchliuft, also d € {1,2,3,6} gilt. Im Fall
F,(a) = ), oder F)(a) = 2 wire a € IF)2, im Widerspruch zur Voraussetzung. Im Fall ), (a) = I

sind gegeben durch 4,

p3

wire a € IFps, was der Voraussetzung ebenfalls widerspricht. Also muss IF,(a) = IF,6 gelten.

Aus der soeben bewiesenen Aquivalenz folgt, dass die Anzahl der Elemente a € Fpc mit Fp(a) = Fe
mit der Anzahl der Elemente in IFpe \ (IF,2 UF,s) iibereinstimmt. Zunéchst bestimmen wir [F,2 N 1IFs|.
Es ist IFp2 N IFys ein gemeinsamer Teilkérper von IF,2 und IFys, also von der Form IF,« mit d € IN und
d|2,3. Es folgt d =1 und F. NIF)s = IF,,. Damit erhalten wir

Fpe UFs| = |Fpe|+ |Fps| = [FpeNFps| = |[Fpe|+|Fps| —|Fp] = p*>+p° —p.

Die gesuchte Elementezahl ist somit [Fps \ (2 UFp3)| = |Fpo| — [Fpe UFs| = pb — (p* + p* — p) =
P’ —p*—p’+p.

zu (d) Sei L ein algebraischer Abschluss von IF,s (und somit zugleich ein algebraischer Abschluss von
F,). Jedes irreduzible, normierte Polynom f € IF,,[z] vom Grad 6 ist laut Vorlesung separabel, besitzt
also laut Vorlesung sechs verschiedene Nullstellen in L. Bezeichnet a eine solche Nullstelle, dann ist f
das Minimalpolynom von a iiber I,. Daraus folgt [IF(a) : IF,] = grad(f) = 6 und somit IF,(a) = IFps,

denn laut Vorlesung ist s |IF), die eindeutig bestimmte Teilerweiterung von L|IF, vom Grad 6. Wire



a € F2 UF 3, dann wiirde Fj,(a) € Fp2 oder Fp,(a) € Fps und somit [F,(a) : ] < [F2 : Fp] = 2 oder
Fp(a) : Fp] < [Fps : F] = 3 folgen, im Widerspruch zu [Fj,(a) : IF,] = 6. Insgesamt haben wir damit
gezeigt, dass f genau 6 verschiedene Nullstellen in Fe \ (IF)2 U TF,3) besitzt.

Umgekehrt gilt fiir jedes a € e \ (IF)2 UTFs), wie in Teil (c) gezeigt, jeweils 6 = I, (a). Bezeichnet
f € F,lz] das Minimalpolynom von a iiber F),, dann folgt grad(f) = [F,(a) : Fp] = [Fye : F,] = 6.
AuBerdem ist f normiert, irreduzibel, und es gilt f(a) = 0. Also ist jedes a € 6 \ (IF)2 UTF,3) Nullstelle

von einem normierten, irreduziblen Polynom vom Grad 6 in F,[z].

Insgesamt ist damit gezeigt, dass die Anzahl der Elemente in F \ (IF)2 U IF,3) sechsmal so grofl ist wie

die Anzahl der normierten, irreduziblen Polynome vom Grad 6. Mit dem Ergebnis von Teil (c¢) kommen

1.6

wir zu dem Schluss, dass es genau &(p® — p® — p® + p) solche Polynome gibt.



Aufgabe F22T2A5

Betrachten Sie die Teilkérper K1 = Q(v/3) und Ky = Q(v/6) von C.

(a) Zeigen Sie: Fiir das Kompositum L = K K, gilt L = Q(v/2,V/3).
(b) Beweisen Sie: K3 N Ky = Q
(c) Bestimmen Sie den Grad der Korpererweiterung L|Q.

(d) Zeigen Sie, dass L|Q galoissch ist und bestimmen Sie die Galois-Gruppe Gal(L|Q) bis auf Isomor-
phie.

(e) Bestimmen Sie sdmtliche Zwischenkorper der Erweiterung L|Q.

Losung:

zu (a) Nach Definition ist das Kompositum gleich K7 (K5), also die von K erzeugte Erweiterung des
Korpers K. Zu zeigen ist, dass K;(Ks) = Q(v/2,/3) gilt. Fiir die Inklusion , D¢ muss gezeigt werden,
dass QU {Vv/2,v/3} in K;(K3) gezeigt werden, denn daraus folgt, dass K;(Ks) ein Erweiterungskorper
von Q ist, der {1/2,v/3} enthilt, und Q(v/2,/3) ist nach Definition der kleinste Erweiterungskorper von
Q mit dieser Eigenschaft. Offenbar gilt Q C K; C K (K>), und wegen v/3 € K, ist v/3 auch in K;(K>)
enthalten. Desweiteren gilt v/6 € Ky, somit auch v6 € K;(K3), und mit V3 und /6 ist auch v/2 = %
im Teilkérper K (K>) enthalten.

Fiir die Inklusion ,,C¢ muss K1 U Ky C Q(v/2,v/3) nachgewiesen werden. Wegen {\/§} C {\/5, \/§} ist
K; = Q(v/3) in Q(v/2,V/3) enthalten. Fiir die Inklusion K, = Q(v/6) C Q(v/2,v/3) geniigt es auf Grund
der Teilkorper-Eigenschaft von Q(v/2,/3) zu zeigen, dass Q U {v/6} C Q(v/2,v/3) gilt. Die Inklusion
Q C Q(V2,V/3) ist erfiillt, weil Q(v/2,+/3) nach Definition ein Erweiterungskorper von @ ist, und mit
V2 und /3 ist auch das Produkt v/6 = v/2 -3 in Q(ﬂ, \/3) enthalten.

zu (b) Die Inklusion ,, 2 ist wegen Q C Q(v/3) = K; und Q C Q(v/6) = K> erfiillt. Fiir die Inklusion
»C“ bemerken wir zunéchst, dass K1 NK5 ein Zwischenkdrper von K|Q ist. Laut Vorlesung gilt [Q(y/m) :
Q] = 2 fiir jede quadratfreie Zahl m € Z \ {0, 1}, insbesondere also [K; : Q] = [Q(v/3) : Q] = 2. Auf
Grund der Gradformel gilt

2 = [KlQ] = [KliKlﬁKQ]-[KlﬂKziQ] R

daraus folgt [K1 N Ky : Q] € {1,2}. Im Fall [K; N Ky : Q] = 2 wére [Ky : K1 N Ky = Ky und
somit K1 = K; N Ky, was zu K; C Ky &quivalent ist. Daraus wiederum wiirde folgen, dass V3 in
K> = Q(v/6) enthalten ist. Aus der Vorlesung aber ist bekannt, dass fiir zwei verschiedene, quadratfreie
Zahlen m,n € Z\{0,1} jeweils /m ¢ Q(y/n) gilt. Also muss [K1NK5 : Q] = 1 gelten, woraus K1NKy = Q
folgt.

zu (c) Bereits in Teil (b) wurde festgestellt, dass [K; : Q] = [Q(v/3) : Q] = 2 gilt. Das Polynom f =
22 — 2 € Q(v/3)[x] ist normiert, und es erfiillt f(1/2) = 0. Wiire es iiber Q(v/3) reduzibel, dann miissten
wegen grad(f) = 2 die beiden Nullstellen /2 in Q(v/3) liegen. Weil aber 2 und 3 zwei verschiedene,
quadratfreie Zahlen in Z \ {0,1} sind, gilt v2 ¢ Q(+/3). Also ist f in Q(v/3)[z] irreduzibel, insgesamt
das Minimalpolynom von v/2 iiber Q(v/3). Daraus folgt

L:Q(V3)] = [QW3(V2):Q(W3) = grad(f)=2
und [L: Q] = [L: Q(v3)]- [Q(V3): Q] =2-2=4.



zu (d)  Wir zeigen, dass L ein Zerfillungskérper des Polynoms g = (22 — 2)(22 — 3) iiber Q ist. Daraus

folgt, dass L|Q eine normale und insbesondere eine algebraische Erweiterung ist. Zu zeigen ist Q(N) = L,
also Q(N) = Q(v/2,V3), wobei N die Menge der komplexen Nullstellen von g bezeichnet. Diese Menge ist
gegeben durch N = {£/2,+1/3}, es ist also Q({+£v2, +v3}) = Q(v/2, V/3) nachzuweisen. Die Inklusion
, D% ist wegen {v/2,v/3} C N erfiillt. Mit v/2 und v/3 sind auch —/2, —/3 im Teilkorper Q(v/2,/3) von
R enthalten. Somit ist auch die Inklusion ,,C*“ giiltig.

Als algebraische Erweiterung von @ ist L|Q wegen char(Q) = 0 auch separabel, insgesamt eine Galois-
Erweiterung. Weil L|Q eine Galois-Erweiterung ist, ist die Ordnung der Galoisgruppe G = Gal(L|Q)
durch |G| = [L : Q] = 4 gegeben. Als Gruppe von Primzahlquadratordnung ist G abelsch, und als
endliche abelsche Gruppe ist G isomorph zu einem dufleren direkten Produkt zyklischer Gruppen. Damit
gilt entweder G = Z/4Z oder G = Z/27 x Z/27Z. Wire G zyklisch, also G = Z/4Z, dann gébe
es in G zu jedem Teiler der Gruppenordnung genau eine Untergruppe der entsprechenden Ordnung,
insbesondere genau eine Untergruppe U der Ordnung 2, die in G zugleich vom Index 2 ist, wegen
(G:U) = % = % = 2. Daraus wiederum folgt laut Galoistheorie, dass es genau einen Zwischenkorper
M von L|Q mit [M : Q] = 2 gibt.

Nach Teil (a) sind die Elemente v/2,v/3,v/6 in L enthalten. Daraus folgt, dass Q(v/2), Q(v/3) und Q(+v/6)
Zwischenkorper von L|Q sind. Da es sich bei 2, 3 und 6 um verschiedene quadratfreie Zahlen in Z\ {0,1}
handelt, sind diese Zwischenkorper alle vom Grad 2 tiber  und voneinander verschieden. Es gibt also
mehr als einen Zwischenkérper von L|Q vom Grad 2 iiber Q. Also ist G nicht isomorph zu Z /47, sondern
w1 Z,/27 x 7./ 27.

zu (e) Nach dem Hauptsatz der Galoistheorie stimmt die Anzahl der Zwischenkorper von L|Q mit der
Anzahl der Untergruppen von G = Gal(L|Q) iiberein, wegen der Isomorphie also auch mit der Anzahl
der Untergruppen von Z /27 x 7Z./27.. Nach dem Satz von Lagrange ist die Ordnung jeder Untergruppe
ein Teiler von |Z/27 x Z,/27)]| = 4, also gleich 1, 2 oder 4. Die einzige Untergruppe der Ordnung 1 ist
{(0,0)}, und die einzige Untergruppe der Ordnung 4 ist Z /27 x 7./27.. Jede Untergruppe der Ordnung
2 ist zyklisch, wird also von einem Element der Ordnung 2 erzeugt. Daraus folgt, dass Z/2Z x Z/2Z
genau drei Untergruppen der Ordnung 2 besitzt, nimlich ((1,0)), ((0,1)) und ((1,1)). Insgesamt haben
7.)]27 x 7./27. und G also genau fiinf Untergruppen, und dementsprechend hat die Erweiterung L|Q

genau fiinf Zwischenkorper.

Wie bereits in Teil (d) festgestellt wurde, gibt es drei verschiedene Zwischenkérper vom Grad 2 iiber
Q, namlich Q(v/2), Q(v/3) und Q(v/6). Hinzu kommen der Zwischenkérper Q mit [Q : Q] = 1 und der
Zwischenkérper L mit [L : Q] = 4. Damit haben wir alle fiinf Zwischenkérper von L|Q bestimmt.



Aufgabe F22T3A1

Gegeben sei die Gruppe G = GLa(IF3) der invertierbaren 2 x 2-Matrizen mit Eintrigen im Korper Fs.

(a) Listen Sie alle Elemente von G auf.

(b) Zeigen Sie, dass die natiirliche Operation von G auf dem Vektorraum IF3 einen Isomorphismus
¢ : G — Bij(F3\ {0}) induziert. (Hierbei bezeichne Bij(M) die Gruppe der Bijektionen auf einer
Mengen M.) Zeigen Sie insbesondere, dass G isomorph ist zu Ss, der symmetrischen Gruppe iiber

3 Elementen.

(¢) Zeigen Sie, dass eine Gruppe der Ordnung 30 hochstens 6 Untergruppen der Ordnung 5 haben

kann.

Lésung:

zu (a) Eine 2 x 2-Matrix iiber 5 ist genau dann invertierbar, liegt also in G, wenn die beiden Spalten-
vektoren v und w linear unabhingig sind. Die Ordnung von G ist also gleich der Anzahl der Paare (v, w)
mit linear unabhingigen v,w € F3. Fiir v kann jeder Vektor aus 2 \ {(0,0} gewihlt werden; hierfiir
gibt es genau drei Moglichkeiten. Ist v bereits gewéhlt, so ist (v, w) genau dann linear unabhéngig, wenn
w € T3\ lin(v) gilt. Da lin(v) aus zwei Elementen besteht (nimlich v und dem Nullvektor), stehen fiir
w jeweils 22 — 2 = 2 Elemente zur Auswahl. Insgesamt ist damit gezeigt, dass die Ordnung von G gleich

2 -3 = 6 ist. Offenbar sind die sechs Matrizen in der Menge

o) 6o Ga) o) o) 6]

alle invertierbar, denn die Determinante jeder Matrix ist gleich 1. Also enthilt diese Menge genau die

Elemente der Gruppe G.

zu (b) Die natiirliche Operation von G auf 3 ist gegeben durch G x F3 — IF3, (A, v) — Av. Setzen wir
X = T3\ {0}, dann erhalten wir durch Einschriinkung eine Abbildung - : G x X — F3. Fiir alle A € G
und v € X ist Av # Oz, also Av € X, denn auf Grund der Invertierbarkeit von A besteht der Kern der
linearen Abbildung F% — F%, v — Av nur aus dem Nullvektor. Also kann - als Abbildung G x X — X

betrachtet werden.

Wir zeigen, dass durch diese Abbildung eine Gruppenoperation definiert ist. Fiir alle v € X und alle
ABeGglt E-v=FEv=vund A-(B-v) =A-(Bv) = A(Bv) = (AB)v = (AB) - v, wobei E die

2 x 2-Einheitsmatrix {iber IFy, also das Neutralelement von G, bezeichnet.

Also ist - tatséichlich eine Gruppenoperation von G auf X. Laut Vorlesung existiert somit ein Gruppen-
homomorphismus ¢ : G — Bij(X) mit ¢(A)(v) = A-v = Av fiir alle v € X. Zu zeigen ist, dass es
sich bei ¢ um einen Isomorphismus handelt. Ist A € ker(¢), dann gilt Ae; = ¢(A)(e1) = idx(e1) = €.
Die erste Spalte von A ist also der erste Einheitsvektor e;. Genauso zeigt man, dass die zweite Spal-
te von A gleich ey ist. Insgesamt gilt also A = E. Damit ist nachgewiesen, dass ¢ injektiv ist. Aus
| X| = [F3\ {Opz} = 2* — 1 = 3 folgt auBerdem Bij(X) = S3 und somit |[Bij(X)| = [S3] = 3! = 6 = |G].
Als injektive Abbildung zwischen gleichmé#chtigen endlichen Mengen ist ¢ auch surjektiv, insgesamt ein

Isomorphismus. Also ist G isomorph zu Bij(X), und damit auch zu Ss.

zu (¢) Sei G eine Gruppe der Ordnung 30 = 2-3 -5, und sei v5 die Anzahl der 5-Sylowgruppen von G.
Auf Grund des Dritten Sylowsatzes gilt v5 | 6. Es kann also in G hochstens sechs 5-Sylowgruppen geben.
Wegen 5! | 30, 52 1 30 sind die 5-Sylowgruppen von G genau die Untergruppen der Ordnung 5.



Aufgabe F22T3A2

(a) Bestimmen Sie a,b € Z so, dass (1 +2Z)N (24 3Z)N (3 + 5Z) = a + bZ.
(b) Bestimmen Sie simtliche ganzzahligen Losungen (z,y) € Z2 der Gleichung 2212 + 39y = 26.

(¢) Sei m > 2 und nehmen wir an, dass p = 2™ + 1 eine Primzahl ist. Zeigen Sie, dass eine Restklasse

a € (Z,/pZ)* genau dann die Gruppe (Z/pZ)* erzeugt, wenn a kein Quadrat in Z/pZ ist.

Lésung:

zu (a) Eine Zahl z € Z liegt genau dann in (1 +27Z) N (24 3Z) N (3 + 5Z), wenn sie die Kongruenzen
z=1mod 2, 2 =2 mod 3 und z = 3 mod 5 erfiillt. Wegen 23 = 1 mod 2, 23 = 2 mod 3 und
23 = 3 mod 5 (und weil Kongruenzrelationen Aquivalenzrelationen, also insbesondere transitiv, sind),
ist dies #dquivalent zu z = 23 mod n fiir n € {2,3,5}, also zu n | (z — 23) fiir n € {2,3,5}. Wegen
kgV(2,3,5) = 30 ist dies dquivalent zu 30 | (z — 23), also zu z = 23 mod 30 und somit zu z € 23 + 30Z.
Die Zahlen a = 23 und b = 30 haben also die gewiinschte Eigenschaft.

zu (b) Fiir alle (z,y) € Z? ist die Gleichung 221z + 39y = 26 dquivalent zu 17z + 3y = 2. Dies wiederum
ist dquivalent zu (172 = 2 mod 3) A (y = %(2 — 17z)). Die Kongruenz ist #quivalent zur Gleichung
(2+3Z)(z+2Z) = 2+ 37Z in Z/37Z, somit auch zu x + 2Z = 1+ 3Z, auf Grund der Invertierbarkeit von
2+ 3Z in diesem Ring. Dies wiederum ist dquivalent zur Aussage, dass x = 1+ 3z fiir ein z € Z gilt. Die
Menge der ganzzahligen Losungen der Gleichung ist also gegeben durch {(1+3z, £(2—-17(1+3z))) | z €
Z}, was zu {(1 + 3z,—5—17z) | z € Z} vereinfacht werden kann.

zu (¢) Da p eine Primzahl ist, handelt es sich bei Z/pZ um einen Kérper, und deshalb gilt (Z/pZ)* =
Z/pZ \ {0}. Somit gilt |(Z/pZ)*| = p — 1 = 2". Laut Vorlesung ist die multiplikative Gruppe eines
endlichen Korpers zyklisch, es existiert also ein ¢ € (Z/pZ)* mit (Z/pZ)* = (c). Sei a € (Z/pZ)*

beliebig vorgegeben. Dann existiert ein j € {0,...,p — 2} mit a = /.

,<=“  Ist a kein Quadrat in Z/pZ, dann muss j ungerade sein, denn wire j gerade, j = 2k fiir ein
k € Ny, dann wiirde a = ¢?* = (c*)? folgen im Widerspruch zur Voraussetzung, dass a kein Quadrat
ist. Als ungerade Zahl ist j teilerfremd zur Gruppenordnung 2". Daraus folgt laut Vorlesung, dass ¢ und
a = ¢/ dieselbe Ordnung haben. Es gilt also ord(a) = 2" = |(Z/pZ)*|, und daraus folgt (a) = (Z/pZ)*.

»,=%  Wenn a ein Quadrat ist, a = b? fiir ein b € Z/pZ, dann ist mit a auch b ungleich 0, also eine
Einheit. Weil 2 ein Teiler der Gruppenordnung 2" ist, gilt ord(a) = ord(b?) < Sord(b) = 1[(Z/pZ)*|.
Wegen ord(a) < |(Z/pZ)*| kann a kein Erzeuger von (Z/pZ)* sein.



Aufgabe F22T3A3

Es sei R =Z[i] = {a+1ib| a,b € Z} der Ring der ganzen Gaufi’schen Zahlen.

(a) Bestimmen Sie die Einheitengruppe von R. Fiithren Sie einen expliziten und vollstindigen Beweis

der Korrektheit Thres Ergebnisses.

b) Zeigen Sie, dass zwei Elemente w, z € R genau dann assoziiert sind, wenn w* = z* gilt.
g ) g ) g

(c¢) Essei (1—1) das von dem Element 1 — i erzeugte Ideal von R. Bestimmen Sie das Ideal (1 —14)NZ.

Lésung:

zu (a) Sei N : C — Ry die Normfunktion gegeben durch N(z) = 2%z = |z|? fiir alle z € C. Diese Funktion
ist multiplikativ, denn fiir alle z,w € C gilt N(zw) = |zw|* = (|z||w])? = |z]*|w|?* = N(2)N(w). Die
Einschrinkung von N auf Z[{] nimmt nur Werte in INg an, denn fiir alle a,b € Z gilt N(a + ib) =
la +ib|? = a? + b? € Ny. Ist nun € = a + ib eine Einheit in Z[i], mit a,b € Z, dann gilt N(e)N(e7!) =
N(ee™1) = N(1) = 1, und wegen N(g), N(¢~!) € Ng folgt daraus a? +b? = N(¢) = 1. Die Lésungsmenge
der Gleichung a? + % = 1 in Z? ist L = {(1,0),(-1,0),(0,1),(0,—1)}. Aus (a,b) € L wiederum folgt
e =a+ib € {1,—1,i,—i}. Damit ist Z[i]* C {£1, +i} nachgewiesen. Andererseits zeigen die Gleichungen
1-1=(=1)-(=1) =1i-(—%) = 1, dass alle vier Elemente der Menge {+1, £i} Einheiten sind. Also ist die
Einheitengruppe von Z[i] durch Z[i]* = {£1, +i} gegeben.

zu (b) Sind z,w € ZJ[i] zueinander assoziiert, dann existiert ein ¢ € Z[i]* mit w = ez. Nach Teil (a)
ist € damit in der Menge {+1,+i} enthalten, und wegen 1 = (—=1)* = i* = (—i)? = 1 folgt & = 1.

4 4 4

Damit wiederum erhalten wir w* = e*2* = 1. 2* = 2. Setzen wir umgekehrt w* = z* voraus, dann gilt

entweder w = z = 0 oder w, z # 0. Im ersten Fall sind w und z wegen 0 = 1 - 0 zueinander assoziiert.
Ansonsten kann die Gleichung z* = w?* zu (%)4 — 1 = 0 umgeformt werden. Die einzigen komplexen
Nullstellen des Polynoms z* — 1 sind £1, %i, also die Einheiten von Z[i]. Dies zeigt, dass w = % .z = ez

fiir ein e € Z[i]* erfiillt, die Elemente w, z also zueinander assoziiert sind.

zu (c) Wir zeigen, dass (1 —4) N Z = 2Z gilt. Als Urbild des Ideals (1 — ¢) unter dem Inklusions-
homomorphismus Z — Z[i], a — a ist (1 —4) ein Ideal in Z, und dieses enthilt 2 wegen 2 € Z
und 2 = (1+4)(1 —4) € (1 —4). Aus 2 € (1 —4) N Z und der Idealeigenschaft von (1 — i) N Z folgt
2Z C (1 —4)N Z. Sei nun umgekehrt a € (1 —i) NZ vorgegeben. Dann gilt a = - (1 — 1) fiir ein 7y € Z[i].
Wegen a? = N(a) = N(y)N(1 — i) = 2N(v) ist a? gerade. Damit ist auch a gerade, also a € 2Z.



Aufgabe F22T3A4

Es sei K ein Teilkorper von C, so dass K|Q eine Galois-Erweiterung vom Grad 4 mit zyklischer Galois-
gruppe Gal(K|Q) ist. Zeigen Sie, dass dann i ¢ K gilt.
Hinweis: Nehmen Sie an, dass ¢ € K gilt und betrachten Sie K|Q(7).

Lésung:

Sei G = Gal(K|Q), und nehmen wir an, es gilt i € K. Dann ist Q(7) ein Zwischenkorper von K|Q. Weil
—1 eine quadratfreie Zahl in Z\ {0, 1} ist, ist Q() = Q(v/—1) eine Erweiterung von Q vom Grad 2. Laut
Galoistheorie ist U = Gal(K|Q(i)) damit eine Untergruppe vom Index 2, und wegen |U| = % =2=2
ist diese auch von Ordnung 2. Weil G zyklisch ist, gibt es fiir jeden Teiler der Gruppenordnung 4 genau

eine Untergruppe der Ordnung 4. Daraus folgt, dass U die einzige Untergruppe der Ordnung 2 in G ist.

Sei nun p : K — C die Einschriankung der komplexen Konjugation z + z auf K. Diese Abbildung
ist ein Q-Homomorphismus, und weil K|Q als Galois-Erweiterung insbesondere normal ist, sogar ein Q-
Automorphismus von K, also ein Element der Galoisgruppe G. Fiir alle a € K gilt p?(a) = p(a@) = & = a,
also p? = idg. Wegen i € K und p(i) = —i # i ist andererseits p # idg. Also ist p € G ein Element
der Ordnung 2. Weil U die einzige Untergruppe der Ordnung 2 in G ist, muss (p) = U und insbesondere
p € U gelten. Aber wegen U = Gal(K|Q(7)) folgt daraus p(i) = ¢, im Widerspruch zu p(i) = —i. Also ist
die Annahme i € K falsch, und es folgt ¢ ¢ K.



Aufgabe F22T3A5

Es sei K = Q(\s/i, \/572)

(a) Bestimmen Sie den Grad der Korpererweiterung K|Q.

(b) Entscheiden und begriinden Sie, ob es einen Q-Homomorphismus ¢ : K — C mit o(3/2) = V3
gibt.

(¢) Entscheiden und begriinden Sie, ob die Erweiterung K |Q galoissch ist.

Losung:

zu (a) Das Polynom f = 2® —2 € Q[z] ist irreduzibel auf Grund des Eisenstein-Kriteriums (angewendet
auf die Primzahl 2), es ist normiert und erfiillt f(3/2) = 0. Also ist f das Minimalpolynom von +/2 iiber
Q, und wir erhalten [Q(v/2) : Q] = grad(f) = 3. Weil 3 eine quadratfreie Zahl in Z \ {0,1} ist, gilt laut
Vorlesung [Q(v/3) : Q] = 2. Das Polynom g = 2% — 3 € Q(+3/2)[z] ist normiert und erfiillt g(v/3) = 0.
Wiire es in Q(+/2)[z] reduzibel, dann miisste die Nullstelle v/3 von g wegen grad(g) = 2 in Q(+/2) liegen.
Es wire dann Q(v/3) ein Zwischenkérper von Q(+v/2)|Q, und die Gradformel wiirde

3= [Q(V2):Q = [Q(V2):Q(V3)]-Q(V3):Q = [Q(V2):Q(V3)]-2

liefern. Es gilt aber 2 t 3, und somit ist g in Q(3/2)[z] irreduzibel. Somit ist g das Minimalpolynom
von /3 iiber Q(+/2), und es folgt [Q(v/2,v3) : Q(V/2)] = grad(g) = 2. Schlieflich ist das Polynom
h = 2% +1 € Q(V/2,V/3)[x] normiert und erfiillt h(i) = 0. Wire es iiber Q(+v/2,+/3) reduzibel, dann
miisste wegen grad(h) = 2 die Nullstelle 7 in Q(+/2,v/3) liegen. Aber dies ist wegen Q(+/2,v/3) C R und
i ¢ R nicht der Fall. Also ist h in Q(+/2,v/3)[z] irreduzibel, insgesamt das Minimalpolynom von  iiber
Q(¥/2,v/3). Daraus folgt

Q(VZ,V3.0): Q(V2,V3) = grad(h) — 2.
Mit der Gradformel erhalten wir nun

Q(V2,v3,i):Q] = [[Q(V2,V3,i):[Q(V2,V3)]-[Q(V2,V3) : Q(V2)] - [Q(V2) : Q]
= 2-2-3 = 12.

zu (b) Nehmen wir an, ein Q-Homomorphismus ¢ wie angegeben existiert. Ist f € Q[z] und a € C eine
Nullstelle von f, dann muss laut Vorlesung ¢(a) eine Nullstelle desselben Polynoms sein. Da nun /2
eine Nullstelle von f = 2% — 2 ist, miisste auch ¢(+v/2) = v/3 eine Nullstelle von f sein. Tatsichlich gilt
aber f(v/3) # 0, denn die komplexen Nullstellen von f sind v/2, (V/2 und ¢?v/2 mit ¢ = —1 + /=3,
insbesondere ist /2 die einzige reelle Nullstelle. Also existiert kein Q-Homomorphismus ¢ : K — C mit

P(V2) = V3.

Anmerkung:
In der Orginalfassung der Aufgabenstellung war von einem Q-Automorphismus K — C die Rede. Das
ist natiirlich nicht sinnvoll, denn bei einem Automorphismus (egal ob von Kérpern, Ringen, Gruppen

oder Vektorrdumen) miissen Definitions- und Wertebereich stets iibereinstimmen.



zu (¢) Wir zeigen, dass die Erweiterung K |Q normal ist, indem wir nachweisen, dass es sich bei K um
den Zerfillungskoérper des Polynoms g = (2® — 2)(z? + 1) € Q[x] iiber @ handelt. Wie bereits in Teil (b)
festgestellt, ist {4/2,(V/2,¢?¥/2} mit ¢ = —3 + /3 die Menge der komplexen Nullstellen von z* — 2,
und +i sind die komplexen Nullstellen von x? + 1. Daraus folgt, dass N = {v/2,(V/2,(?V/2,i, —i} die

Nullstellenmenge von g ist. Zu zeigen ist also
QIN) = Q(V2,v3,4).

,C“ Es geniigt, N C Q(+/2,V/3,1) nachzuweisen. mit v/3 und i ist auch /=3 = iv/3 in Q(¥/2,v/3,1)
enthalten, damit auch ( = —%—i—% —3und (2. Da auch V/2 und +i in Q(\s/?, V3, 1) liegen, folgt insgesamt
N = {\?/ia C\a/ia <2 \?/ia ia 72} g Q(\?’/ﬁ7 \/ga Z)

,2D%  7Zu zeigen ist {v/2,v/3,i} € Q(N). Wegen v/2,i € N gilt v/2,i € Q(N). Mit v/2 € Q(N) und
¢¥2 € Q(N) gilt auch ¢ = C;‘? € Q(N) und damit auch /-3 =2 +1 € Q(N). Aus v/—3 € Q(N) und
i € N C Q(N) folgt V3 = (—i)y/=3 € Q(N). Damit ist die Inklusion {¥/2,v/3,i} C Q(N) vollstindig

nachgewiesen.

Als normale Erweiterung ist K |Q insbesondere algebraisch, und wegen char(Q) = 0 damit auch separabel.

Insgesamt ist K|Q also tatsiichlich eine Galois-Erweiterung.



Aufgabe H22T1A1

Gegeben sei die Gruppe

a b
G - {< ) 6M27Q
0 ¢

der invertierbaren oberen 2 x 2-Dreiecksmatrizen iiber Q). Ferner seien

r{( Yeooa) i o {(t ) eo]smo)

(a) Zeigen Sie, dass H ein Normalteiler von G ist und dass durch

o ()

ein wohldefinierter Gruppenisomorphismus gegeben ist.

a,b,cEQ,ac;ﬁO}

(b) Zeigen Sie, dass U eine Untergruppe von G, aber kein Normalteiler ist.

(c) Betrachten Sie die Operation von U auf H durch Konjugation. Geben Sie ein Représentantensystem

der Bahnen dieser Gruppenoperation an.

Lésung:
zu (a) Wir beweisen die Existenz des angegebenen Isomorphismus durch Anwendung des Homomor-

phiesatzes fiir Gruppen. Sei ¢ : G — Q* gegeben durch

b
@((a )) - ¢ fir a,ce Q* und b € Q.
0 c c

Diese Abbildung ist ein Gruppenhomomorphismus, denn fiir alle a, a1, ¢, c; € Q* und alle b, b; € Q gilt

R a b ar b . aa; aby + bcy B ﬂaa e _a
A6 2) - o5 ) - e - b
. . a b . aq b1
- v 0 c 4 0 '

Fiir alle a,c € Q* und b € Q gilt die Aquivalenz

@b eker(p) & & b 1 & 221 & & @b €eH
er = —_ = cC=a .
0 c 4 4 0 c c 0 c

Dies zeigt, dass H = ker(p) gilt. Als Kern eines Gruppenhomomorphismus G — Q* ist H ein Normal-

teiler von G. Dariiber hinaus ist ¢ surjektiv. Ist ndmlich a € Q* vorgegeben, dann gilt

a 0 a 0
<0 1>€Gwegena~1:a7é0 und auflerdem @((0 1>>:a-1:a.

Damit ist nachgewiesen, dass ¢ die Voraussetzungen des Homomorphiesatzes erfiillt. Auf Grund des

Satzes existiert ein wohldefinierter Isomorphismus G/H — Q* gegeben durch

G- ()



fiir alle a,c € Q* und b € Q. Dieser stimmt offenbar mit der in der Aufgabenstellung angegebenen
Abbildung iiberein.

zu (b)  Zunichst zeigen wir, dass U eine Untergruppe von G ist. Das Neutralelement von G ist die
Einheitsmatrix Es, und diese ist offenbar in U enthalten (setze a = ¢ = 1. Seien nun A4, A; € U

vorgegeben. Dann sind auch AA; und A~! in U enthalten. Denn wegen A, A; € U gibt es a,a1,¢,c; € Q*

A= a 0 und A; = a0 ,
0 ¢ 0 ¢

0 -1
A4, = [ 1" ceU und A [° cU
0 cc 0 ¢!

wegen aaq,cc; € Q*. Wire U ein Normalteiler, dann wire wegen

2 0 1 1
B = c¢U und T = eG
0 1 0 1

auch TBT~! in U enthalten. Tatséichlich aber gilt

R O [ [ R (I [ T
SEIED -6 e

zu (¢) Um zu erkennen, welche Gestalt die Bahnen der Gruppenoperation haben, wenden wir ein

mit

und es folgt

beliebiges Element der Gruppe U auf ein beliebiges Element der Menge H an. Fiir alle a, a1, ¢ € Q* und
b1 € Q gilt
-1

a 0 a1 by B a 0 a1 b a O B a 0 a1 b a”t 0
0 ¢ 0 a 0 ¢ 0 a 0 ¢ 0 ¢ 0 a 0 ¢!
B aay; aby a0 B a1 abyc !

0 ca 0 ¢! 0 a1 )

Ist by = 0, dann besteht die Bahn also nur aus der Diagonalmatrix aj FEs, ansonsten durchlduft der

Eintrag rechts oben alle Elemente aus Q. Dies fithrt uns zu der Behauptung, dass die Teilmenge R C H

v {0

ein Reprisentantensystem der Bahnen der Operation ist. Bezeichnet B die Menge der Bahnen, so miissen

gegeben durch

a1 € QX , & 6{0,1}}

wir nachweisen, dass die Abbildung ¢ : R — B, A — U(A) surjektiv und injektiv ist. Zum Nachweis der
Surjektivitiit sei U(A) € B vorgegeben, mit

b
A:(al 1>€H . a €QX, b eqQ.

0 ap



Ist by = 0, dann liegt A selbst bereits in R, und es gilt ¢(A) = U(A). Betrachten wir nun den Fall b; # 0.

Dann gilt
1 1 0
“ €R und cU
0 a1 0 b

wegen a1 € Q% und 1,b; € Q*, und auflerdem
-1
1 0 ay b1 B 1 0 ay b1 1 0 B 1 0 ay b1 1 0
0 b 0 a)  \o b/\0o a/)\0 b N0 b ) \o @) \o B!
_ 1 0 aaq 1 _ a; 1
B 0 bl 0 albl_l B 0 aq .

Es folgt

und somit

(;5 aq 1 _ U aq 1 _ U aq bl '
0 a 0 a1 0 a;
Damit ist der Nachweis der Surjektivitit abgeschlossen.

Zum Nachweis der Injektivitéit seien

) Go)emm o o))< ((2)

vorgegeben, wobei a,a; € Q* und ¢,¢; € {0,1} sind. Nach Definition der Abbildung ¢ folgt

o) (o) e () (C)

Es gibt also ein Element

as 0 cU mit ay €1 _ a2 0 ) a €
0 e 0 a1 0 ¢ 0 a

und as, co € Q*. Es gilt also

-1
a1 €1 B as 0 a € _ ay 0O a € as 0 B
0 am 0 co 0 a 0 e 0 a 0 e
az 0 a €\ (azt 0 B az 0 aay b ecyt a agecyt
0 ¢ 0 a 0 ¢y ! 0 ¢ 0 acy ! 0 a
Durch Vergleich der Eintrége erhalten wir a; = a und €1 = agecy 1. Wieder unterscheiden wir zwei Fille.

Ist € = 0, dann folgt 1 = 0 und somit insgesamt

() -G

Ist e = 1, dann folgt €1 = azscgl # 0, wegen 1 € {0,1} also &1 = 1. Dies zeigt, dass die beiden Elemente

aus R auch in diesem Fall iibereinstimmen.



Aufgabe H22T1A2

Sei R der Faktorring Q[z]/(2? — 7x + 12).

(a) Zeigen Sie, dass R als Ring isomorph zu Q x Q ist.
(b) Geben Sie explizit einen Ringisomorphismus ¢ : @ x Q — R an.

(c) Bestimmen Sie alle Zahlen a € @, so dass die Restklasse von =+ a in R eine Einheit ist, und finden

Sie jeweils das dazu inverse Element.

Lésung:
zu (a) Die p-g-Formel liefert fiir das Polynom f = 22 — 7x + 12 die Nullstellen 3 und 4. Die Polynome
x—3 und z—4 sind als Polynome vom Grad 1 irreduzibel, und da sie nicht zueinander assoziiert sind, sind

sie teilerfremd. Der Chinesische Restsatz kann somit angewendet werden und liefert einen Isomorphismus

¢: R=Q[z]/(f) = Qlzl/(z = 3) x Qlal/(x =4) , g+ (/)= (9+(x=3),9+ (x—4))

von Ringen. Fiir jedes a € Q sei p, : Q[z] — g, g — g(a) der Auswertungshomomorphismus an der Stelle
a. Dieser ist surjektiv, denn fiir vorgegebenes ¢ € Q gilt p,(c) = c(a) = ¢. Es gilt ker(p,) = (x — a), auf

Grund der Aquivalenz
g€ker(pa) & palg) =0 & gla)=0 & (z-a)|lg & ge(z—aqa)

fiir alle g € Q[z]. Der Homomorphiesatz fiir Ringe ist also anwendbar und liefert fiir jedes a € @ einen
Isomorphismus g, : Q[z]/(x —a) = Q, g+ (x —a) — g(a). Durch (g4 (z —3),9+ (x —4)) — (9(3),9(4))
ist somit ein Isomorphismus v : Q[z]/(x — 3) x Q[z]/(z — 4) — Q x Q definiert, und insgesamt ist ¢ o ¢
ein Isomorphismus zwischen R und Q X Q.

zu (b) Die Gleichung 1+ (z—3) 4+ (—=1)-(z—4) =1 kann zu 1 + (3 — z) = 4 — 2 umgestellt werden und
liefert wegen ¢(4 —x + (f)) = (4—2)+ (z —3),(4 —2) + (x —4)) = (1 + (x — 3),0 + (v — 4)) ein Urbild
von (1+ (z—3),0+ (x —4)) € Q[z]/(z — 3) x Q[z]/(x — 4) beziiglich ¢. Ebenso iiberpriift man, dass der
Isomorphismus ¢ das Element z — 3 + (f) auf (0 + (z — 3),1 + (x — 4)) abbildet. Fiir alle hy, hy € Q[z]
gilt

(4 —2)h +(x=Dha +(f) = dlha +(f))o(d—a+ (f)) + ¢(ha + (f))d(z — 3+ (f))
= (M+(x-3),h+@—4)1+(x—-3),0+ (z—4)+
(ha+ (z—3),ha+(x—4) 0+ (z—3),1+(z—4)) =
(h1+(x—=3),0+(x—4)+ 0+ (x—=3),ha+(x—4) = (h1+(x—3),ha+ (x—4)).

)
(

Dies zeigt, dass die Umkehrabbildung von ¢ durch ¢! (h;+(x—3), ho+(x—4)) = (4—z)h1+(x—3)ha+(f)
gegeben ist. Die Umkehrabbildung von 1 ist offenbar gegeben durch ¢~!(c,d) = (c+ (z —3),d+ (x — 4))
fiir alle (¢, d) € Q x Q, denn es gilt jeweils ¥(c+ (x —3),d+ (z—4)) = (¢(3),d(4)) = (¢, d). Die Abbildung
¢~ o9p~1 ist ein Isomorphismus Q x Q — Q[x]/(f), und dieser ist explizit gegeben durch

(o Ve, d = ¢ e+ (x—3),d+(x—4) = cd—z)+dxz—3)+(f)
= (d—c)z+4c—3d+(f)

fir alle ¢,d € Q.



zu (c) Sei a € Q. Da es sich bei 1) 0 ¢ um einen Isomorphismus von Ringen handelt, ist das Element
x—a+(f) genau dann eine Einheit in R, wenn (Yo ¢)(z —a+(f)) =(z—a+(x—3),z—a+ (x—4)) =
(3 —a,4 — a) eine Einheit in Q ist. Wegen (Q x Q)* = Q* x Q* = (Q\ {0}) x (Q\ {0}) ist dies genau
dann der Fall, wenn 3 — a # 0 und 4 — a # 0 gilt, also genau dann, wenn a ¢ {3,4} gilt.

Das Inverse von (Y0 @)(z —a+(f)) = (3—a,4—a) in Q x Q ist (52—, ~). Das Inverse von = —a + (f)

3—a’4—a

in R ist somit gegeben durch

Wod) ' its) = 6lov i) = 7 (G e-3) +-9)
4—x x—3
T 3-4 4—a+(f)'

Anmerkung:
Dass dieses Element tatséiichlich das Inverse von « — a + (f) ist, kann auch durch eine direkte Rechnung

iiberpriift werden: Wegen (4 — a)(3 — a) = f(a) gilt

4—x -3 _ (4-z)4-a)+(@—-3)3-a) Az —a
(222 ) emarin = ! D) e -a+ (1)

= (f(a)7"((16 — 4z —da+az) + (3z — 9 — az + 3a)) + (f)) - (x —a+ (f))

= (fla(—z+7—a)+(f)) - @—a+(f) = fl@ ' (—z+T7—a)(z—a)+(f)
= fla) (=2 +Tz+ala=7)+(f) = fla)(=2>+Tz+ala=T7)+f)+(f))
= fla) ' (=2*+Tz+ala—7)+2> =Tz +12)+ (f) = f(a) "(ala—T7)+12)+(f)

= fla7 @ -Ta+12)+(f) = fl@ ' fl@+(f) = 1+() = Ir



Aufgabe H22T1A3

(a) Sei L|K eine endliche Galois-Erweiterung und sei a € L. Zeigen Sie, dass a genau dann ein primitives

Element fiir L| K ist, wenn die Elemente o(a) fiir alle o € Gal(L|K) paarweise verschieden sind.

(b) Beweisen Sie, dass Q(v/3,4)|Q eine Galois-Erweiterung ist und bestimmen Sie die Elemente der
Galois-Gruppe.

(c) Zeigen Sie, dass fiir alle ¢ € Q \ {0} das Element a = /3 + ¢i ein primitives Element der Galois-
Erweiterung Q(v/3,4)|Q ist.

Lésung:
zu (a) ,=“ Nach Voraussetzung gilt L = K(a). Daraus folgt, dass jedes Element o € Gal(L|K) durch
das Bild o(a) bereits eindeutig bestimmt ist. Sind also o,7 € Gal(L|K) mit o(a) = 7(a), dann folgt

o = 7. Setzen wir umgekehrt o # 7 voraus, dann muss also o(a) # 7(a) gelten.

»<=“ Auf Grund der Voraussetzung folgt fiir jedes ¢ € Gal(L|K) aus o(a) = a = idp(a) bereits
o =idy. Ist nun o € Gal(L|K(a)), dann gilt o(y) = ~ fiir alle v € K(a), insbesondere also o(a) = a und
somit o = idy. Es gilt also Gal(L|K (a)) = {id,} = Gal(L|L). Nach dem Hauptsatz der Galoistheorie
ist M — Gal(L|M) eine bijektive Korrespondenz zwischen den Zwischenkérpern von L|K und den
Untergruppen von Gal(L|K). Aus der Gleichheit Gal(L|K (a)) = Gal(L|L) folgt also L = K(a), d.h. a

ist ein primitives Element der Erweiterung L|K.

zu (b) Die Elemente v/3 und i sind Nullstellen des Polynoms f = (22 — 3)(2? + 1) € Q[z] und so-
mit algebraisch iiber Q. Daraus folgt, dass Q(v/3,4)|Q eine algebraische Korpererweiterung ist. Wegen
char(Q) = 0 ist Q(v/3,4)|Q als algebraische Erweiterung auch separabel. Dariiber hinaus ist die Er-
weiterung normal. Um dies zu zeigen, weisen wir nach, dass Q(v/3,7) in C der Zerfillungskérper von
f iiber Q ist. Offenbar sind die Elemente der Menge N = {4+/3,4i} Nullstellen von f, und wegen
grad(f) = 4 = |N| kann es keine weiteren geben. Somit ist Q(NNV) der Zerfillungskorper von f iiber Q.
Wegen /3,7 € N gilt Q(v/3,i) C Q(N). Umgekehrt enthilt Q(v/3,7) neben /3 und i auch —/3 und
—i (weil Q(V/3,1) als Teilkérper von C abgeschlossen unter der Bildung von Negativen ist). Es gilt also
N C Q(V/3,14), und weil Q(v/3,i) ein Zwischenkérper von C|Q ist, folgt daraus auch Q(N) C Q(v/3,1),
insgesamt also Q(N) = Q(v/3,1).

Also handelt es sich bei Q(v/3,7)|Q tatséichlich um eine Galois-Erweiterung. Sei G' die zugehérige Galois-
Gruppe; laut Vorlesung ist die Ordnung dieser Gruppe durch |G| = [Q(V/3,4) : Q] gegeben. Laut Vorle-
sung gilt [Q(v/3) : Q] = 2, weil 3 eine quadratfreie ganze Zahl ungleich 0, 1 ist. Das Polynom g = 2% + 1
ist normiert und hat i als Nullstelle. Wire es iiber Q(v/3) reduzibel, dann wiren wegen grad(g) die
beiden Nullstellen +i in Q(+v/3) enthalten. Aber dies ist unmdoglich, denn wegen v/3 € R gilt einerseits
Q(v/3) C R, andererseits aber +i € C\ R. Also ist g iiber Q(v/3) irreduzibel, insgesamt das Minimalpo-
lynom von i iiber Q(v/3). Es folgt

Il
o

[Q(V3.4):Q(W3)] = [Q(V3)(i):Q(V3)] = grad(g)
und mit der Gradformel erhalten wir |G| = [Q(v/3,4) : Q] = [Q(v/3,4) : Q(v/3)] - [Q(V3) : Q] =2 -2 = 4.



Weil das Polynom g iiber Q(\/g) irreduzibel ist, und weil 47 Nullstellen von ¢ sind, existiert auf Grund
des Fortsetzungssatzes ein Element 7 € Gal(Q(v/3,i)|Q(v/3)) mit 7(i) = —i. Insbesondere ist 7 ein
Element der Gruppe G, mit 7(v/3) = /3 und 7(i) = —i. Das Polynom h = 22 — 3 ist irreduzibel iiber
Q(i). Wire es namlich reduzibel, dann wiirden die beiden Nullstellen ++/3 bereits in Q(4) liegen, und
daraus wiirde Q(v/3,1) = Q(i) folgen. Da —1 eine quadratfreie Zahl in Z \ {0, 1} ist, ergiibe sich daraus
[Q(v3,4) : Q] = [Q(i) : Q] = [Q(v/—1) : Q] = 2. Aber dies steht Widerspruch zu unserer Feststellung
[Q(v/3,4) : Q] = 4 von oben. Da 4+/3 Nullstellen von h sind, liefert der Fortsetzungssatz ein Element
o € Gal(Q(v/3,4)|Q(:)) mit o(v/3) = —v/3, also ein Element o € G mit o(v/3) = —v/3 und o(i) = .

Neben idQ( V3 O und 7 ist o o 7 ein weiteres Element der Gruppe G. Dieses stimmt mit keinem der
drei anderen Elemente iiberein, denn es gilt einerseits (o o 7)(i) = o(—i) = —o(i) = —i und somit
ooT #idg 3,0 (wegen idg 3 ,(i) = o(i) = i), andererseits aber auch (o o 7)(V3) = a(\/3) = =3
und somit o o7 # 7 (wegen 7(v/3) = v/3). Wegen |G| = 4 ist damit insgesamt G = {idg(yz,). 0, 00T}

nachgewiesen.

zu (¢) Sei g€ Q\ {0} und a = v/3 + ig. Nach Teil (b) sind idg (3, 0, 7 und o o 7 die Elemente von
Gal(Q(v/3,1)|Q), und es gilt idQ(ﬁ,i) (a) = V3 +iq, o(a) = —/3 +iq, 7(a) = V3 —igund (o 07)(a) =
J(\/§ —iq) = —/3 —iq. Je zwei dieser komplexen Zahlen unterscheiden sich im Real- oder Imaginérteil.
Die vier Bilder von a unter den Elementen der Galois-Gruppe sind also paarweise verschieden. Nach Teil

(a) folgt daraus, dass a ein primitives Element der Erweiterung Q(v/3,1)|Q ist.



Aufgabe H22T1A4

Betrachten Sie das Polynom f = z* + 522 +5 € Q[z]. Es sei Z C C sein Zerfillungskérper in € und
«a € Z eine Nullstelle.

(a) Dividieren Sie das Polynom f durch x? — a? € Q(«)[z], ohne die Nullstelle exiplizit zu berechnen.
(b) Zeigen Sie, dass die Gleichung (a? + 3a)? = —(5 + o?) gilt.

(c) Zeigen Sie, dass [Z : Q] = 4 und Gal(Z|Q) = Z/4Z gilt.

Losung:
zu (a) Entsprechend der Vorgehensweise bei der Polynomdivision berechnen wir zunéichst die Differenz
f—2%(2?—a?) = f—2* +a?2? = (5+ a?)z? + 5 und subtrahieren anschliefend (5 + a?)(2? — o?). Wir

erhalten

5+a®)z?+5—(5+a®)(z?—a?) = bx?+a?2®+5-522 —a’r? +5a° +at =
5+5a+a* = f(a) = 0.

Insgesamt gilt also
f—2*@*—a?) =56+ —a?) =0
was zu f = (22 + o? + 5)(2% — o?) umgeformt werden kann.

zu (b) Das Polynom f € Z[z] ist auf Grund des Eisenstein-Kriteriums (angewendet auf die Primzahl 5)
irreduzibel iiber Z und damit auch iiber Q. Auerdem ist es normiert, und es gilt f(a) = 0. Insgesamt
handelt es sich also um das Minimalpolynom von « iiber Q. Laut Vorlesung folgt daraus, dass [Q(«) : Q] =
grad(f) = 4 und B = {1, a, a?, a®} eine Basis von Q(«) als Q-Vektorraum ist. Die Elemente (a® + 3)?
und —(5 + «)? stimmen also genau dann {iberein, wenn ihre Darstellung als Linearkombination von B

iibereinstimmt.

Nun gilt einerseits —(5 + a?) = (=5) + (—=1)a?. Um auch (a® + 3a)? als Linearkombination von B
darzustellen, formen wir die Gleichung a* + 502 +5 = f(a) = 0 zunichst zu a* = —5 — 502 um. Wir

erhalten dann b = o? - a* = o?(—5 — a?) = —5a? — 5a* = —5a2 + 25 + 2502 = 2002 + 25. Es folgt
(@®+3a)? = a®+6a*+9 = 200 +25-30a>-30+9a> = (=5)+(-1)a’
Also stimmen die Elemente tatséchlich tiberein.

zu (¢) Bereits in Teil (b) wurde nachgewiesen, dass [Q(«) : Q] = 4 ist. Nun zeigen wir noch, dass Q(«)
mit dem Zerfallungskorper Z von f iiber @ {ibereinstimmt und erhalten somit die gewiinschte Gleichung
[Z : Q] = 4. Nach Definition gilt Z = Q(N), wobei N die Menge der komplexen Nullstellen von f
bezeichnet. Zu zeigen ist also Q(a) = Q(N). Wegen f(a) = 0 gilt a € N und somit Q(a) C Q(N). Fiir
die umgekehrte Inklusion geniigt es, N C Q(«) zu Uberpriifen. Die Zerlegung

f = (*+a?+5)(2% —a?)

aus Teil (a) zeigt, dass £« in N liegen.



Aus der Gleichung (a® + 3a)? = —(5 + a?) aus Teil (b) folgt, dass auch +(3a + o?) Nullstellen von f

sind, denn es gilt
fBa+a®) = (Ba+a®)?+a®+5)(Ba+a®)?—a?) =
(—6+aH)+a?+5)(Ba+a®?-a?) = 0-(Ba+a®)?-a?) = 0 ,

und ebenso erhiilt man f(—3a — a?) = 0. Die Elemente +« und +(3a + o) sind paarweise verschieden,
denn wie in Teil (b) gezeigt wurde, ist B = {1,a,a? a3} eine vierelementige Basis von Q(a) als Q-

Vektorraum, und fiir beliebige bg, b1, b2, b3 € Q und cg, 1, c2, c3 € Q gilt somit

by + bia+ bea® + bsa® = g + cra+ c2a? + ez’

dann und nur dann, wenn b; = ¢; fiir 0 < 7 < 3 erfiillt ist. Da f als Polynom vom Grad 4 nicht mehr
als vier komplexe Nullstellen besitzen kann, muss N = {4a, £(3a + o)} gelten. Dies zeigt, dass N
tatsichlich in Q(«) enthalten ist.

Als Zerfiallungskorper des Polynoms f € Q[z] iiber Q ist Z ein normaler Erweiterungskérper von
Q. Insbesondere ist die Erweiterung Z|Q algebraisch, und wegen char(Q) = 0 somit auch separa-
bel. Insgesamt handelt es sich bei Z|Q um eine Galois-Erweiterung, und laut Vorlesung folgt daraus
|Gal(f|Q)| = Gal(Z|Q) = [Z : Q] = 4. Fiir den Isomorphismus Gal(f|Q) & Z/4Z geniigt es somit
zu zeigen, dass in Gal(f|Q) ein Element der Ordnung 4 existiert. Weil f irreduzibel ist und « und
3a+a® Nullstellen von f sind, existiert auf Grund des Fortsetzungssatzes ein Element o € Gal(f|Q) mit
o(a) = 3a+a®. Wegen |Gal(f|Q)| = 4 ist nur ord(c) € {1,2,4} moglich. Um zu zeigen, dass ord(c) = 4
gilt, geniigt es somit 02 # idz nachzuweisen, und hierfiir wiederum ist 0?(a) # « hinreichend. Mit Hilfe

der Gleichungen a* = —5 — 5a2, a8 = 2002 + 25 und (3a + a3)? = —5 — a2 aus Teil (b) erhalten wir

Ba+a®)? = Ba+a®)2Bat+a®) = (-5-aH)Ba+a®) = —15a—3a®—5a°—a’
= —15a—-8a®—a'a = —15a—8a%+ (5+50%)a
= —15a—8a°+5a+5a° = —10a—3a’
und somit
o?(a) = o(o(a) = oBa+a®) = 3o(a)+o(@)? = 3Ba+a®)+(Ba+a’)?
= 9a+3a°—10a—30®> = -—a.

Also gilt tatsichlich o?(a) # a.



Aufgabe H22T1A5

Sei ®,, € Q[z] das n-te Kreisteilungspolynom iiber Q. Zeigen Sie:

(a) Es gilt 2" — 1 = (z — 1)h mit einem Polynom h € Q[z] mit A(1) = n.
(b) Ist n = p* fiir eine Primzahl p und k > 1, so gilt ®,,(1) = p.

(¢) Hat n mindestens zwei Primzahlen p # ¢ als Teiler, so ist ®,,(1) = 1.

Lésung:
zu (a) Bekanntlich gilt 2" — 1 = (z — 1)h mit h = ZZ;& zF, und es ist h(1) = Y72 é 1k = Z;é 1=n.

zu (b) Laut Vorlesung ist das Kreisteilungspolynom zu einer Primzahlpotenz p* (mit k > 1) gegeben
durch @, = Y073 297" Folglich gilt @, (1) = Y-0— 197" " = Y0711 =

zu (¢) Wir beweisen die folgenden beiden Aussagen.

(i) Ist n € IN und sind p, g zwei verschiedene Primteiler von n, dann gilt ®,,(1) | n,
aber p{ ®,,(1) und ¢t ®,(1).

(ii) Es gilt ®,(1) > 0 fiir alle n € N mit n > 2.

Aus Teil (i) folgt, dass @, (1) keine Primteiler hat, sobald n mindestens zwei verschiedene Primteiler

besitzt, in diesem Fall also ®,,(1) € {1} gilt. Zusammen mit (ii) folgt dann ®,,(1) = 1, wie gewiinscht.

zu (i)  Aus der Vorlesung ist bekannt, dass =" — 1 = [[;,, ®a gilt, wobei d die Teiler von n in IN
durchléuft. Nach Teil (a) existiert ein Polynom h,, € Z[z] mit z" — 1 = (¢ — 1)h,, und h, (1) = n. Wir
erhalten

(x—Dh, = 2"-1 = (z-1) H Dy

d|n
d#1

und die Anwendung der Kiirzungsregel im Integrititsbereich Qx| liefert h,, = ] din,dz1 Pa = P -
[T4jn.a21,n ®a- Dies zeigt, dass ®,,(1) ein Teiler von hy,(1) = n ist. Seien nun a,b € N so gewéhlt, dass
n = p*¢m gilt, mit einem zu p und ¢ teilerfremden m, und setzen wir S = {d € N | d | n,d { p®,d {

¢, d # n}. Dann kénnen wir das Polynom h,, in der Form

a b
ho = ] @ [ @ ®n-r
k=1 (=1

mit 7 = [[;cg Pa € Z[z] schreiben. Mit Hilfe der Ergebnisse von Teil (a) und (b) erhalten wir
p’¢"m = n = h,(1) = p*-¢ 0,(1)-7(1)

und somit m = ®,(1) - r(1). Es folgt ®,(1) | m. Wegen ggT(m,pq) = 1 ergibt sich daraus wiederum
p{®n(1) und g1 @y (1).

zu (ii) Diese Aussage beweisen wir durch vollstindige Induktion tiber n. Fiir n = 2 ist sie offenbar
erfiillt, denn es gilt &3 =2+ 1 und Po(1) =141 =2 > 0. Sei nun n € IN mit n > 2, und setzen wir die
Aussage fiir natiirliche Zahlen kleiner als n voraus. Wie oben gezeigt, gilt h, = @, - [] dln,dz1,n Pd und
somit auch hy, (1) = (1) - [1g)n 01, Pa(1). Es ist hyp(1) = n > 0, und nach Induktionsvoraussetzung
gilt ®4(1) > 0 fiir alle Teiler d € IN von n mit d # 1,n. Auf Grund der obigen Gleichung muss somit
auch ®,(1) > 0 gelten.



Aufgabe H22T2A1

Eine affine Ebene in R? ist die Menge aller Punkte (z,vy, 2) € R?, die eine Gleichung der Form ax + by +
¢z + d = 0 erfiillen mit fest vorgegebenen Zahlen a,b,¢,d € R und (a,b,¢) # (0,0,0).

(a) Fiir j = 1,2,3,4 seien vier Punkte P; = (x;,y;,2;) € R® gegeben. Zeigen Sie, dass Py, P2, Ps, Py

genau dann in einer affinen Ebene liegen, wenn gilt

1 y1 21 1
T z9 1
2 Y2 2 —_—
x3 Y3 z3 1
T4 Ya 24 1

(b) Sei C = {(t,t%,t%) € R3 | t € R}, und sei E C R3 eine affine Ebene. Zeigen Sie, dass C N E

hochstens drei Elemente hat.

Losung:

zu (a) Seien a,b,c,d € R mit (a,b,c) # (0,0,0). Es liegen Py, Py, P3, P, genau dann auf der Ebene
Eopea = {(x,y,2)€R|ax+by+cz+d=0} ,

wenn ax; + by; + cz; +d = 0 fir j = 1,2,3,4 gilt. Die Punkte liegen also genau dann auf einer affinen

Ebene, wenn das linearen Gleichungssystem
zja+yb+zijc+d=0 (1<j<4)

eine Losung (a, b, ¢, d) € R* mit (a,b,c) # (0,0, 0) besitzt. Dies ist genau dann der Fall, wenn das lineare

Gleichungssystem Az = Ors mit der Matrix

1 oy oz 1

T 2o 1
4 = 2 Y2 2

T3 Y3 z3 1

T4 Ya 24 1

eine Losung dieser Form besitzt. Wir zeigen, dass dies genau dann der Fall ist, wenn det A = 0 gilt.

»=* Existiert eine Losung der angegebenen Form, dann ist insbesondere ker A # {Og+} und dimker A >
1. Mit dem Dimensionssatz fiir lineare Abbildungen folgt daraus 4 — rg(A4) > 1, was zu rg(A) < 4 und
det A = 0 dquivalent ist. ,<“ Aus det A = 0 folgt rg(A) < 4, was auf Grund der Dimensionssatzes
zu dimker A > 1 und ker A # {Ogr+} dquivalent ist. Sei (a,b,c,d) € R* ein Element des Kerns ungleich
null. Wére (a,b,c¢) = (0,0,0), dann wiirde wegen

0 r1 y1 21 1 0 d
0 B Ty Yo 2o 1 0 B d
0 B T3 ys 23 1 0 B d
0 Tyg Ys 24 1 d d

auch d = 0 und somit (a, b, ¢, d) = (0,0, 0,0) folgen, im Widerspruch zur Voraussetzung. Also ist (a, b, ¢, d)
eine Losung des LGS mit (a, b, ¢) # (0,0,0).



zu (b) Seip € R® und E = E, . eine affine Ebene. Dann gilt die Aquivalenz

peEENC & pcFEundpeC & peEund3tcR:p= (Lt
& FteR:p=(t,t*t3) und at + bt* +ct®> +d = 0.

Also gilt p € ENC genau dann, wenn ein ¢t € R mit p = (¢,t2,¢®) existiert, das Nullstelle des Polynoms
fabe = cx3+br? +ar+d € R[z] ist. Wegen (a, b, c) # (0,0,0) ist f, 5. nicht das Nullpolynom. Da es als
Polynom ungleich null vom Grad < 3 héchstens drei Nullstellen besitzt (und jeder Schnittpunkt p € R?
durch die zugehorige Nullstelle ¢t € R eindeutig festgelegt ist) gibt es hichstens drei Schnittpunkte von
E und C.



Aufgabe H22T2A2

Sei K ein Korper, sei K[z] der Polynomring iiber K in einer Unbestimmten, und sei L = K(x) der

Quotientenkorper von K[z]. Sei weiter

a
ro- s

a,be Klx] , ggT(a,b) =1, b(O);ﬁO} c L

Zeigen Sie:

(a) Die Menge R ist ein Teilring von L.
(b) Sei I ein Ideal von R. Dann ist I N K[z] ein Ideal von Klx].

(¢) Der Ring R ist ein Hauptidealring.

Losung:

zu (a) Zu iiberpriifen ist, dass 1x(,) € R gilt, und dass mit u,v € R auch v —v und uv in R liegen. Da
K ein Teilring von K|[z] und K[z] ein Teilring von K (z) ist, ist K ein Teilring von K (x). Seia =b = 1.
Dann gilt a,b € K[z] und b(0x) = 1x # Ok, auBerdem ggT(a,b) = ggT(1k,1x) = lk. Insgesamt

erhalten wir 1) = 1xg = i—ﬁ € R.

Seien u,v € R. Dann gibt es aq,as,b1,by € K[z] mit u = %, v = “—i und b1 (0g) # Ok, ba(0k) # Ok. Es

b

folgt
aias
b1b2

da b1(0k),b2(0) # O und K ein Korper ist. Sei nun d € R ein grofiter gemeinsamer Teiler von ajas

uv

mit aqas, b1by € K[.’E] und (blbg)(OK) = bl(OK)bQ(OK) 75 0 R

und b1bo. Dann gibt es teilerfremde ag, b3 € K[x] mit ajas = das und b1bs = dbs. Es folgt

a1ag da3 as

biby  dbs b

uv

und auBerdem b3(0f) # 0, da ansonsten (b1b2)(0x) = d(0k )b3(0x) gleich Ok wire. Insgesamt ist damit
uv € R nachgewiesen. Ebenso gilt

ap  a arby — agby
u —v = —_—— — = —_—

by by o b1ba
mit a1by —agby € Kz], bibe € K[z] und (b1b2)(0x) # Ok. Sei d’ € R ein grofiter gemeinsamer Teiler von
a1ba — a2by und bybs. Dann gibt es teilerfremde a4, by € K[x] mit a1be — a2b; = d’ay und b1by = d'by. Es
folgt
w— v _ a162 — a2b1 _ d’a4 _ %
b1bo d'by by
Dabei ist by (0x) # 0, da ansonsten (b1b2)(0x) = d'(0x)bs(0x) gleich 0k wire. Insgesamt zeigt dies, dass

auch v — v in R liegt.

zu (b) Sei I ein Ideal in R. Zu zeigen ist, dass I N K[xz] ein Ideal in K[x] ist. Wir betrachten dazu die
Abbildung ¢ : K[z] — K(z), f — % Fiir jedes f € K[x] gilt ggT(f,1x) = 1x und 1x(0x) = 1x # Ok,
also f = { € R. Dies zeigt, dass ¢ als Abbildung K[z] — R aufgefasst werden kann. Diese Abbildung ist

ein Ringhomomorphismus, denn es gilt ¢(1x[,)) = ¢(1x) = % = 1g und fiir alle f, g € K[z] auflerdem

o(f + 9) fl—*j - %+% = () + lg)
und
ofe) = 12 = L9 yipe.

15% 1 1k



Esist I N K[x] = ¢~ '(I), denn fiir alle f € K[z] gilt die Aquivalenz

feo ™ (I) = o(f)el = %e[ = fel = felInK[x]
K

Als Urbild eines Ideals in R unter einem Ringhomomorphismus K[z] — R ist I N K[z] ein Ideal in K|[z].

zu (¢) Wir miissen {iberpriifen, dass R ein Integrititsbereich und jedes Ideal in R ein Hauptideal ist.
Ersteres ist der Fall, weil R nach Teil (a) Teilring eines Koérpers, ndmlich K(z), ist. Fiir den Nachweis
der zweiten Aussage sei I ein Ideal in R. Nach Teil (b) ist I N K[z] ein Ideal in K[z]. Da es sich bei
K|z] (als Polynomring iiber einem Korper) um einen Hauptidealring handelt, existiert ein f € K[x] mit
INK[z] = fK[z]. (Wir verwenden die Notation fK[z] an Stelle der iiblichen Schreibweise (f) fiir das
von f erzeugte Ideal, um deutlich zu machen, dass hier das Erzeugnis von f im Ring K[x] gemeint ist.)

Wir zeigen nun, dass auch I ein Hauptideal ist, indem wir die Gleichung
I = fR iiberpriifen.

»2% Esgilt f € K[z]N1, damit insbesondere f € I. Weil T ein Ideal in R ist, folgt daraus fR C I. ,C*

Sei u € I vorgegeben. Dann liegt u insbesondere in R, es gibt also a,b € K[z] mit u = §, b(0x) # Ox und

geT(a,b) = 1k. Das Element bu = a ist dann in K[z] N I enthalten. Wegen K[x] NI = fK|x] existiert

ein r € K[z] mit bu = a = rf. Sei d € K|x] ein groBter gemeinsamer Teiler von b und r. Dann gibt es

teilerfremde Elemente by, € Kz] mit b = db; und r = dry, und es folgt dbju = dry f. Weil K[z] ein

Integritétsbereich ist, dann die Kiirzungsregel angewendet werden, und wir erhalten byu = rq f. Es folgt
ry

u = %, wegen ;- € R alsou € fR.



Aufgabe H22T2A3

(a) Esist 337 =2-3-5-11+7 = 13-17+22-29. Erkliiren Sie, dass daraus folgt, dass 337 eine Primzahl

ist.

(b) Sei p eine Primzahl und n > 1. Zeigen Sie, dass die Gleichung 2" = 1 in F,, genau ggT(n,p — 1)

verschiedene Losungen besitzt.

(¢) Ermitteln Sie alle positiven ganzen Zahlen n, fiir die die Gleichung ™ = 1 im Ring Z /20227 genau

n Losungen hat.

Lésung:

zu (a) Wire 337 keine Primzahl, dann géibe es einen Primteiler p von 337 mit p < v/337. Wegen
V/337 < 19 ist 17 die grofte Primzahl < v/337. Es geniigt deshalb zu zeigen, dass 337 keinen Primteiler
< 17 besitzt, mit anderen Worten, die Zahlen 2, 3, 5, 7, 11, 13 und 17 miissen als Teiler von 337
ausgeschlossen werden. Wére eine der Zahlen 2, 3,5 oder 11 ein Teiler von 337, dann miisste diese Zahl
auf Grund der Gleichung 337 = 2-3-5-11 + 7 auch ein Teiler von 7 sein, was aber unmdglich ist, da
es sich um eine von 7 verschiedene Primzahl handelt. Ebenso zeigt die Gleichung, dass 7 kein Teiler von
337 ist. Denn andernfalls wére 7 auch ein Teiler von 2-3-5- 11, was nicht der Fall ist, denn die einzigen
Primteiler dieses Produkts sind 2, 3, 5 und 11. Wéren 13 oder 17 Teiler von 337, dann miisste 13 oder
17 auf Grund der Gleichung 337 = 13- 17 + 22 - 29 auch Teiler von 22 - 29 sein, was ebenfalls nicht erfiillt
ist, denn die einzigen Primteiler dieser Zahl sind 2 und 29. Insgesamt wird 337 also von keiner Primzahl

p < 17 geteilt.

zu (b)  Wegen 0" = 0 # 1 ist jede Losung von 2™ = 1 in ), auch in )¢ enthalten. Die Ordnung jedes

Elements a € IF} ist auf jeden Fall ein Teiler von [IF)f| = p — 1. Dariiber hinaus gilt die Aquivalenz

a"=1 & ord(a)|n < ord(a)|nAord(a)|(p—1) < ord(a)]|geT(n,p—1)=1

o oeeTlp-1) _ 7

Allgemein gilt: Ist G eine zyklische Gruppe der Ordnung m, g € G ein erzeugendes Element und d ein
Teiler von m, dann ist (g?) die eindeutig bestimmte Untergruppe von G mit Ordnung =, und jedes
Element h mit h™/? = eq ist in dieser Untergruppe enthalten. Daraus folgt, dass es in G genau 7
Elemente h gibt, die die Gleichung h"™/¢ = e erfiillen. Wenden wir dies auf G = Fy,m=p-1und
d = W,;—D an, so kommen wir zu dem Ergebnis, dass in I’ genau gegT(n,p — 1) Elemente « mit
ageT(p=1) — 1 gibt, auf Grund der Aquivalenz also ebenso viele Elemente o mit o™ = 1.

zu (¢) Die Primfaktorzerlegung von 2022 ist gegeben durch 2 - 3 - 337. Auf Grund des Chinesischen

Restsatzes existiert also ein Isomorphismus
¢ 7./20227, — 7./27. x 7./37 x 7./337Z

von Ringen. Seien a € 7,/20227 und (b, ¢, d) = ¢(a). Dann gilt fiir jedes n € IN auf Grund der Bijektivitét
von ¢ die Aquivalenz
=T e e =) & sar=0L1) & @) =0T

S =1 Ac"=1Ad" =1



Definieren wir fiir jedes m € IN die Menge L,,, = {a € Z/mZ | a™ = 1}, dann ist durch ¢ also eine
Bijektion zwischen Lo und Lo x L3 X L337 gegeben. Nach Teil (b) gilt |£,| = ggT(n,p — 1) fiir jede

Primzahl p. Insgesamt erhalten wir also

|Lo022] = |Lax Ly xLszr| = |La]-|Ls]-|Ls37] = ggT(n,1)- ggT(n,2)- ggT(n,336)
= ggT(n,2)ggT(n,336).

Gesucht werden also alle n € IN mit der Eigenschaft n = ggT(n,2)-ggT(n, 336). Die Primfaktorzerlegung
von 336 ist 2% - 3 - 7. Weil ggT(n,2) ein Teiler von 2 und ggT(n,2) ein Teiler von 336 ist, kann n =
ggT(n,2) - ggT(n,336) also nur dann erfiillt sein, wenn n ein Teiler von 2° - 3 - 7 ist, also die Form
n=2%-3"-7°mit 0 < a <5 und b,c € {0,1} hat. Weiter gilt die Aquivalenz

gngw(n7 2) . ggT(n,336) = n 2min{a,1} . 2min{a,4} . 3min{b,1} . 7min{c,1} — 90, 3b .7
o 2min{a,1}+min{a,4} . Smin{b,l} . 7min{c,1} —9a. 3b . 7e
< min{a,1} + min{a,4} =a A min{b,1} =b A ¢=min{c, 1}
broclpth min{a, 1} + min{a,4} = a w04t e {0,5}

& ne{2*-3°.7lac{0,5},bce{0,1}} < ne{l,3,7 21,32 96,224, 672}

Es gibt also genau acht natiirliche Zahlen n mit der Eigenschaft, dass die Gleichung 2™ = 1 genau n
Losungen in Z./2022Z besitzt.



Aufgabe H22T2A4

Sei f =%+ 3 € Q[z], sei a € C eine Nullstelle von f, und sei K = Q(a) C C. Zeigen Sie:

(a) Das Polynom f ist iiber @ irreduzibel.
(b) Die Zahl ¢ = (1 +a?) € K ist eine primitive sechste Einheitswurzel.
(¢) Der Korper K ist eine Galois-Erweiterung von Q.

(d) Die Galois-Gruppe Gal(K|Q) ist nicht abelsch.

Lésung:
zu (a) Auf Grund des Eisenstein-Kriteriums, angewendet auf die Primzahl p = 3, ist f irreduzibel in

Z[z], und auf Grund des Gaufi’schen Lemmas auch in Q[z].

zu (b) Zu zeigen ist, dass es sich bei ¢ um ein Element der Ordnung 6 in der multiplikativen Gruppe
C* handelt. Dafiir miissen wir iiberpriifen, dass ¢(? # 1, ¢3 # 1 und ¢% = 1 gilt. Zuniichst bemerken
wir, dass wegen f(a) = 0 die Gleichung o = —3 gilt. Da f normiert und iiber Q irreduzibel ist und
f(a) = 0 gilt, handelt es sich bei f um das Minimalpolynom von « iiber Q. Laut Vorlesung folgt daraus
[Q(a) : Q] = grad(f) = 6, und {1, q,...,a’} ist eine 6-elementige Basis von Q(a) als Q-Vektorraum.
Dies bedeutet, dass zwei Elemente E?:o bjozj und Z?:o cjozj mit bj,c; € Q fiir 0 < j < 5 genau dann

iibereinstimmen, wenn b; = ¢; fiir 0 < j < 5 gilt.

Die Rechnungen (? = 2(1+0a%)?2 = 1(1+22° +a%) = (1423 + (-3)) = -1+ 1’ wnd 3 = (- (* =
11+ - 3(-1+a®) =3(-1-a+a®+af) = }(—1—3) = —1 zeigen also, dass ¢? und ¢* ungleich
1 sind. Andererseits gilt (¢ = (¢3)? = (-1)? = 1.

zu (¢) Die Erweiterung K|Q ist algebraisch, weil das Element « als Nullstelle des Polynoms 0 # f €
Q[z] algebraisch iiber @ ist und weil K der vom algebraischen Element « erzeugte Zwischenkorper der
Erweiterung C|Q ist. Wegen char(K|Q) = 0 ist diese algebraische Erweiterung auch separabel. Nun zeigen
wir noch, dass K |Q normal ist, indem wir nachweisen, dass K in C mit dem Zerfiallungskorper von f iiber
Q iibereinstimmt. Wegen f(0) # 0 ist o # 0. Weil ¢ nach Teil (b) eine primitive sechste Einheitswurzel ist,
sind die Elemente ¢7 fiir 0 < j < 5 paarweise verschieden, und wegen « # 0 gilt dasselbe fiir die Elemente
CJamit 0 < j < 5. Fiir diese j gilt jeweils f(¢7a) = ((7a)® +3 = (¢*)a® +3=0a% +3 = f(a) =0, die

Elemente sind also Nullstellen von f. Wegen grad(f) = 6 kann es keine weiteren Nullstellen geben.

Dies zeigt, dass durch N = {¢(/a | 0 < j < 5} die Menge aller komplexen Nullstellen von f gegeben und
Q(N) somit der Zerfillungskorper von f iiber Q ist. Wegen o € N gilt K = Q(a) C Q(N). Andererseits
liegen die Elemente (7o fiir 0 < j < 5 wegen ( = (1 + o?) alle in K = Q(a). Aus N C K folgt
Q(N) C K, insgesamt also Q(N) = K.

zu (d) 1. Méglichkeit: Angabe einer nicht-normalen Teilerweiterung
Wire die Gruppe Gal(K|Q) abelsch, dann wire jede Untergruppe von Gal(K|Q) ein Normalteiler. Nach

den Sitzen der Galoistheorie wiirde daraus folgen, dass jeder Zwischenkérper M von K|Q normal iiber

Q ist.

Wir fithren die Annahme zu einem Widerspruch, indem wir zeigen, dass es sich bei M = Q(4/3) um
einen Zwischenkdrper von K|Q handelt, der nicht normal iiber Q ist. Wegen o = —3 gilt (a?)? = —3,
das Element o? ist also eine Nullstelle des Polynoms g = 23 + 3 € Q[x]. Weil ( eine primitive sechste

Einheitswurzel ist, ist ¢? eine primitive dritte Einheitswurzel. Die Elemente 1, (2, ¢* sind somit paarweise



verschieden, und wegen o # 0 gilt dasselbe fiir die Elemente o?, ¢(2a? und (*a?. Diese drei Elemente
sind die komplexen Nullstellen des Polynoms g, denn es gilt g(¢*a?) = (¢¥)3(a?)3 +3 = (¢°)7a’ + 3 =
17 - (=3) +3 =0 fiir j = 0,1,2. Da offenbar —+/3 € R eine Nullstelle von g ist, stimmt diese mit einem

der drei Elemente o2, (%o und ¢*a? iiberein.

Es gilt also v/3 € K, und somit ist M = Q(+/3) tatsichlich ein Zwischenkorper von K|Q. Auf Grund
des Eisenstein-Kriteriums (angwendet auf die Primzahl 3) und des Gaufi’schen Lemmas ist das Polynom
g irreduzibel iiber g, und es besitzt in M die Nullstelle ¥/3. Wire M|Q eine normale Erweiterung, dann
miisste g iiber M in Linearfaktoren zerfallen und somit auch die beiden anderen komplexen Nullstellen
in M liegen. Aber dies ist nicht der Fall. Denn wegen /3 € R ist M ein Teilkérper von R. Die beiden von
/3 verschiedenen Nullstellen des Polynoms g sind aber ¢2+4/3 und ¢*+/3, und diese sind nicht reell, weil
die beiden primitiven dritten Einheitswurzeln, also die Elemente der Menge {¢?, (*} = {—3 £v/12y/=3},

nicht in R liegen. Also ist M|Q keine normale Erweiterung.

2. Moglichkeit: direkter Nachweis der Nicht-Kommutativitdt

Nach Teil (a) ist f irreduzibel iiber @, und wie in Teil (c¢) festgestellt wurde, sind unter anderen +« und
¢%2a Nullstellen von f in K. Auf Grund des Fortsetzungssatzes gibt es somit Elemente o, 7 € Gal(K|Q)
mit o(a) = —a und 7(a) = (a. In Teil (b) hatten wir nachgerechnet, dass (? = —1 4+ 103 und * = -1

gilt. Wegen ¢ = (1 + o3) erhalten wir damit
o¢) = o(z(1+a%) = 31+0@? = Q+(-a)P) = 31-0°) = ¢
und ebenso

T€) = 731+a) = F1+7(a)?)
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Damit erhalten wir einerseits

Weil ¢ nach Teil (b) eine primitive sechste Einheitswurzel ist, gilt (2 # ¢* und somit auch (o o 7)(a) #
(too)(a) und o o T # 7o o. Dies zeigt, dass die Gruppe Gal(K|Q) tatséchlich nicht kommutativ ist.



Aufgabe H22T2A5

Sei G eine Gruppe der Ordnung 2022.

(a) Nennen Sie vier paarweise nicht isomorphe Beispiele von Gruppen der Ordnung 2022 und begriinden

Sie, dass die Gruppen paarweise nicht isomorph sind.
(b) Zeigen Sie, dass G auflosbar ist.

(c) Beweisen Sie, dass G einen Normalteiler vom Index 2 besitzt.

Lésung:

zu (a) Sei Gy = Z/20227Z, G5 = Djg11 (die Diedergruppe mit 2 - 1011 = 2022 Elementen), G3 =
S3 X Z/3377Z und G4 = 7Z/3Z x Dsz7;. Weil S3, D33y und Dig1; nicht-abelsche Gruppen sind, gilt
dasselbe fiir G2, G3 und G4. Weil die Gruppe G abelsch ist, ist sie zu keiner der drei anderen Gruppen
isomorph. Die Gruppe D1p11 besitzt genau 1011 Elemente der Ordnung 2. (Dies sind die Spiegelungen
in der Symmetriegruppe des regelméfligen 1011-Ecks. Es gibt keine Drehung von Ordnung 2, weil 1011

ungerade ist.)

Wir zeigen nun, dass Gz genau drei und G4 genau 337 Elemente der Ordnung 2 besitzt. Weil die An-
zahlen der Elemente der Ordnung 2 in den drei Gruppen Gs, G3, G4 nicht iibereinstimmen, sind auch
diese paarweise nicht-isomorph. Fiir jedes Element (0,a) € G3 (mit o € S3 und a € Z/337Z) gilt die

Aquivalenz

ord(o,a) =2 & (0,0)>=eq, A (0,a0) #eq, < (0%,2a)=(id,0) A (0,a) # (id,0)
< (0%a)=(id,0) A (0,a) # (id,0) < a=0 A o€ {(12),(23),(13)}
& (0,0) €{((12),0),((23),0), ((1 3),0)}.

Dabei wurde im dritten Schritt verwendet, dass 2 wegen ggT(2,337) = 1 in Z/337Z invertierbar ist und
somit 2a = 0 #quivalent zu a = 0 ist. Im vierten Schritt haben wir verwendet, dass die Elemente o € S3
mit 02 = id und o # id durch (1 2),(2 3), (1 3) gegeben sind. Insgesamt zeigt die Rechnung, dass es in
G5 tatsichlich genau drei Elemente der Ordnung 2 gibt.

Fiir alle (a,0) € G4 mit a € Z/3Z und ¢ € D337 gilt die Aquivalenz

ord(a,0) =2 & (a,0)2=(0,id) A (a,0) = (0,id) < (2a,0%) = (0,id) A (a,0) = (0,id)

& (a,0%)=(0,id) A (a,0)=(0,id) < a=0A oc?’=id A o#id < a=0 A ord(s)=2.

In D337 gibt es genau 337 Elemente der Ordnung 2. Also zeigt die Rechnung, dass es ebenso viele

Elemente der Ordnung 2 in G4 gibt.

zu (b) Sei G eine Gruppe der Ordnung 2022 = 2 -3 - 337. (Die Zahl 337 ist eine Primzahl.) Fiir
jede Primzahl p sei v, die Anzahl der p-Sylowgruppen von G. Auf Grund des Dritten Sylowsatzes gilt
vssr | 23, also vszr € {1,2,3,6}. Auflerdem gilt v337 = 1 mod 337. Wegen 2,3,6 #Z 1 mod 337 folgt
v337 = 1. Sei N die einzige 337-Sylowgruppe von G. Wegen v337 = 1 gilt N < G. Laut Vorlesung ist G
auflosbar, wenn N und G/N beide auflosbar sind. Die Gruppe N ist auf Grund der Primzahlordnung
|N| = 337 zyklisch, damit auch abelsch und auflésbar. Es bleibt zu zeigen, dass G/N eine auflosbare
Gruppe ist.



Auf Grund des Satzes von Lagrange gilt |G/N| = (G : N) = % = 2922 — 6. Sei P ein beliebige 3-
Sylowgruppe von G = G/N. Dann gilt |P| = 3 und (G : P) = § = 2. Als Untergruppe vom Index 2 ist P
ein Normalteiler von G. Als Gruppen der Primzahlordnungen |P| = 3 und |G/P| = (G : P) = 2 sind P

und G/ P beide zyklisch und damit auch auflésbar. Dies zeigt, dass auch G eine auflésbare Gruppe ist.

zu (¢) In Teil (b) wurde gezeigt, dass G einen Normalteiler N von Ordnung 337 besitzt. Sei 7y :
G — G/N der kanonische Epimorphismus. Aus der Korrespondenzsatz fiir Gruppen folgt: Ist U eine
Untergruppe von G/N vom Index d € IN, dann ist U = w&l(U ) eine Untergruppe vom Index d von G
mit U O N. In Teil (b) haben wir auch gezeigt, dass in G/N eine Untergruppe P vom Index 2 existiert.
Also ist P = 7' (P) eine Untergruppe vom Index 2 von G. Wegen (G : P) = 2 handelt es sich dariiber

hinaus um einen Normalteiler.



Aufgabe H22T3A1

Gegeben sei eine endliche Korpererweiterung L|K. Weiterhin sei Try g : L — K die Abbildung, die
jeden Element a € L die Spur der Multiplikation m, : L. — L, b+ ab zuordnet. Dabei ist die Spur einer
K-linearen Abbildung ¢ : L — L definiert als die Summe der Hauptdiagonalelemente einer Darstellungs-

matrix.

(a) Zeigen Sie, dass Trp |k eine K-lineare Abbildung ist.

(b) Nun sei {ay,...,an} eine K-Basis von L. Beweisen Sie, dass sich die Diskriminante
Apk (a1, ..., a,) = det(Tr(oay)i;) um einen Faktor aus (K*)? éndert, wenn man die Basis wech-

selt.
(c) Seien p,q € Q so gewihlt, dass f = 22 + px + q ein irreduzibles Polynom ist. Finden Sie Ak (l,a)

fir K = Q und L = KJz]/(f), wobei a die Restklasse von = in L bezeichne.

Losung:
zu (a) Sein =[L: K] =dimg L und B = (a1, ...,a,) eine geordnete Basis von L als K-Vektorraum.
Fiir jedes ¢ € Endg (L) sei Mp(¢) die Darstellungsmatrix von ¢ beziiglich B. Fiir jede Matrix A =
(aij) € My i sei Tr(A) = Y7 | ai; die Spur. Nach Definition gilt Tryx (a) = Tr(Maq(mg)) fiir alle
a € L. Fiir den Nachweis, dass Try |k : L — K eine lineare Abbildung ist, geniigt es zu iiberpriifen

(1) Die Abbildung L — Endg (L), a — m, ist linear.

(2) Die Abbildung Endg (L) = M, ik, ¢ — Mp(¢) ist linear.

(3) Die Abbildung Tr : M,, x — K, A+~ Tr(A) ist linear.

zu (1) Seien a,a’ € L und A € K vorgegeben. Zu iiberpriifen sind die beiden Gleichungen mg . =

Mg + Mgy und my, = Am, in Endg (L). Sei dazu b ein beliebiges Element aus L. Es gilt
Marar(b) = (a+ad)b = ab+db = my()+mad) = (mg+ma)b)

und ebenso my,(b) = (Aa)b = A(ab) = Amg(b) = (Amyg)(b). Damit sind die beiden Gleichungen in
Endg (L) verifziert.

zu (2) Laut Vorlesung gilt: Sind V, W zwei K-Vektorrdume der endlichen Dimensionen n = dim V'
und m = dim W ist A eine geordnete Basis von V und B eine geordnete Basis von W, dann ist durch
Homg (V,W) = Mpyxn.x, ¢ — Mé(d)) ein Isomorphismus von K-Vektorrdumen definiert, insbeson-
dere eine linearen Abbildung. Anwendung dieser Aussage auf V. = W = L und die Basis B liefert die
angegebene Behauptung.

zu (3) Seien A = (a;;) und B = (b;;) Elemente des K-Vektorraums M,, g, und sei A € K. Dann gilt
i=1 i=1 i=1

und ebenso Tr(AA) = D1 (Aai) = AX0 ai = ATr(A).



zu (b) Diese Aussage beweisen wir durch Anwendung des Satzes vom Basiswechsel fiir Bilinearformen.
Zunéchst {iberpriifen wir, dass durch b : Lx L — K, (a, ) = Trp g (o) eine Bilinearform auf L definiert
ist. Seien a, a’, 3,3 € L und X € K vorgegeben. Dann gilt

bla+a,8) = Trpyxl(la+d)s) = Tryx(af+d'B) = Trpg(aB)+Tryg(@B) = bla,B)+bd, )
b, B4+ 8") = Trpg(aB+p)) = Tpglab+af) = Tryg(af’)+Tryg(ef’) = bla,B)+ba,f)
b(Aa,B) = Trpx(Aaf) = NTrpg(aB) = Mo, B)
b, AB) = Tryr(AaB) = MNrpx(af) = Ab(a,fB).

Also ist durch b tatséchlich eine Bilinearform auf dem K-Vektorraum L definiert. Seien A = (aq, ..., )
und A" = (o, ..., a},) zwei geordnete Basen von L. Dann sind die Darstellungsmatrizen von b beziiglich
A und A’ gegeben durch

M_A(b) = (TYL|K(CV7;04J'))M und M_A/(b) = (TTL|K(Ck;Ol;))”
Nach dem Satz vom Basiswechsel fiir Bilinearformen gilt
Ma®) = T Ma®) TZ

wobel 7::‘4/ die Matrix des Basiswechsels von A’ nach A bezeichnet. Sei ¢ = det 7::14/ € K. Weil die Matrix
’T;{‘/ invertierbar ist, liegt ¢ € K *. Die zu beweisende Aussage aus der Aufgabenstellung ergibt sich nun

durch die Rechnung
Apg(A) = det(Tryk(aja) = detMa(b) = det (tT;(VMA, (b)T;(V)
= (det 7:2"4/)2 ~detMA(b) = 62 det (TI“L‘K(OQCYJ‘» = C2AL‘K(A).

zu (¢) Wir berechnen die Darstellungsmatrizen Ag von mg beziiglich der Basis B = (1,a) des K-

Vektorraums L, fiir 3 € {1, a, a?}. Zur Vorbereitung berechnen wir

o = @+(f)? = 2+() = 2-f+() = - +prt+a)+(f)
= —pr—q+(f) = (p+UMN+)-@+() = -pa—gq
o = a-a® = a(-pa-q) = -pi®-ga = —p(-pa—q)—ga = (P’ —q)a+pg

Nun gilt m1(1)=1-1=1-140-a, m(a) =a=0-1+1-a. Dies liefert die Darstellungsmatrix

1 0
A =
0 1

und Trp (1) = Tr(A;) = 14 1 = 2. Die Gleichungen my(1) = @ = 0-141-a und mu(a) = a® =
(—=q) -1+ (—p) - « liefern die Darstellungsmatrix

0 _
Ao = 1
I —p

und Trp (o) = Tr(As) = 0+ (—p) = —p. Die Gleichungen m,2(1) = o® = (—¢q) - 1 + (—p) - & und
mez(a) = a® = (pq) - 1 + (p? — q) - a liefern schlieBlich die Darstellungsmatrix

A = —-q 2]3‘1
-p P —4q

und Tryjg(a?) = Tr(Ay2) = (—q) + (p* — q) = p* — 2¢.



Fiir die Diskriminante erhalten wir nun

Apg(l,a) = det<rﬁLlQ(1) TfLQ(a)> - det<2 _p>
7 )

Trygla) Trpg(e? -p p*-2g

= 20p°—29)—(-p)® = p*—4q



Aufgabe H22T3A2

(a) Geben Sie eine vollstindige Definition des kleinsten gemeinsamen Vielfachen zweier ganzer

Zahlen an.

(b) Beweisen Sie mit Hilfe Ihrer Definition aus (a), dass fiir a, b, ¢,d € Z die folgende Formel gilt:

kgV(kgV(a,b),kgV(c,d)) , kgV(kgV(a,c),kgV (b, d)).

Lésung:
zu (a) Seien a,b € Z. Dann ist kgV(a, b) die eindeutig bestimmte Zahl d € INy mit den folgenden beiden
Eigenschaften.

(i) aldund b|d

(ii) Fiir alle d’ € Ny folgt aus a | d’ und b | d’ jeweils d | d'.

Damit ist die Zahl eindeutig bestimmt. Erfiillen ndmlich d und d’ aus Ny beide die Bedingungen (i) und
(ii), dann gilt d | d’ und d’ | d, und wegen d,d" € Nq folgt daraus d = d'.

zu (b) Seien a,b,c,d € Z vorgegeben, und sei r = kgV(kgV(a,b),kegV(c,d)). Wir zeigen, dass r die
definierenden Bedingungen (i) und (ii) des kgV von kgV(a, c) und kgV (b, d) erfiillt. Es gilt kgV(a,d) | r
und kgV(c,d) | r. Daraus wiederum folgt a | 7, b |7, ¢ | rund d | r. Aus a | r und ¢ | r folgt kgV(a,c) | r,
und aus b | r und d | r folgt ebenso kgV (b, d) | r. Damit ist Bedingung (i) verifiziert.

Sei nun s € Ny mit kgV(a,c¢) | s und kgV(h,d) | s. Dann folgt a | s,c|s,b | sundd|s. Ausa|sundb]|s
folgt kgV(a,b) | s. Aus ¢ | s und d | s folgt kgV(c,d) | s. Aus kgV(a,b) | s und kgV(e,d) | s wiederum
folgt r | s, auf Grund von Bedingung (ii) fiir das kleinste gemeinsame Vielfache von kgV(a,b) und
kgV(c,d). Damit ist Bedingung (ii) fiir das kleinste gemeinsame Vielfache von kgV(a,¢) und kgV (b, d)

nachgewiesen.

Anmerkung:

Fiir a,b € Z gilt kgV(a,b) = 0 genau dann, wenn a = 0 oder b = 0 ist. Ist ndmlich ¢ = 0 und setzen
wir und setzen wir d = kgV(a, b), so gilt a | d, also d = ka fiir ein k € Z. Es folgt d = k- 0 = 0. Ebenso
folgt aus b = 0, dass kgV(a,b) = 0 ist. Sind andererseits a und b beide ungleich null, dann ist |ab] € IN
ein gemeinsames Vielfaches von a und b. Also muss d = kgV(a,b) ein Teiler von |ab| sein. Dies ist nur

moglich, wenn d ungleich null ist, denn 0 ist kein Teiler einer ganzen Zahl ungleich 0.

Weder in Teil (a) noch in Teil (b) ist es notwendig, die Situation, dass eine der Zahlen a,b, ¢, d gleich 0

ist, als Sonderfall zu betrachten.



Aufgabe H22T3A3

Seien p,q,r Primzahlen mit p < ¢ < r, und sei G eine Gruppe der Ordnung pgr. Fir ¢ € {p,q,r}

bezeichne v; die Anzahl der verschiedenen i-Sylowgruppen von G. Beweisen Sie:

(a) Besitzt G keine normale Sylowgruppe, so gilt v, > ¢ und v, > r und v, = pgq.
(b) Die Gruppe G besitzt eine normale Sylowgruppe.

(¢) Eine Gruppe der Ordnung 2022 ist nicht einfach.

Losung:
zu (a) Nach dem Dritte Sylowsatz gilt v, | (¢r), also v, € {1,¢,7, gr}. Da G keine normale p-Sylowgruppe
besitzt, ist v, = 1 ausgeschlossen. Wegen r > ¢ und ¢r > ¢ folgt aus v, € {¢,r, ¢r} direkt v, > g¢.

Ebenso gilt v, | (pr) auf Grund des Dritten Sylowsatzes, also v, € {1,p,r,pr}. Da es keine normale
g-Sylowgruppe in G gibt, gilt v, # 1. Nehmen wir an, es ist v; = p. Wegen v; = 1 mod ¢ folgt dann
p = 1 mod ¢, also ¢ | (p — 1) und insbesondere ¢ < p. Aber dies steht zur Voraussetzung ¢ > p im
Widerspruch. Also gilt v, € {r, pr}, und wegen pr > r folgt v, > r.

Eine erneute Anwendung des Dritten Sylowsatzes liefert v, | (pq), also v, € {1,p,¢,pq}. Da G keine
normale r-Sylowgruppe besitzt, gilt v, # 1. Aus v, = p oder v, = ¢ wiirde p = 1 mod r oder ¢ = 1 mod r
folgen, also auch r|(p—1) oder r|(¢ — 1) bzw. r < p oder r < ¢, im Widerspruch zu den Voraussetzungen

r > q > p. Also ist v, = pq die einzige verbleibende Moglichkeit.

zu (b) Nehmen wir an, G besitzt keine normale Sylowgruppe. Nach Teil (a) gilt dann v, > ¢, vy > 7
und v, = pg. Wegen |G| = p'-¢*-r! sind die p- bzw. ¢- bzw. r-Sylowgruppen genau die Untergruppen der
Ordnung p bzw. g bzw. r von G. Jedes Element g € G der Ordnung r liegt genau in einer r-Sylowgruppe
von G, namlich (g). Umgekehrt ist jede r-Sylowgruppe als Untergruppe der Primzahlordnung r zyklisch
und enthélt somit genau ¢(r) = r — 1 Elemente der Ordnung r — 1. Insgesamt zeigt dies, dass die Anzahl
der Elemente der Ordnung r in G genau (r — 1)-mal so grof} ist wie die Anzahl v, der r-Sylowgruppen.

Es gibt also genau pg(r — 1) Elemente der Ordnung r in G.

Genauso folgt aus v, > ¢, dass es in G mindestens (p — 1)¢ Elemente der Ordnung p, und aus v, > 7,
dass es in G mindestens (¢ — 1)r Elemente der Ordnung ¢ gibt. Insgesamt enthélt G also mindestens

pg(r — 1)+ (p — 1)g + (¢ — 1)r Elemente ungleich dem Neutralelement. Wegen |G| = pqr folgt

pg(r=1)+(-1g+(g-r+1<pgr & -—pg+@E-1g+@-Dr+1<0 <
—q+@-)r+1<0 & gg+1<q+r & qr—-1)+1<r

Wegen ¢ > 3 folgt daraus 3(r — 1) +1 <7, was zu 3r + 1 < r + 3 und r < 1 umgeformt werden kann.
Aber dies steht im Widerspruch dazu, dass r eine Primzahl ist. Dies zeigt, dass es in G eine normale

Sylowgruppe geben muss.

zu (c) Sei G eine Gruppe der Ordnung 2022 = 2-3-337. Die Zahl 337 ist eine Primzahl, also ist |G| = pgqr
mit den Primzahlen p = 2 < ¢ = 3 < r = 337 erfiillt. Nach Teil (b) besitzt G also eine normale p-, ¢-
oder r-Sylowgruppe. Wegen 1 < p,q,r < |G| handelt es sich dabei um einen nichttrivialen Normalteiler

von G. Dies zeigt, dass G keine einfache Gruppe ist.



Aufgabe H22T3A4

Sei K = Z[x]/(25 + 2,2* + 23 + 2% +  + 1).

(a) Beweisen Sie, dass 3 € (2% 4+ 2,2% + 2% + 22 + z + 1) gilt.
(b) Zeigen Sie, dass K ein Koérper ist.

(c) Beweisen Sie, dass K eine Galois-Erweiterung seines Primkérpers I3 ist, und bestimmen Sie die

Galoisgruppe von K|F;.

(d) Sei o die Restklasse von z in K. Zeigen Sie, dass {1,a,a? a3} eine F3-Basis von K ist, und
bestimmen Sie die Darstellungsmatrizen der Elemente der Galoisgruppe Gal(K |F3) beziiglich dieser

Basis.

Lésung:
zu (a) Setzen wir I = (f,g) mit f = 2°+2und g = 2* + 23+ 2% + 2+ 1, dann ist auch (z —1)g = 25— 1
in I enthalten, und damit auch 3 = (z° +2) — (z° — 1) = f + (1 — 2)g.

zu (b)  Wir beweisen zunichst mit Hilfe des Homomorphiesatzes fiir Ringe, dass K = Z[z]|/I isomorph
zu F3[z]/(f) ist, wobei f das Bild von f in F3[z] bezeichnet. Auf Grund der universellen Eigenschaft
gibt es einen eindeutig bestimmten Ringhomomorphismus 7, : Z[x] — F3[z], h +— h der den kanonischen
Epimorphismus Z — F3 auf Z[x] fortsetzt und dabei « € Z[x] auf x € F3[z] abbildet. Dabei entsteht
das Polynom h € F3[x] jeweils durch Anwendung des kanonischen Epimorphismus auf die Koeffizienten
von h. Diese Abbildung ist surjektiv. Ist ndmlich h= Z;io a;z* mit m € Ny und @, ..., Gm € Fg und ist
a; € Z jeweils ein Urbild von a; € F3 fiir 0 < ¢ < m, dann ist durch h = >_" ; a;2" € Z[z] offenbar ein
Element mit 7 (h) = h gegeben.

Bezeichnen wir den kanonischen Epimorphismus F3[z] — F3[x]/(f) mit 72, dann ist durch 7 o 7 ein

Ringhomomorphismus Z[z] — F3[z]/(f) gegeben. Als Komposition zweier surjektiver Abbildungen ist
dieser ebenfalls surjektiv. AuBerdem gilt ker(my o ;) = I, denn fiir alle h € Z[x] gilt die Aquivalenz

h€ker(maom) <« (mom)(h)=0p,n G < m(h)=04+(3) < h+(g) =0+(9)
& he(g & 3FuelFsz]:h=u4-g < JucZx]:h=ugmod (3)
& Ju,uweZlz]l:h=ug+3v & FJuveZz]:h=ug+o(f+(1—2x)g)
& FJuouelZz)l:h=vf+u+(1—2p)g & FJu, v €Zz]:h=uf+g

< he(f,g) & hel

(Im drittletzten Schritt erhdlt man die Richtung ,=“ mit v’ = v, v = v + (1 — 2)v, und die Richtung
,2<=“mit v =u', u=0v —(1—2).) Auf Grund des Homomorphiesatzes fiir Ringe existiert also ein
Isomorphismus ¢ : K — F3[z]/(f), gegeben durch ¢(h + I) = h + (f) fiir alle h € Z[z]. Auf Grund der
Isomorphie geniigt es zu zeigen, dass F3[z]/(f) ein Korper ist. Als Polynomring iiber einem Korper ist
F3[x] ein Hauptidealring. In einem solchen Ring sind die von irreduziblen Elementen erzeugte Hauptideale
maximale Ideale. Ist f also irreduzibel, dann ist (f) ein maximales Ideal in F3[z], und daraus wiederum

folgt, dass Fs[z]/(f) ein Kérper ist.



Fiir den Nachweis der Irreduzibilitiit stellen wir zuniichst fest, dass f € Fs[z] im Korper F3 keine
Nullstelle besitzt, denn es ist f(0) =1#0, f(1)=5=2#0und f(2) =16+8+4+2+1=31=1#0.
Wiire f dennoch reduzibel, dann miisste f Produkt zweier irreduzibler Polynome g, h € F3[z] vom Grad

2 sein. Man kann durch direktes Nachrechnen iiberpriifen, dass keine Zerlegung von f der Form
a4t v+l = (@ Hax+b) (2t +ex+d)

mit a, b, c,d € IF3 existiert. Wir wihlen hier aber einen anderen Weg: Sei « eine Nullstelle von g in einem
algebraischen Abschluss F5® von Fy. Weil § das Minimalpolynom von a iiber Fs ist, gilt [Fs(a) : F3] =
grad(g) = 2. Als zweidimensionaler IF3-Vektorraum besteht F3(«) aus 32 = 9 Elementen, stimmt also mit
dem Zwischenkérper Fo von 5|y iiberein. Wegen f(0) # 0 und f = g - h gilt auch g(0) # 0. Daraus
folgt o € Fy. Wegen |Fg| = 9 — 1 = 8 ist die Ordnung ord(«) von « in der multiplikativen Gruppe
Iy ein Teiler von 8. Andererseits ist a als Nullstelle von f auch eine Nullstelle von 2° — 1 = (z — 1)f.
Es gilt also o® = 1; wegen a # 1 folgt daraus ord(a) = 5. Weil aber 5 kein Teiler von 8 ist, hat unsere

Annahme, das Polynom f sei reduzibel in IF3[x], zu einem Widerspruch gefiihrt.

zu (c) Wie wir bereits in Teil (b) festgestellt haben, ist K isomorph zu F3[z]/(f). Weil f ein irreduzibles
Polynom vom Grad 4 ist, ist dieser Koérper wiederum isomorph zu Fg;, dem eindeutig bestimmten
Zwischenkorper von Fa'8[IF5 mit 3* = 81 Elementen. Fiir jedes m € IN gilt [Fm : F3] = m, insbesondere
also [Fg; : 3] = 4. Laut Vorlesung ist jede endliche Erweiterung E|F bestehend aus endlichen Kérpern
E und F eine Galois-Erweiterung. Die Galoisgruppe G = Gal(E|F) ist jeweils zyklisch von Ordnung
[E : F] und wird vom Frobenius-Automorphismus ¢, : E — E, v — ~9 erzeugt, wobei ¢ = |F] ist.
Insbesondere ist Gal(K|F3) = Gal(Fg; |F3) also die vierelementige Gruppe (¢3) = {idk, 3, 2, ©3}, mit
o3: K = K,y 93.

zu (d) Die Darstellungmatrix der Abbildung idy auf einem n-dimensionalen F3-Vektorraum V beziiglich
einer beliebigen Basis ist immer die Einheitsmatrix E, € M, r,. Somit ist E4 die Darstellung von idg.
Fiir die Darstellungsmatrix von (3 bemerken wir zunsichst, dass a = 2+ (f) laut Vorlesung eine Nullstelle
von f ist und somit a* = ~T—a—a?—a® = 24+2a+2a? +2a? gilt. Wie wir bereits in Teil (b) festgestellt
haben, ist o® = 1 und somit a® = a. Damit erhalten wir ¢3(1) = 1, p3(a) = a® =0+0-a+0-a% +1-a?,
p3(a?) =p3(a)? =(®)P2 =af=a=0+1-a+0-a?+0-a® und p3(a?) = p3(a)? = (a?)3 = o’ =
a® ot = a* =2+ 2a + 2a% + 203, Jede dieser Gleichungen liefert eine Spalte der Darstellungsmatrix

A € My p,, insgesamt ist diese gegeben durch

100 2
001 2
A = o
00 0 2
010 2

Die Darstellungsmatrizen von ¢3% bzw. ¢3 sind gegeben durch

1200 1020
e o200 o oo 2
020 1 01320
0210 00320



Aufgabe H22T3A5

Sei R ein kommutativer Ring mit Einselement, und sei I der Durchschnitt der maximalen Ideale von R.

(a) Zeigen Sie, dass I ein Ideal von R ist.

(b) Beweisen Sie, dass ein Element a € R genau dann in I liegt, wenn fiir alle b € R das Element ab— 1

eine Einheit von R ist.

Lésung:
zu (a) Wir miissen iiberpriifen, dass Og € I gilt, und dass mit a,b € I und r € R auch die Elemente a+b
und ra in I enthalten sind. Das Nullelement O ist in jedem Ideal des Rings R enthalten, insbesondere

in jedem maximalen Ideal, und damit auch im Durchschnitt I aller maximalen Ideale.

Die Elemente a und b sind in jedem maximalen Ideal m von R enthalten (weil I der Durchschnitt aller
maximalen Ideale ist). Weil m ein Ideal ist, liege auch die Elemente a + b und ra jeweils in m. Weil I der

Durchschnitt aller maximalen Ideale m von R ist, zeigt dies, dass a + b und ra auch in I enthalten sind.

zu (b)  Die Implikation ,=* beweisen wir durch Kontraposition. Sei ¢ € R, und nehmen wir an,
dass ab — 1p fiir ein b € R keine Einheit von R ist. Zu zeigen ist, dass a dann nicht im Durchschnitt
aller maximalen Ideale von R liegt. Aus ab — 1 ¢ R* folgt, dass das Hauptideal (ab — 1g) nicht das
Einheitsideal ist. Sei m ein maximales Ideal mit m O (ab—1g) und nehmen wir an, dass @ im Durchschnitt
aller maximalen Ideale liegt. Dann gilt insbesondere a € m, und damit auch ab € m. Aus ab— 1gp € m
folgt dann 1g —ab € mund 1z = (1g — ab) + ab € m. Aber dies ist unmoglich, denn da m ein maximales

Ideal von R ist, gilt 1z ¢ m.

»<=“ Nehmen wir an, dass ab — 1 fiir alle b € R eine Einheit ist, a aber nicht in I liegt. Dann existiert
ein maximales Ideal m mit a ¢ m, und auf Grund der Maximalitit von m muss (a) + m = (1g) gelten.
Insbesondere ist also das Einselement 1p in (a) + m enthalten. Es gibt also ein b € R und ein m € m
mit 1z = ab+ m. Auf Grund unserer Annahme ist —m = ab — 1y eine Einheit. Aber dies ist unmoglich,

denn —m liegt auch in m, und im maximalen Ideal m sind keine Einheiten enthalten.



Aufgabe F23T1A1

(a) Es sei (A, -) eine abelsche Gruppe. Zeigen Sie, das die Abbildung ¢ : A — A, a — a~! ein

Gruppenhomomorphismus ist.

(b) Geben Sie ein Gegenbeispiel an, welches zeigt, dass die entsprechende Aussage fiir beliebige Grup-

pen im Allgemeinen falsch ist.

(¢) Mit A4 werde die alternierende Gruppe iiber vier Buchstaben bezeichnet. Bestimmen Sie diejenigen

n € Ny, fiir die es einen surjektiven Gruppenhomomorphismus ¢ : Ay — Z/(n) gibt.

Lésung:
zu (a) Seien a,b € A. Dann gilt ¢(ab) = (ab)~t =b"ta"! =a 171 = ¢(a)d(b).

zu (b) Wir betrachten in der symmetrischen Gruppe S3 die beiden Elemente o = (1 2) und 7 = (1 3). Fiir
die Abbildung ¢ : S5 — S3, p > p~ ! gilt dann ¢(oo7) = ¢((12)0(13)) = ¢((132)) =(132)"1 = (123),
aber ¢p(c)op(7) = (12)"to(13)"L =(12)o(13)=(132), und somit ¢(co7) # ¢(c) 0 p(7).

zu (¢) Allgemein gilt: Ist n € IN, ¢ : G — H ein Gruppenhomomorphismus und g € G ein Element der
Ordnung n, dann ist ord(¢(g)) ein Teiler von n. In A4 gibt es bekanntlich nur Elemente der Ordnung 1
(das Neutralelement id), der Ordnung 3 (die 3-Zykel) und der Ordnung 2 (die Doppeltranspositionen).
In Z/(n) ist 1+ nZ ein Element der Ordnung n. Ist ¢ : Ay — Z/(n) ein surjektiver Homomorphismus,
dann gibt es ein Element ¢ € A4 mit ¢(c) = 1 + nZ. Auf Grund der Vorbemerkung muss ord(o) ein
Vielfaches von n sein. Wegen ord(o) € {1, 2,3} ist dies nur fiir n € {1, 2,3} moglich.

Die Gruppe Z/(1) besteht aus nur einem Element (ndmlich 0+ 17Z). Daraus folgt, dass fiir jede Gruppe G
ein surjektiver Homomorphismus ¢ : G — Z /(1) existiert, der durch g — 0+41Z gegeben ist. Insbesondere

gibt es einen surjektiven Homomorphismus A4 — Z/(1).

Aus der Vorlesung ist bekannt, dass die Kleinsche Vierergruppe Vj ein Normalteiler von A4 (und Sy)
ist. Die Faktorgruppe A4/V; ist eine Gruppe der Ordnung (A4 : Vi) = |A4|/|Va| = L2 = 3. Als Gruppe
der Primzahlordnung 3 ist A4/Vy zyklisch, und weil zwei zyklische Gruppen derselben Ordnung zyklisch
sind, existiert ein Isomorphismus ¢ : A4/Vy — Z/(3). Bezeichnet m : Ay — A;/V, den kanonischen

Epimorphismus, dann erhalten wir durch ¢ = ¢ o 7 einen surjektiven Homomorphismus A4 — Z(3).

Nehmen wir nun an, dass ein surjektiver Homomorphismus ¢ : Ay — Z/(2) existiert. Sei N = ker(¢).

Auf Grund des Homomorphiesatzes fiir Gruppen gilt Ay/N = Z/(2). Es folgt

12 | A4

N = W = MM o= 2@ =

und somit |[N| = 6. Es wire N also eine Untergruppe der Ordnung 6 von A4. Aber aus der Vorlesung
ist bekannt, dass in A4 keine solche Untergruppe existiert. Die einzigen n € IN, fiir die ein surjektiver

Homomorphismus ¢ : Ay — Z/(n) existiert, sind also 1 und 3.



Aufgabe F23T1A2

(a) Geben Sie die Definition von Nullteilerfreiheit eines kommutativen Rings an.

(b) Bestimmen Sie alle Nullteiler und Einheiten sowie die Inklusionen aller Ideale des kommutativen
Rings Z/(27).

Losung:

zu (a) Ein kommutativer R wird als nullteilerfrei bezeichnet, wenn fiir alle a,b € R aus ab = Op
jeweils a = O oder b = Oy folgt. Ist R dariiber hinaus ein Ring mit 1 und gilt auBerdem 1 # 0g, dann
spricht man von einem Integrititsbereich. (Die erste Bedingung besagt genau genommen, dass es in R mit
eventueller Ausnahme der Or keine Nullteiler in R gibt. Die Bezeichnung , nullteilerfrei“ ist so gesehen

ein wenig irrefithrend. Wir hatten die Bezeichnung deshalb in der Vorlesung auch nicht verwendet.)

zu (b) Ist a € Z mit ggT(a,27) = 1, was zu ggT(a,3) = 1 dquivalent ist, dann ist a4 277 laut Vorlesung
eine Einheit in Z/(27). Die Einheiten in Z/(27) sind also gegeben durch

1,2,4,5,7,8,10,11,13,14,16, 17,19, 20, 22, 23, 25, 26.
Ist die Bedingung ggT(a,3) = 1 nicht erfiillt, dann ist a ein Vielfaches von 3. In diesem Fall ist a + 277Z
in Z/(27) ein Nullteiler, denn es ist 9 + 27Z # 0 und (a + 27Z)(9 + 27Z) = 9a + 277 = 0 + 277 = 0,
weil 9a ein Vielfaches von 27 ist. (Man kann leicht zeigen, dass in einem endlichen Ring jedes Element

entweder eine Einheit oder ein Nullteiler ist.) Also sind

3,6,9,12,15,18,21,2%4
die Nullteiler in Z/(27).

Jedes Ideal in Z hat bekanntlich die Form (n) mit n € INg, und fir m,n € IN gilt (m) O (n) genau
dann, wenn m ein Teiler von n ist. Die Ideale, die (27) als Teilmenge enthalten, sind also genau die
Ideale der Form (m), wobei m € IN die Teiler von 27 durchlduft. Dies sind 1, 3, 9 und 27. Auf Grund
des Korrespondenzsatzes fiir Ringe existiert eine bijektive Korrespondenz zwischen diesen Idealen von Z
und den Idealen von Z/(27), und diese ist gegeben durch (m) — (m + 27Z). Die Inklusion bleibt unter

dieser Korrespondenz erhalten, d.h. fiir zwei Teiler m,n € IN von 27 gelten die Aquivalenzen
m|n < (m)2(n) <& (m+27Z)2 (n+272Z).

Das Hauptideal (27 + 27Z) = (0) = {0} ist in jedem der Ideale (27 + 277Z), (9 + 27Z), (3 + 27Z) und
(14-27Z) enthalten. Das Hauptideal (9+427Z) liegt in (9+27Z), (3+27Z) und (1427Z). Das Hauptideal
(34 277) ist enthalten in (3 + 27Z) und (1 + 277Z), und es gilt offenbar (1 + 27Z) C (1 + 277Z). Dariiber

hinaus gibt es keine Inklusionsbeziehungen zwischen den Idealen von Z/(27).



Aufgabe F23T1A3

(a) Zeigen Sie, dass jeder irreduzible Faktor von f = x% — 25 € Q[x] separabel iiber Q ist.

(b) Bestimmen Sie ein primitives Element eines Zerfillungskérpers L von f {iber Q und die Dimension
von L iiber Q.

(¢) Berechnen Sie die Automorphismengruppe von L iiber Q.

(d) Bestimmen Sie alle Zwischenkérper Q C K C L und ihre Inklusionen.

Lésung:
zu (a) Jeder irreduzible Faktor von z# — 25 in Q[z] ist insbesondere ein irreduzibles Polynom in Q[z].

Wegen char(Q) = 0 ist laut Vorlesung jedes irreduzible Polynom iiber @ separabel.

zu (b) Die Zerlegung f = (22 — 5)(22 +5) = (x — V5)(z + V5)(z — iv5)(z + iV/5) zeigt, dass N =
{++/5, +i\/5} die Menge der komplexen Nullstellen von f iiber Q und Q(N) somit der Zerfillungskorper

von f iiber Q in C ist. Wir zeigen, dass
Q) = Q(i+V5)

gilt und i + /5 somit ein primitives Element von L iiber @ ist. Wegen v/5,iv/5 € N gilt erst recht

V5,iV5 € Q(N) und somit auch i = z\/\/gg € Q(N) und i 4+ /5 € Q(N). Dadurch ist ,0¢ nachgewiesen.

Fiir den Nachweis von ,,C“ bemerken wir, dass mit i + /5 auch (i +/5)"! = (i —V5) in Qi + v5)

enthalten ist, damit auch die Elemente i — /5, i = 1(i +V/5) + 3(i — v5), V5 = (i +V5) — i, iv/5, —V/5
und —iv/5. Insgesamt gilt also N C Q(i 4+ v/5) und damit auch Q(N) C Q(i + V/5).

Sei nun L = Q(N). Die Dimension von L als Q-Vektorraum ist nach Definition nichts anderes als
der Erweiterungsgrad [L : Q]. Wie wir bereits gesehen, erhilt der Korper Q(i,v/5) die Menge N, und
umgekehrt gilt N C Q(i,v/5). Es gilt also L = Q(i,v/5). Das Polynom g = x? — 5 ist normiert, besitzt
/5 als Nullstelle und ist auf Grund des Eisenstein-Kriteriums in Z[z] und Q[z] irreduzibel. Es handelt
sich also um das Minimalpolynom p. sz o von V/5 iiber @, und daraus folgt [Q(V/5) : Q] = grad(g) = 2.
Das Polynom h = 22 + 1 liegt in Q[z] und damit auch in Q(v/5)[x], es ist normiert, und es besitzt i als
Nullstelle. Wire es iiber Q(v/5) reduzibel, dann wiren wegen grad(h) = 2 die beiden Nullstellen +i in
Q(+/5) enthalten. Aber dies ist wegen Q(v/5) C R und +i ¢ R nicht der Fall. Es gilt also h = 1. Q(v5)
und [L : Q(v5)] = [Q(V5)(i) : Q(/5)] = grad(h) = 2. Mit der Gradformel erhalten wir

[L:Q = [L:QW5]-[QWV5):Q = 22 = 4

zu (¢) Die Erweiterung L|Q ist normal, weil L der Zerfallungskorper von f iiber @ ist, damit auch
algebraisch, und wegen char(Q) = 0 ist jede algebraische Erweiterung von Q auch separabel. Insgesamt
ist L|Q damit eine Galois-Erweiterung, und laut Vorlesung folgt daraus |Autq(L)| = |Gal(L|Q)| = [L :
Q] = 4. Fiir jedes o0 € Autg(L) ist mit v/5 auch o(+/5) eine Nullstelle von 22 —5, es gilt also o(v/5) = 1v/5
fiir ein &, € {£1}. Ebenso ist mit i auch o (i) eine Nullstelle von 2% + 1 und somit (i) = &9 fiir ein
gy € {£1}. Wegen L = Q(+/5,i) ist o durch die Bilder ¢(v/5) und (i) eindeutig bestimmt. Wegen
|Autq(L)| = 4 existiert fiir jedes Paar (e1,£2) € {£1}? genau ein o € Autg(L) mit ¢(v/5) = £1v/5 und

o(i) = eqi. Insgesamt gilt also

Autg(L) {os1415 04141, 01,415 0411}

wobei jedes ., ., jeweils durch o(v/5) = 1v/5 und o(i) = eqi festgelegt ist.



zu (d)  Zun#chst bestimmen wir die Anzahl der Zwischenkérper von L|Q. Nach dem Hauptsatz der
Galoistheorie stimmt diese iiberein mit der Anzahl der Untergrupppen von Gal(L|Q). Als Gruppe der
Ordnung |Gal(L|Q)| = [L : Q] = 4 ist Gal(L|Q) isomorph zu Z /47 oder zu Z./27. x 7./ 27.. Jedes Element
in Gal(L|Q) ist von Ordnung 1 oder 2. Denn fiir alle (g1,e2) € {£1}? gilt 02, . (V/5) = 0, c,(e1V5) =

€1,€2
€104, ,(V/5) = £24/5 = /5, und ebenso erhlt man 02, ., (i) = i. Weil jedes Element von Gal(L|Q) durch
die Bilder von v/5 und i eindeutig bestimmt ist, folgt daraus 02, ., = idp. Weil also in Gal(L|Q) keine

Elemente der Ordnung 4 existieren, muss Gal(L|Q) & Z/2Z x Z./27 gelten.

Die Ordnung jeder Untergruppe ist ein Teiler von 4, also gleich 1, 2 oder 4. Die Untergruppen der Ordnung
2 sind zyklisch, werden also durch ein Element der Ordnung 2 erzeugt. In Z/27 x 7./ 27, gibt es genau drei
Elemente der Ordnung 2 (némlich (1,0), (0,1) und (1,1), und diese drei Elemente liefern drei verschiedene
Untergruppen der Ordnung 2. Daneben gibt es noch die Untergruppe {(0,0)} der Ordnung 1 und die
Untergruppe Z/27.x 7./ 27, der Ordnung 4. Insgesamt besitzt also Z/27.x 7./ 27, genau fiinf Untergruppen,
und dasselbe gilt fiir Gal(L|Q). Die Erweiterung L|Q besitzt also genau fiinf Zwischenkorper. Es ist Q
ein Zwischenkérper von L|Q mit [Q : Q] = 1, und L ist ein Zwischenkdrper mit [L : Q] = 4. Auflerdem
sind Q(v/5), Q(i) = Q(v/—1) und Q(iv/5) = Q(v/—5) drei verschiedene Zwischenkorper vom Grad 2 iiber
Q, denn aus der Vorlesung ist bekannt, dass [Q(V/d) : Q] = 2 fiir jede quadratfreie Zahl d € Z \ {0,1}
gilt, und dass verschiedene quadratfreie Zahlen jeweils unterschiedliche Zwischenkorper liefern. Insgesamt

haben wir damit alle fiinf Zwischenkérper der Erweiterung L|@Q bestimmt.



Aufgabe F23T1A4

(a) Zeigen Sie, dass die Charakteristik eines endlichen Koérpers eine Primzahl ist.

(b) Zeigen Sie, dass die Anzahl der Elemente eines endlich-dimensionalen Vektorraums V' iiber einem

endlichen Korper K eine Potenz der Charakteristik von K ist.

(¢) Sei K ein endlicher Kérper mit ¢ Elementen; die Charakteristik von K sein ungleich 2. Berechnen

Sie die Méchtigkeit der Bahn des Elements

0 1
A= (1 0) € GLy(K)

unter der Operation von GLy(K) durch Konjugation.

Lésung:

zu (a) Sei K ein endlicher Kérper und nehmen wir an, dass char(K) keine Primzahl ist. Dann gilt
char(K) € {0,1}, oder es gibt m,n € IN mit char(X) = mn und m,n > 1. Im Fall char(K) = 0 wiren
durch m - 1x mit m € IN unendlich viele verschiedene Elemente gegeben, was der Endlichkeit von K
widerspricht. Im Fall char(K) = 1 wiire K ein Nullring (also Ox das einzige Element von K), was bei
einem Korper ausgeschlossen ist. Nehmen wir nun an, es existieren m,n € IN mit den angegebenen
Eigenschaften. Dann wiirde m - 1x # Ox und n - 1x # Ok, andererseits aber (m - 1g) - (n - 1g) =
(mn) -1 = 0k gelten. Es wire also m - 1k ein Nullteiler ungleich 0, was ebenfalls im Widerspruch zur

Korpereigenschaft stehen wiirde.

zu (b) Nach Teil (a) ist p = char(K) eine Primzahl. Sei P der Primkérper von K und d = dim(V') (mit
d € Ny). Laut Vorlesung gilt p = char(K) = |P|. Weil K endlich ist, muss auch der Erweiterungsgrad
n = [K : P] endlich sein. Als P-Vektorraum ist K isomorph zu P", woraus |K| = |P|" = p™ folgt.
AuBerdem ist V als K-Vektorraum isomorph zu K%. Damit erhalten wir |V| = |K|¢ = (p")? = p". Dies

zeigt, dass |V| eine Primzahlpotenz ist.

zu (c)



Aufgabe F23T1A5

Seien K ein Korper und f : V. — W eine lineare Abbildung zwischen endlich-dimensionalen K-

Vektorrdumen V und W. Seien
V* =Homg(V,K) und W* =Homg(W, K)
die Dualrdume, sowie f*: W* — V* ¢+ po f, die duale Abbildung.
(a) Seiwvy,...,v, eine K-Basis von V. Zeigen Sie, dass f genau dann injektiv ist, wenn f(v1),..., f(v,)
linear unabhéngig sind.
(b) Zeigen Sie: Ist f injektiv, dann ist f* surjektiv.
(¢c) Zeigen Sie: Ist f* surjektiv, dann ist f injektiv.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe F23T2A1

(a) Es seien a,b € Z. Zeigen Sie: 7| (10a +b) < 7| (a — 2b).

(b) Bestimmen Sie, fiir welche r € R das folgende lineare Gleichungssystem (i) keine, (ii) genau eine,

(iii) unendlich viele Losungen hat.

re + y + =z = 1
z + ry + =z =1
r + y 4+ rz =1

(¢) Geben Sie ein externes direktes Produkt zyklischer Gruppen an, das isomorph ist zur Einheiten-
gruppe (Z/40Z)*.

Hinweis: Hauptsatz iiber endliche abelsche Gruppen
(d) Bestimmen Sie eine Orthonormalbasis des R? aus Eigenvektoren des Endomorphismus

T T — 2z
e:R¥—R> |, |y~ 0
z —2x + 4z

Lésung:

zu (a) zu(b) zu(c) zu(d)



Aufgabe F23T2A2

Es sei G eine Gruppe der Ordnung 30. Es bezeichnen Us und Us; jeweils eine 3- und eine 5-Sylowgruppe
von G. Zeigen Sie:
(a) Mindestens eine der Gruppen Us und Us ist ein Normalteiler von G.

(b) Ist Us normal, so hat G/Us eine Untergruppe vom Index 2. Ist Us normal, so hat G/Us eine

Untergruppe vom Index 2.
(c) Die Gruppe G hat eine Untergruppe Us vom Index 2.
(d) Zeigen Sie, dass alle 3-Sylowgruppen und alle 5-Sylowgruppen von G in Uj5 enthalten sind.
(e) Folgern Sie, dass G genau eine 3-Sylowgruppe und genau eine 5-Sylowgruppe hat.

Lésung:
zu (a) zu(b) zu(c) zu (d)



Aufgabe F23T2A3

Essei R={x+yv-31|z,ycZ} CC.

(a) Begriinden Sie, dass R ein Ring ist.
(b) Zeigen Sie, dass R nicht faktoriell ist.
Hinweis: Beachten Sie 32 = (14 1/—31)(1 — v/—31).

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe F23T2A4

Seien p und g zwei Primzahlen. Bestimmen Sie den Zerfallungskorper des Polynoms 2? — ¢ € K|z fiir

die Grundkorper K = @, R und C.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe F23T2A5

Es sei Fgo5 der endliche Korper mit 625 Elementen mit Primkorper P. Bestimmen Sie die Anzahl der

Elemente a € ]F625 mit P(a) = ]F625.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe F23T3A1

Es seien G die multiplikative Gruppe (R*, ) und X = R? der dreidimensionale R-Vektorraum mit
skalarer Multiplikation R x X — X, (A, z) — Az. Weiter sei die folgende Abbildung gegeben:

i GE@xX =X, (g,x)— g -xz=gz.

(Das ist die skalare Multiplikation, eingeschrinkt auf G x X.)

(a) Zeigen Sie, dass - eine Operation von G auf X ist.
(b) Bestimmen Sie die Menge F' der Fixpunkte der Operation.
(c) Zeigen Sie, dass R = {z € R3 | ||z|| = 1}U{0} ein Reprisentantensystem der Bahnen der Operation

ist.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe F23T3A2

Es seien n € IN und V' der R-Vektorraum M, g der reellen n x n-Matrizen. Fiir A € V sei *A die zu A

transponierte Matrix. Weiter seien
U={AcV|'A=A} und W={AcV |'A=—-A}.
Zeigen Sie:

(a) Die Teilmengen U und W sind Untervektorrdume von V.

(b) Esgit V=UaW.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe F23T3A3

Bestimmen Sie bis auf Isomorphie alle Gruppen der Ordnung 2023 = 7 - 172.

Lésung:
zu (a) zu(b) zu(c) zu(d)



Aufgabe F23T3A4

Es sei ¢ € C eine primitive 7-te Einheitswurzel, und es seien a = ¢ + ¢~ ! und b = ¢ + (% + ¢*.

(a) Geben Sie einen konkreten Isomorphismus zwischen der Einheitengruppe von Z/7Z und der Ga-

loisgruppe von Q(¢)|Q an.

(b) Zeigen Sie, dass die Korpererweiterungen Q(a)|Q und Q(b)|Q galois’sch sind, und bestimmen Sie

die zugehorigen Galois-Gruppen bis auf Isomorphie.

(c) Bestimmen Sie die Minimalpolynome von a und b iiber Q.

Lésung:
zu (a) zu (b) zu (c) zu (d)



Aufgabe F23T3A5

Fiir einen kommutativen Ring R definieren wir S(R) = {r? + 73 | r1,72 € R}.

(a) Zeigen Sie: Sind r,7’" € S(R), dann gilt auch v’ € S(R).

(b) Bekanntlich sind die normierten irreduziblen Polynome in R[z] genau die Polynome der Form z —r
oder (z — a)? 4+ b*> mit r,a € R, b € R*.
Zeigen Sie: SR[z]) ={f € R[z] |V € R : f(§) > 0}

Lésung:
zu (a) zu(b) zu (c) zu (d)



Aufgabe H23T1A1

(a) Sei n > 1 eine natiirliche Zahl und p # 2 eine Primzahl. Zeigen Sie:

pl1+24+..4(n—1)+n) < plnoderp|(n+1).

(b) Bestimmen Sie die Anzahl der Elemente der Einheitengruppe (Z[x]/(2, 2% + 2% + x))* des angege-

benen Quotientenrings.

(c) Bestimmen Sie mit Hilfe des Chinesischen Restsatzes und unter vollsténdiger Angabe des Losungs-
wegs die kleinste natiirliche Zahl n > 1, die die Kongruenzen n = 1 mod 3, n = 2 mod 5 und

n = 0 mod & erfiillt.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T1A2

Im Folgenden sei 5,, die symmetrische Gruppe.

(a) Sei o € Sy, ein Produkt ¢ = ¢ - ... - (», von paarweise disjunkten Zyklen (; der Léngen ¢;. Zeigen
Sie, dass die Ordnung von o gleich dem kleinsten gemeinsamen Vielfachen von ¢4, ..., £, ist.
(b) Bestimmen Sie die maximale Ordnung eines Elements (i) der Sg; (ii) der S7.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T1A3

(a) Sei G eine einfache Gruppe mit |G| > 2, die auf der endlichen Menge X operiere, und p : G —

¥(X) =2 S, (mit n = |X|) der zugehorige Homomorphismus in die symmetrische Gruppe von X.

Zeigen Sie, dass p(G) in der alternierenden Gruppe A, enthalten ist.

(b) Sei G eine nicht-abelsche einfache Gruppe, H C G eine Untergruppe sowie n = (G : H) > 2. Zeigen

Sie, dass G isomorph zu einer Untergruppe von A, ist, und dass n > 5 gilt.

(c) Zeigen Sie, dass keine endliche einfache Gruppe der Ordnung 80 existiert.

Lésung:
zu (a) zu(b) zu(c) zu(d)



Aufgabe H23T1A4

Sei R ein kommutativer Ring (mit 1). Sei weiter I C R ein Ideal. Wir definieren das Radikal von I als
rad(I) = {reR|r" el fireinn e N}
Zeigen Sie:

(a) Die Teilmenge rad(I) C R ist ebenfalls ein Ideal von R.

(b) Ist I ein Primideal, dann gilt rad(I) = I.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T1A5

(a) Zeigen Sie, dass der Kreisteilungskorper Q((s) genau drei quadratische Teilkérper besitzt, d.h.
Zwischenkérper Q C K C Q(¢s) mit [K : Q] = 2.

(b) Bestimmen Sie in Teil (a) drei Elemente oy, as, a3 € Q so, dass die Zwischenkorper K; = Q(\/a;)

genau die quadratischen Teilkorper sind.
(c) Zeigen Sie, dass das Polynom z* 4+ z + 1 € Fa[z] irreduzibel ist.
(d) Nach Teil (c) gilt F1g = Fy(a) fiir ein a € F3'® mit o* + a + 1 = 0. Bestimmen Sie die Grade

[F2(B) : T3] in den beiden Fillen 3=« + 1 und 8 = a® + 1.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T2A1

Sei w € C eine primitive dritte Einheitswurzel.

(a) Zeigen Sie, dass Q C Q(v/2,w) eine Galois-Erweiterung ist.

(b) Bestimmen Sie den Grad [Q(V/2,w) : Q] dieser Erweiterung.

a b
(c) Sei G die Menge der invertierbaren 2 x 2-Matrizen der Form | _ i mit Eintradgen in F3. Zeigen

Sie, dass G eine Untergruppe der Gruppe der invertierbaren 2 x 2-Matrizen iiber I3 ist, und geben
Sie einen Isomorphismus G' = Gal(Q(¥/2,w)|Q) an.

Lésung:
zu (a) zu (b) zu (c)



Aufgabe H23T2A2

(a) Geben Sie die Definition einer auflisbaren Gruppe an.

(b) Bestimmen Sie alle endlichen einfachen auflésbaren Gruppen.

Lésung:
zu (a) zu (b)



Aufgabe H23T2A3

(a) Seien G; und G2 endliche Gruppen und |G| teilerfremd zu |Gs|. Sei weiter H C G; X G2 eine
Untergruppe. Zeigen Sie, dass es Untergruppen Hy; C G1 und Hy C G4 gibt mit H = H; X Hs.

(b) Geben Sie zwei Gruppen G; und G an sowie eine Untergruppe H C G X G, so dass H nicht von
der Form Hy x Hs fiir zwei Untergruppen H; C G und Hy C G5 ist.

(¢) Sei G eine endliche Gruppe der Ordnung n mit folgenden Eigenschaften.

(i) Fiir jeden Teiler k > 0 von n gibt es eine Untergruppe U von G der Ordnung k.

(ii) Die Gruppe G ist nicht abelsch.

Zeigen Sie, dass G nicht einfach ist.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T2A4
Es seien x = (w1, 72, 23,74), ¥y = (y1, Y2, Y3, Y4), 2 = (21, 22, 23, 24) € R* beliebig und

r1 T2 T3 T4

Yr Y2 Ys Y4

Z1 zZ9 z3 z4

R — R, (ur,us,us3, uy) — det
Up Uz U3 U4
(a) Zeigen Sie, dass f eine lineare Abbildung ist.
(b) Zeigen Sie, dass z,y, z Elemente des Kerns von f sind.

(c) Zeigen Sie, dass der Kern von f genau dann der von z,y,z aufgespannte Untervektorraum ist,

wenn diese Vektoren linear unabhéingig sind.

(d) Bestimmen Sie den Kern von f in dem Fall, dass z,y, z linear abhiingig sind.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T2A5

Sei R ein kommutativer Ring mit 1.

(a) Sei z € R ein Element mit ™ = 0 fiir ein m > 0. Zeigen Sie, dass dann 1+ = € R multiplikativ

invertierbar ist.
(b) Sei I C R ein Ideal. Zeigen Sie, dass dann auch
VI = {zeR|z™ eI fir ein m > 0}
ein Ideal in R ist.
(c) Zeigen Sie, dass N(R) = {z € R| 2™ = 0 fiir ein m > 0} ein Ideal in R ist.

(d) Geben Sie ein Beispiel fiir einen (nicht kommutativen) Ring R an, in dem N(R’) C R’ (wie in Teil
(¢)) kein (Links-)Ideal ist.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T3A1

Sei G eine Gruppe und H eine Untergruppe von G.

(a) Geben Sie die Definition des Index (G : H) an. (Die Gruppe G braucht nicht endlich zu sein.)
(b) Zeigen Sie, dass (G : H) ein Teiler von 168 ist, wenn H der Kern eines Homomorphismus f : G —

GL3(IF2) in die Gruppe der invertierbaren 3 x 3-Matrizen iiber dem Koérper o ist.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T3A2
Es seien a = V12 +3, 3 =iV/V/12 -3 € C und L = Q(a,3) C C.

(a) Bestimmen Sie das Minimalpolynom f = m,,q von « tiber Q, und zeigen Sie, dass auch § eine
Nullstelle von f ist.

(b) Begriinden Sie, warum L|Q eine Galois-Erweiterung ist.

(c) Zeigen Sie, dass L = Q(«, ¢) gilt, und bestimmen Sie den Grad [L : Q).

(d) Zeigen Sie, dass die Galois-Gruppe Gal(L|Q) einen Normalteiler der Ordnung 2 enthilt.

Lésung:

zu (a) zu(b) zu(c) zu (d)



Aufgabe H23T3A3

Sei L ein Zerfillungskorper des Polynoms f = z* — 2% + 222 — 2 iiber Q. Bestimmen Sie

(a) fiir eine Nullstelle 1 # o € L von f das Minimalpolynom von « iiber @,

(b) den Grad [L : Q].

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe H23T3A4

(a) Sei p eine ungerade Primzahl und n > 1. Zeigen Sie, dass die Gleichung 22 = 1 in R = Z/p"Z

genau zwei Losungen hat.
(b) Bestimmen Sie alle Losungen der Gleichung 2 = 1 im Ring Z/2023Z.
Hinweis: 2023 = 7172

Lésung:
zu (a) zu(b) zu(c) zu(d)



Aufgabe H23T3A5

Seien R # 0 ein kommutativer Ring und F,G € R[z] Polynome, wobei G als normiert angenommen
sei. Dann (das sollen Sie nicht beweisen) existieren eindeutig bestimmte A, B € R[z] so, dass gelten
F = AG + B und deg(B) < deg(G) (hierbei ist deg(0) = —o0). (Das ist Division mit Rest durch ein

normiertes Polynom.)

(a) Seien f: R — S # 0 ein Ringhomomorphismus und f[z] : R[z] — S[z] der Ringhomomorphismus,
der auf R C R[z] mit f iibereinstimmt und auerdem f[z](x) = z erfiillt. Zeigen Sie, dass in S[x]
gilt flz](F) = flz](A) - flz](G) + f[z](B), und dass diese Gleichung die Division mit Rest von
flz](F) durch f[z](G) ist.

(b) Zeigen Sie, dass genau ein Ideal I C R existiert, so dass fiir jeden Ringhomomorphismus f : R —

S # 0 aquivalent sind:
() Fl2](G) teilt fla](F) in Sla]
(ii) f(I) =0
(¢) Bestimmen Sie das Ideal I C R aus Teil (b) in den beiden folgenden Fillen:
() R=Z,F=2%—1,G=a%+1
(i) R=Zy), F=2>+y, G=2—1

Lésung:
zu (a) zu(b) zu (c) zu (d)



Aufgabe F24T1A1

Sei n > 0 und M,, = (m;;) die reelle n x n-Matrix mit m;; =0, falls j <i—1oder j > i+ 1, my; =1,
falls j =i — 1, my; = 3, falls j =4, und m;; = 2, falls j =i+ 1. Also ist beispielsweise

32 000
13 2 00
Ms = 01 3 20
001 3 2
00 01 3

Sei d,, die Determinante von M,,.

(a) Berechnen Sie d; und ds.
(b) Zeigen Sie, dass fiir alle n > 3 gilt d,, = 3d,,—1 — 2d,,—2.
(c) Zeigen Sie, dass d,, = 2"+ — 1 gilt.

Lésung:
zu (a) zu (b) zu (c)



Aufgabe F24T1A2

(a) Bestimmen Sie alle n € {1,2,3,...}, fiir die die Gruppe Z/nZ aufer der Identitit keinen weiteren

Gruppenautomorphismus besitzt.

(b) Seinun G eine endliche Gruppe der Ordnung > 2 mit der Eigenschaft, dass die Identitét der einzige

Gruppenautomorphismus ist. Zeigen Sie, dass G eine abelsche Gruppe ist.

(c) Zeigen Sie, dass G = Z,/27 gilt.

Losung:
zu (a) zu (b) zu (c)



Aufgabe F24T1A3

(a) Sei R ein kommutativer Ring. Ein Element z € R heifit nilpotent, falls es ein k € {1,2,3,...} gibt
mit 2* = 0. Sei I C R ein Primideal und x € R nilpotent. Zeigen Sie: z € I

(b) Sei I = (1+14) das von 1+ i erzeugte Ideal im Ring Z[i]. Zeigen Sie, dass der Ring Z[i]/I genau

zwel Elemente hat.

(c) Seien R ein Integritéitsbereich und a, b, c € R. Zeigen Sie: Erzeugen a und b in R das Einheitsideal

und ist a ein Teiler von be, so ist a ein Teiler von c.

Lésung:
zu (a) zu (b) zu (c)



Aufgabe F24T1A4
Sei p eine Primzahl mit der Eigenschaft, dass p—1 = p; - ... p, das Produkt der paarweise verschiedenen
Primzahlen pq, ..., p, ist.

(a) Zeigen Sie, dass es genau 2" verschiedene Untergruppen in G = (Z/pZ.)* gibt.

(b) Sei ¢, € C eine primitive p-te Einheitswurzel. Bestimmen Sie die Anzahl der Zwischenkoérper in

der Erweiterung Q(¢,)|Q.

Lésung:
zu (a) zu (b)



Aufgabe F24T1A5

Sei & = v/10 — 5v/2 € R.

(a) Bestimmen Sie das Minimalpolynom von « iiber Q.
(b) Zeigen Sie, dass Q(«)|Q eine Galois-Erweiterung ist.
(¢) Zeigen Sie, dass die Galois-Gruppe von Q(«)|Q zu Z /47 isomorphi ist.

Lésung:

zu (a) zu (b) zu (c)



Aufgabe F24T2A1

(a) Bestimmen Sie eine Zerlegung des Elements z = 29 € Z[i] in Primelemente.

(b) Es sei p > 3 eine Primzahl. Zeigen Sie, dass es in der multiplikativen Gruppe F;Z ein Element a

der Ordnung 12 gibt.
(c) Entscheiden Sie, ob 437 € Z/911Z invertierbar ist. Bestimmen Sie gegebenenfalls das Inverse.
(d) Entscheiden Sie begriindet, ob R eine algebraische Erweiterung vom Grad 4 hat.

Lésung:
zu (a) zu (b) zu (c) zu (d)



Aufgabe F24T2A2

Es sei N = ap_1an_9---ajap mit a; € {0,1,...,9}, a,—1 # 0 die dezimale Zifferndarstellung einer Zahl

N.

(a) Die Wechselsumme von N ist durch

gegeben. (Beispiel: W(123456) =6 —5+4—-3+2—1)
(b) Wir nennen N palindromisch, wenn die Ziffernzahl n gerade ist und
p—1Gn—2---a1ag = N = aga1- - Gp_20n_1

gilt. (Beispiel: 493394 ist palindromisch.)

Bestimmen Sie alle palindromischen Primzahlen.
(c) Sei die Folge (Up)new mit Uy =1, Uy = 11, U = 111, Uy = 1111, gegeben. Zeigen Sie

(i) Tm Fall k | n gilt Uy, | U,.
(ii) Ist n = k- ¢ mit k, ¢ € {2,3,4, ...}, so ist U,, keine Primzahl.

Lésung:

zu (a) zu(b) zu(c) zu(d)



Aufgabe F24T2A3

(a) Entscheiden Sie und begriinden Sie, ob es eine Gruppe gibt, die auer dem neutralen Element vier

Elemente der Ordnung 5, sechs Elemente der Ordnung 2 und keine weiteren Elemente enthélt.

(b) Entscheiden und begriinden Sie, ob es eine abelsche Gruppe ist, die nur Elemente mit den Ord-

nungen 1, 2 und 4 enthélt, wobei die Anzahl der Elemente durch

Ordnung || 1| 2| 4
Anzahl 13112

gegeben ist. Entscheiden Sie begriindet, ob die abelsche Gruppe durch diese Angabe bis auf Iso-

morphie eindeutig bestimmt ist.

(c) Beweisen oder widerlegen Sie die folgende Aussage: Ist G eine endliche Gruppe und d ein Teiler

der Gruppenordnung |G|, so hat G eine Untergruppe U mit |U| = d.

Lésung:

zu (a) Eine Gruppe mit diesen Eigenschaften existiert nicht. Denn nehmen wir an, dass es sich bei
G um eine solche Gruppe handelt. Die Gesamtzahl der Gruppenelemente, also die Ordnung von G, ist
gleich 1 +4 4 6 = 11. Nach dem Satz von Lagrange ist ord(g) fiir jedes g € G also ein Teiler von 11,
also ord(g) € {1, 11} fiir alle g € G. Somit kann es in G keine Elemente der Ordnung 2 oder 5 geben, im

Widerspruch zur Annahme.

zu (b) Nehmen wir an, G ist eine Gruppe mit diesen Eigenschaften. Dann ist |G| =1+ 3 + 12 = 16.
Nach dem Hauptsatz iiber endliche abelsche Gruppen gibt es ein 7 € IN und dy,...,d, € N, dy > do >
... >d, > 2 mit

G = Z/dWZXZ/dZ X ...x Z]/d 7

und dy -da-...-d, = 16. Wegen d; | 16 gilt jeweils d; € {2,4,8,16}. Da es in G keine Elemente der Ordnung
8 oder 16 gibt, ist jewiels nur d; € {2,4} moglich. Die einzigen Moglichkeiten fiir solche Produkte sind
4-4 oder 4-2-2. Also gilt

G2 ZJAZ x ZJAZ oder G = ZJAZ x 7./2Z x 7./27.

In Z/AZ x (Z./27)? gibt es wegen 2 - (2,0,0) = 2-(0,1,0) = 2-(0,0,1) = 2-(2,1,0) = (0,0,0) (und
weil keines dieser Elemente mit dem Neutralelement (0,0, 0) iibereinstimmt) mehr als drei Elemente der
Ordnung 2. Also bleibt G & (Z/47,)? also einzige Moglichkeit. Wir iiberpriifen nun, dass es in (Z/47)?
tatséichlich genau drei Elemente der Ordnung 2 und genau 12 Elemente der Ordnung 4 gibt.

Die drei Elemente (0,2), (2,0) und (2,2) sind von Ordnung 2, denn keines von ihnen stimmt mit dem
Neutralelement (0,0) iiberein, aber wenn man sie mit 2 multipliziert, dann erhélt man (0,0). Sei nun
(a,b) € (Z,/4Z)?* ein beliebiges Element der Ordnung 2. Dann gilt (2a,2b) = (0,0); dies ist nur moglich,
wenn a,b € {0,2} erfiillt ist. Weil (a,b) ungleich dem Neutralelement ist (dies ist von Ordnung 1),
muss (a,b) € {(0,2),(2,0),(2,2)} gelten. Nun gibt es G neben den Elementen der Ordnung 2 und dem
Neutralelement noch 12 weitere Elemente, wegen |G| —3 —1 =16 — 3 — 1 = 12. Ist (¢,d) ein solches
Element, dann gilt 4- (¢, d) = (4¢,4d) = (0,0), also ord((c,d)) | 4 und somit ord((c,d)) € {1,2,4}. Da wir
die Ordnungen 1 und 2 ausgeschlossen hatten, muss (¢, d) ein Element der Ordnung 4 sein. Dies zeigt,

dass es in G genau 12 Elemente der Ordnung 4 gibt.

zu (¢) Diese Aussage ist im Allgemeinen falsch, denn bekanntlich ist die alternierende Gruppe A4 von

Ordnung 12, diese enthélt aber keine Untergruppe der Ordnung 6, obwohl 6 ein Teiler von 12 ist. Um



dies nachzuweisen, nehmen wir an, U wire eine Untergruppe mit |U| = 6. Da 3 ein Primteiler von |U]| ist,
existiert nach dem Lemma von Cauchy ein o € U mit ord(o) = 3. Die Elemente der Ordnung 3 in A4 sind
genau die 3-Zykel; es gibt somit drei verschiedene Zahlen i, j, k in My = {1,2,3,4} mit 0 = (i j k). Ebenso
existiert in U ein Element 7 mit ord(7) = 2, und wegen 7 € Ay ist dies eine Doppeltransposition. Sei £ das
eindeutig bestimmte Element in My \ {4, j, k}. Die folgenden Gleichungen zeigen, dass die Untergruppe

U alle Doppeltranspositionen enthélt, sobald zumindest eine Doppeltransposition in U liegt:
(ij k) o(ij)(kO)o(ijk)=(kji)o(ij)k)o(ijk)=(ik)jl)
(ijk)o(ij)(kO)o(ijk)™ =(ijk)o(ij)ke)o(kji)= (i) k).

Also enthilt U mindestens (i j k), das Inverse (i j k)~' = (i k j), die drei Doppeltransposition, die

Identitét, und auBerdem noch das Element
(@ j)(kb)o(ijk)o(ij)ke) = (il]).

Damit wire dann |U| > 7, im Widerspruch zu |U| = 6.



Aufgabe F24T2A4

(a) Entscheiden Sie begriindet, ob ein Ring R existiert, der unendlich viele Einheiten u € R* endlicher

multiplikativer Ordnung hat.

(b) Entscheiden Sie begriindet, ob ein Ring R existiert, der unendlich viele Einheiten endlicher additiver

Ordnung hat.
(c¢) Entscheiden Sie begriindet, ob ein Ring R existiert, der nur endlich viele Einheiten hat und in dem

die multiplikative Ordnung einer Einheit v € R* unendlich ist.

Lésung:
zu (a) zu (b) zu (c)



Aufgabe F24T2A5

Es seien ay, ..., a, € Q und das Polynom f € Q[z] vom Grad 2n durch
f = 2 +az™ 4 Han " rar" Fan 12" 4+ a4+ 1

gegeben. Sei K der Zerfillungskorper von K iiber Q. Zeigen Sie:

(a) Ist r eine Nullstelle von f, so ist auch % eine Nullstelle von f.

(b) Esist |Gal(K|Q)| < 2™ -nl.

Lésung:
zu (a) zu (b)



Aufgabe F24T3A1

(a) Es sei 3 der endliche Korper mit drei Elementen. Bestimmen Sie die Anzahl der Elemente des

Kerns U der linearen Abbildung
1
_]o.
2

(b) Bestimmen Sie eine Zerlegung des Polynoms f = 223 + 422 — 2z iiber Z in irreduzible Faktoren.

1
o 3 —TF3 | U>—)<2

=Nl

(c) Bestimmen Sie ein f € R[z] mit (f) = (#? — 1,23 — 1) und begriinden Sie, warum IThre Wahl diese
Gleichheit erfiillt.

(d) Zeigen Sie, dass das Element 2 € Z[v/—13] irreduzibel ist.

Lésung:
zu (a) zu(b) zu(c) zu (d)



Aufgabe F24T3A2
(a) Ermitteln Sie die Anzahl der Losungen der folgenden Gleichungen in Z/8Z.
=0, 2°=1, 2°=2, 2°=3
(b) Ermitteln Sie die Anzahl der Losungen der folgenden Gleichungen in Z/20247Z. (2024 = 8- 11-23)
22=0, 2°=1, 2°=2, 2°=3
(c) Bestimmen Sie, wieviele fiinfte Potenzen es in Z,/20247 gibt.

Lésung:
zu (a) zu (b) zu(c) zu (d)



Aufgabe F24T3A3

Fiir eine Primzahl p sei I}, der endliche Kérper mit |IF,| = p; weiter sei

oo (e oo

(a) Zeigen Sie, dass R ein Teilring des Rings der 2 x 2-Matrizen ist.

(b) Zeigen Sie, dass die Einheitengruppe R* im Fall p # 2 nicht einfach ist.

(¢) Nun sei p = 257. Entscheiden Sie begriindet, ob die Einheitengruppe R* in diesem Fall auflésbar

ist.



Aufgabe F24T3A4

(a) Seien K ein Koérper und f € K|z] ein irreduzibles Polynom. Begriinden Sie, warum die Ordnung

der Galoisgruppe von f iiber K durch den Grad von f teilbar ist.

(b) Geben Sie ein Beispiel an, wieso die Aussage im Allgemeinen falsch wird, wenn f nicht mehr als

irreduzibel vorausgesetzt wird.

(¢) Begriinden Sie, warum es zu jeder natiirlichen Zahl n > 1 eine Galois-Erweiterung E|F von Kérpern

EF gibt, deren Galoisgruppe die Ordnung n hat.

(d) Zeigen Sie, dass die Aussage (c) im Allgemeinen falsch wird, wenn der Kérper F fest vorgegeben

wird.

Lésung:

zu (a) zu(b) zu(c) zu (d)



Aufgabe F24T3A5

(a) Geben Sie eine explizite Darstellung der primitiven fiinften Einheitswurzeln mithilfe von Quadrat-
wurzeln an. (Tipp: Wenn o* + o® + a? + a + 1 = 0 ist, welche Polynomgleichung erfiillt dann
B=a+a1?)

(b) Folgern Sie aus Ihrer Losung der Teilaufgabe (a) eine Konstruktionsvorschrift eines regelmifigen

Fiinfecks mit Zirkel und Lineal.

(c) Geben Sie eine Konstruktionsvorschrift eines regelmifiigen Zwanzigecks mit Zirkel und Lineal an.

Lésung:
zu (a) zu (b) zu (c)



Aufgabe H24T1A1
Sei H die Menge aller reellen 2 x 2-Matrizen der Form

b
<“ ) mit a® + b2 # 0.
-b a

(a) Zeigen Sie, dass H eine Untergruppe der Gruppe GL2(R) der invertierbaren reellen 2 x 2-Matrizen

ist.

(b) Seien A, B,C € H. Zeigen Sie, dass die Gleichung AY B = C eine eindeutige Lésung Y in H hat.

S 1 P R A |

zu (a) Das Nentralelement von GLo2(R) ist die Einheitsmatrix E. Es muss also gezeigt werden, dass
E in H liegt, und dass fiir alle A, B € H auch AB € H und A~! € H erfiillt ist. Offenbar gilt £ € H,
denn E kommt dadurch zu Stande, dass man in der Matrix der angegebenen Form a = 1 und b = 0 setzt

(und es ist 124+ 0% = 1 # 0). Seien nun A, B € H vorgegeben. Dann gibt es Paare (a,b), (¢,d) € R? mit

a?+b2#£0,c2+d*#0.
b d
A= “ und B = ¢ .
-b a —d b

AB - a b c d _ ac—bd  ad+bc

b a) \-d ¢ —(ad+bc) ac—bd
Wegen det(A) = a? +b? # 0 und det(B) = ¢® + d* # 0 muss auch det(AB) = det(A) det(B) ungleich
null sein. Es gilt also (ac — bd)? + (ad + bc)? # 0. Damit ist insgesamt AB € H nachgewiesen. Weiter gilt

a b
A—l — < a?+b2 - a2+b2> _ ( u ’U)
b a
(o) e —v

b . Aus det(A) # 0 folgt det(A~') # 0 und somit u? + v? # 0. Dies zeigt, dass

azib27 U= e
auch A=!in H liegt.

(c) Losen Sie die Gleichung

Losung:

Es ist dann

mit u =

zu (b) Wegen A, B € H sind A und B invertierbar. Sei Y; = A~'CB~!. Wegen A, B,C € H und der
Untergruppen-Eigenschaft ist auch Y7 in H enthalten, und Y3 ist eine Losung der angegebenen Gleichung,

denn es gilt
AY\B = A(A'cB™YB = ECE = C.

Bezeichnet Y] € H eine beliebige Losung der Gleichung, dann folgt Y] = A1 (AY/B)B~! = A=1CB~! =
A7Y(AY1B)B~! = Yj. Dies zeigt, dass Y; die einzige Losung der Gleichung ist.

zu (¢) Nach Teil (b) erhalten wir eine Losung der Gleichung durch
—1 -1
4 3 1 3\ (6 2 (4 =3\ (13 (6 —2
y, = = % . A
-3 4 -3 1) \-2 6 3 4 -3 1 2 6
o, (13 9N (6 -2\ (96 28\ | (4 7
1000 | g 13)\a ¢ 1000 { _9g o6 250\ _o 9y



Wir iiberpriifen die Korrektheit der Losung.

4 3 6 2 L[4 3\ (24 7 6 2
Y1 == ﬁ
3 4 2 6 3 4)\=7 24)\-2 6
(™ w0\ (6 2\ | (250 750\ 1 3
O\ 100 75/ \—2 6 20\ 750 250)  \=3 1)’



Aufgabe H24T1A2

Sei G eine Gruppe der Ordnung 2024 (= 23 - 11 - 23). Zeigen Sie:

(a) G hat einen Normalteiler H der Ordnung 23.
(b) H operiert transitiv durch Konjugation auf den Untergruppen der Ordnung 11.
(¢) G hat einen Normalteiler der Ordnung 253.

(d) G ist auflésbar.

Lésung:

zu (a) Fiir jede Primzahl p sei v, die Anzahl der p-Sylowgruppen von G. Auf Grund der Sylowsétze
gilt oz | 23 - 11, also 13 € {1,2,4,8,11,22, 44,88}, auBerdem ro3 = 1 mod 23. Wegen 2,4,8,11,22 #
1 mod 23, 44 = 21 # 1 mod 23 und 88 = 19 # 1 mod 23 folgt va3 = 1. Wiederum auf Grund der
Sylowséitze ist die einzige 23-Sylowgruppe H ein Normalteiler von G, und wegen |G| = 23 - 111 - 23! gilt
|H| = 23.

zu (b) Sei o die Operation der Gruppe H operiert auf der Menge My; den Untergruppen von G der
Ordnung 11 durch Konjugation. Fiir beliebiges U € M;; ist die Bahnlédnge |H(U)| ein Teiler von 23,
also (da 23 eine Primzahl ist) entweder |H(U)| = 1 oder |H(U)| = 23. Im zweiten Fall ist die Operation
transitiv; nehmen wir also an, es gilt |H(U)| = 1 und somit H(U) = {U}.

Aus dieser Annahme folgt RUh™! = he U = U fiir alle h € H, d.h. H ist ist im Normalisator Ng(U)
von U enthalten. Somit ist |[H| = 23 nach dem Satz von Lagrange ein Teiler von |Ng(U)|. Wegen
U C N¢(U) ist auch |U| = 11 ein Teiler von |Ng(U)|. Insgesamt ist also kgV(11,23) = 253 ein Teiler
von |Ng(U)|, und insbesondere |Ng(U)| > 253. Weil G auf der Menge der 11-Sylowgruppen transitiv
operiert, Ng(U) der Stabilisator von U beziiglich dieser Operation und v1; = |G(U)| die Bahnlénge ist,
gilt v1; = (G : Ng(U)), und wir erhalten

G| 2024 2024

V11 = e —— = —_— < =

|Na(U)| INc(U)] — 253

Auf Grund der Sylowsitze gilt auBerdem vq7 | (22 - 23), insgesamt folgt aus der Annahme also vq7 | 8
und vq; € {1,2,4,8}. Zusammen mit v1; = 1 mod 11 und 2,4,8 # 1 mod 11 folgt 17 = 1. Die Menge
My ist dann einelementig. Wegen {U} = H(U) C My, folgt daraus My, = H(U), d.h. die Operation

von H auf M ist auch in diesem Fall transitiv.

zu (c) Sei G = G/H; dies ist eine Gruppe der Ordnung |G| = (G : H) = % = % = 88. Fiir jede
Primzahl p sei 7, die Anzahl der p-Sylowgruppen von G. Auf Grund der Sylowsétze gilt 711 | 8, also
711 € {1,2,4,8}, und 7;; = 1 mod 11. Wegen 2,4,8 # 1 mod 11 folgt #;; = 1. Sei N die einzige 11-
Sylowgruppe von G und N = 7~ !(N) das Urbild von N unter dem kanonischen Epimorphismus 7 : G —
G. Wegen dem Zweiten Sylowsatz ist N ein Normalteiler von G, und auf Grund des Korrespondenzsatzes

gilt N 4G.

Sei nun M = NH, das Komplexprodukt von N und H. Mit N und H ist auch M ein Normalteiler
von G. Dariiber hinaus ist M ein inneres direktes Produkt von N und H. Denn wegen ggT(|N|, |H|) =
geT(11,23) = 1 gilt NN H = {eg}, und wegen N, H <G sind N und H auch Normalteiler von M. Weil
M ein inneres direktes Produkt von N und H ist, gilt M 2 N x H und |M| = |N|-|H| = 11-23 = 253.

Insgesamt ist M also ein Normalteiler von G der Ordnung 253.



zu (d) Wegen M <G geniigt es zu zeigen, dass M und G/M auflésbare Gruppen sind. Wegen |G/M| =

(G: M) = % = 228 — 8 = 23 ist G/M eine Gruppe von Primzahlpotenzordnung und also solche

auflosbar. Nun beweisen wir noch die Auflésbarkeit von M. Als Normalteiler von G ist H C M auch ein
Normalteiler von M. Als Gruppe von Primzahlordnung ist |H| = 23 zyklisch und damit auch auflosbar.
Auch die Faktorgruppe M/H ist wegen |M/H| = (M : H) = % = 233 = 11 von Pirmzahlordnung und
damit auflosbar. Aus der Auflosbarkeit von H und M/H folgt die Auflsbarkeit von M.



Aufgabe H24T1A3

Sei K ein Koérper und sei

R = {iaixi € K[x]

a1:0}.

(a) Zeigen Sie, dass R ein Teilring (mit Eins) des Polynomrings Klx] iiber K ist.
(b) Entscheiden Sie begriindet, ob f = 23 € R irreduzibel ist, und ob f = 2% € R prim ist.
(c) Entscheiden Sie begriindet, ob R ein faktorieller Ring ist.

(d) Geben Sie ein a € R an, so dass das Ideal (23,a) von R kein Hauptideal ist, und begriinden Sie
Thre Wahl.

Lésung:

zu (a) Zu zeigen ist, dass 1 € R gilt, und dass fiir alle f,g € R auch f —¢g € R und fg € R erfiillt
sind. Offenbar ist 1 tatséchlich in R enthalten, denn dieses Element hat die Form Y a;,z* mit n = 1,
ap = 1 und a; = 0. Seien nun f,g € R vorgegeben, f = > a;a’, g = Z?:o bjz? mit m,n € N,
ag,y ooy Ay 01, ..y by € K und a; = by = 0. Setzen wir r = max{m,n}, a; = 0 fiir alle € N mit ¢ > m und
bj = 0 fiir alle j € N mit j > n und anschlieflend ¢; = a; —b; fiir alle j € No, dann gilt f—g = >""_ ¢j27

sowie ¢; = a1 — by =0 — 0 = 0. Dies zeigt, dass f — g in R enthalten ist.

Weiter gilt fg = E;":'B" djzd mit dj = ZLO a;—;b;. Insbesondere ist dy = a1bg+ agby = 0-bg+ap-0 = 0.
Dies zeigt, dass fg in R enthalten ist.

zu (b) Um zu zeigen, dass x® tatsichlich irreduzibel ist, {iberpriifen wir, dass 23 # 0 und 2® ¢ R* gilt,
und dass fiir alle f,g € R aus 23 = fg jeweils f € R* oder g € R* folgt. Die Ungleichung z3 # 0 ist
offensichtlich erfiillt. Wire 23 in R eine Einheit, dann gibe es ein f € R mit 2%- f = 1. Insbesondere wiire
2% dann eine Einheit im Polynomring K[x]. Aus der Vorlesung ist aber bekannt, dass im Polynomring
K|[z] die Menge der Einheiten mit K* iibereinstimmt. Somit wire 3 in K[z] eine Konstante (ungleich

null), was offensichtlich nicht der Fall ist.

Seien nun f,g € R mit 2> = fg gegeben und nehmen wir an, dass weder f noch g in R eine Einheit ist.
Dann gilt auch f,g ¢ K[z]*, also f,g ¢ K*. Denn wire f € K*, dann wire auch der Kehrwert f~! in R
enthalten, und wegen f - f~! = 1 wire f in R eine Einheit. Ebenso kann g € KX ausgeschlossen werden.
Aus f,g ¢ K[x]* folgt grad(f), grad(g) > 0. Wegen grad(f)+grad(g) = grad(fg) = grad(z®) = 3 kénnen
wir, nach eventueller Vertauschung von f und g, grad(f) = 1 und grad(g) = 2 annehmen. Als Polynom

vom Grad 1 ist f in K[x] ein irreduzibles Element. Weil K|[z] ein faktorieller Ring ist, muss f als Teiler

3

von z3 in K|x] zu einem der irreduziblen Faktoren von 3 assoziiert sein. Bis auf Assoziierte ist x der

einzige irreduzible Faktor von 3 (mit Vielfachheit 3). Es gilt folglich f = cz fiir ein ¢ € K*. Schreiben

wir nun f in der Form f = Z?:o ajz? mit n € N und ag, ..., a, € K, dann folgt a; = ¢ # 0. Dies zeigt,

dass f nicht in R enthalten ist, im Widerspruch zur Annahme. Der Nachweis der Irreduzibilitéit von 3

ist damit abgeschlossen.

2 2

-24 zeigt, dass 23 in R ein Teiler von x2-z* ist. Wire 2% in R ein Primelement,

4

Die Gleichung 23 2% = «
dann miisste 3 folglich ein Teiler von z? oder von z* sein. Im ersten Fall wiirde 22 = f- 22 fiir ein f € R
gelten, und daraus wiirde 2 = grad(z?) = grad(f) + grad(z?®) > 3 folgt, im Widerspruch zu 2 < 3. Im
zweiten Fall wire 4 = f-23 fiir ein f € R. Da K|[z] ein Integrititsbereich ist, diirfen wir auf z-2% = f-2°
die Kiirzungsregel anwenden und erhalten f = x. Aber wie bereits oben festgestellt, ist kein Polynom

der Form cz mit ¢ € K* in R enthalten. Also ist 3 kein Primelement in R.



zu (c) Laut Vorlesung stimmt in einem faktoriellen Ring die Menge der irreduziblen Elemente mit
der Menge der Primelemente iiberein. Da x® nach Teil (b) irreduzibel, aber nicht prim ist, kann R kein

faktorieller Ring sein.

zu (d) Offenbar ist 22 in R enthalten; wir zeigen, dass I = (23, 2?) kein Hauptideal in R ist. Nehmen
wir an, dass (z3,2%) = (f) fiir ein f € R gilt. Wegen 23,22 € (f) gibt es dann g,h € R mit 2% = fg
und 22 = fh. Auf Grund der Eindeutigkeit der Primfaktorzerlegung in K|[z] ist f entweder eine Einheit
oder assoziiert zu einem Produkt von Primfaktoren von x? in K[z]. Da z bis auf Assoziierte der einzige
Primfaktor ist, muss also f = cz™ gelten, fiir ein ¢ € K* und m € {0,1,2}. Der Fall m = 1 ist

2 lz = h € R folgen, im Widerspruch zu unserer

3

ausgeschlossen, denn aus z° = cx - h wiirde dann ¢~

Feststellung aus Teil (b). Ebenso ist m = 2 unméglich, denn dann wire 23 = c2? - g und ¢~ 'z = g € R.
Also bleibt nur m = 0 und f = ¢ € K*. Aber dann wire f auch eine Einheit in R und I = (f) in R
das Einheitsideal, also insbesondere 1 € (23, 22). Dies ist ebenfalls unméglich, denn jedes Element u in

(23, 2?) hat die Form u = 23 - v + 2% - w mit v,w € R, und somit u(0) = 0% - v(0) + 0% - w(0) = 0 # 1.



Aufgabe H24T1A4

(a) Sei K|Q eine Koérpererweiterung. Zeigen Sie, dass jeder Kérperautomorphismus von K ein Q-

Automorphismus ist.

(b) Sei K eine endliche Korpererweiterung von Q und sei ¢ : K — K ein Kérperhomomorphismus.

Zeigen Sie, dass ¢ bijektiv ist.

(¢) Geben Sie eine Korpererweiterung K von Q und einen Kérperhomomorphismus ¢ : K — K an,

der nicht bijektiv ist. Begriinden Sie dabei Ihre Aussagen.

Lésung:

zu (a) Seio: K — K ein Korperautomorphismus. Dann ist o insbesondere ein Ringhomomorphismus,
und somit ¢(0) = 0 und (1) = 1. Durch vollstédndige Induktion folgt daraus o(m) = m fiir alle m € INy.
Denn fiir m € {0, 1} haben wir die Gleichung gerade iiberpriift, und setzen wir sie fiir ein m € INy voraus,

dann erhalten wir durch die Homomorphismus-Eigenschaft auch o(m + 1) = o(m) + (1) = m + 1.

Aus der Vorlesung ist bekannt, dass o als Kérperhomomorphismus auch die Gleichung o(—«) = —o(a)
fiir alle a € K erfiillt, also insbesondere o(—1) = —o(1) = —1, und dariiber hinaus o(a™!) = o(a)~? fiir
alle « € K*. Sei nun r € Q beliebig vorgegeben. Dann gibt es ein € € {£1}, ein m € Ny und ein n € N

mit » = - m - n~!. Die Homomorphismus-Eigenschaft von o liefert

olr) = ole-m-n7Y) = o()-om)-on) = em-on)! = em-nt = r
Dies zeigt, dass durch o ein Q-Homomorphismus K — K gegeben ist. Als Kérperautomorphismus ist o

auBerdem bijektiv, insgesamt also ein Q-Automorphismus von K.

zu (b) Aus der Vorlesung ist bekannt, dass Kérperhomomorphismen stets injektiv sind. Insbesondere ist
¢ : K — K also eine injektive Abbildung. Da fiir alle ¢ € Q und alle o, § € K auch p(a+8) = p(a)+¢(8)
und ¢(ca) = p(c)p(a) = cp(a) gilt (wobei wir im letzten Schritt das Ergebnis aus Teil (a) verwendet
haben, dass jeder Kérperhomomorphismus K — K ein Q-Homomorphismus ist), ist ¢ dariiber hinaus
ein Endomorphismus des Q-Vektorraums K. Nun ist n = dim K = [K : Q] laut Angabe eine (endliche)

natiirliche Zahl. Der Dimensionssatz fiir lineare Abbildungen liefert
n = dimker(p) + dimim(p)

wobei ker(¢) den Kern und im(¢) das Bild der linearen Abbildung ¢ bezeichnet. Da ¢ injektiv ist, gilt
dim ker(¢) = dim{0} = 0 und somit dimim(¢) = n—0 = n. Aus im(p) C K und dimim(p) =n =dim K
folgt im(p) = K. Also ist ¢ auch surjektiv, insgesamt eine bijektive Abbildung.

zu (¢) Sei K = Q(t) der rationale Funktionenkérper iiber Q, also der Quotientenkérper des Polynomrings
Q[t]. Auf Grund der universellen Eigenschaft des Polynomrings gibt es einen Ringhomomorphismus
¥ @ Qt] — Q(t) mit (c) = c fiir alle ¢ € Q und ¥(t) = 2. Ein beliebiges Element f € Q[t] wird
durch v offenbar auf das Polynom f(t?) abgebildet. Dies zeigt insbesondere, dass 1 die Elemente aus
Q[t]\ {0} auf Einheiten des Rings Q(t) abbildet, denn Q() ist ein Koérper, und die Einheiten in Q(%) sind
somit genau die Elemente ungleich null. Auf Grund der universellen Eigenschaft des Quotientenkorpers
existiert damit ein Ringhomomorphismus ¢ : Q(t) — Q(¢) mit ¢(f/g) = ¥(f)v(g)~! fiir alle f € Q[t]

und g € Q[t] \ {0}. Als Ringhomomorphismus zwischen Koérpern ist ¢ ein Kérperhomomorphismus.



Wir zeigen nun, dass ¢ nicht surjektiv, und damit auch nicht bijektiv ist. Ware ¢ surjektiv, dann gébe

es ein Element u € Q(t) mit ¢(u) = ¢. Schreiben wir u = f/¢g mit f € Q[t] und g € QJt] \ {0}, dann folgt

2
Co= el = el = e = T

und somit tg(t?) = f(¢2). Aber der Grad des Polynoms tg(¢?) ist ungerade, und der Grad von f(t2) ist

gerade, wodurch eine solche Gleichung ausgeschlossen ist.



Aufgabe H24T1A5

(a) Zeigen Sie: Ist L|K eine Korpererweiterung von Grad 2 und ist char(K) # 2, so ist L|K eine

Galois-Erweiterung,.
(b) Geben Sie begriindet eine Kérpererweiterung L|K vom Grad 2 an, die nicht galois’sch ist.

(c) Geben Sie fiir jedes n € IN mit n > 3 eine Koérpererweiterung K|Q vom Grad n an, die nicht
galois’sch ist, und geben Sie fiir Thre Beispiele die Anzahl der Kérperautomorphismen von K an.

Begriinden Sie dabei Thre Aussagen.

Lésung:

zu (a) Sei L|K eine Korpererweiterung mit [L : K| = 2. Dann ist L|K normal. Ist ndmlich f € K|[x]
ein iiber K irreduzibles Polynom mit einer Nullstelle o € L, dann ist K («) ein Zwischenkérper von L| K,
und folglich

2 = [L:K] = [L:K(a)] [K(a):K] = [L:K(«)] grad(f).

Daraus folgt grad(f) € {1,2}. Wegen f(«) = 0 ist z —« ein Teiler von f in L]x]. Es gilt also f = (z—a)-g
fiir ein g € L[z]. Wegen grad(f) € {1, 2} gilt grad(g) € {0, 1}. Dies zeigt, dass f iiber L in Linearfaktoren
zerféllt. Damit ist insgesamt nachgewiesen, dass L|K eine normale Erweiterung ist. (Das Resultat, dass
jede Korpererweiterung vom Grad 2 normal ist, wird meistens in der Vorlesung behandelt. Aus der
Aufgabenstellung geht nicht klar hervor, ob man das hier benutzen darf. Normalerweise diirfen alle

Ergebnisse aus der Vorlesung verwendet werden.)

Nun muss noch gezeigt werden, dass L|K separabel ist, denn daraus folgt insgesamt, dass es sich bei L| K
um eine Galois-Erweiterung handelt. Dafiir wiederum geniigt es zu zeigen, dass jedes « € L\ K separabel
iiber K ist. Sei also « ein solches Element und f € K[z] das Minimalpolynom von « iiber K. Da f als
Minimalpolynom irreduzibel iiber K ist, folgt grad(f) € {1,2} aus der Rechnung von oben. Im Fall
grad(f) =1 wiire z — a = f € K|[z] und somit o € K. Also muss grad(f) = 2 sein, d.h. f = 2%+ az +b
fiir geeignete a,b € K. Wiire « nicht separabel iiber K, dann wire f € K|[z]| kein separables Polynom.
Es wire dann « eine doppelte Nullstelle von f und damit auch eine Nullstelle von f/ = 2z + a. Wegen
char(K) # 2 ist aber 2 # 0 in K. Aus 2a 4+ a = f'(a) = 0 wiirde dann o = —1a € K folgen, erneut im
Widerspruch zu a ¢ K.

zu (b) Sei L = Fy(¢) der rationale Funktionenkérper iiber Fo, also der Quotientenkérper des Polynom-
rings Fy[t], und K = Fo(¢?). Dann gilt K(t) = Fo(t?,t) = Fa(t) = L. Um zu zeigen, dass [L : K| = 2
ist, geniigt es zu iiberpriifen, dass f = 22 — t? € K|[z] das Minimalpolynom von ¢ iiber K ist, denn
darauf folgt [L : K] = [K(t) : K] = grad(f) = 2. Offenbar ist f normiert, und es gilt f(t) =¢*> —t> = 0.
Nehmen wir nun an, f wire iiber K reduzibel. Wegen grad(f) = 2 wire die Nullstelle ¢ von f dann in
K enthalten. Es géibe dann Polynome u,v € Fa[t] mit v # 0 und ¢t = u(t?)/v(t?) (weil jedes Element
aus K in dieser Form dargestellt werden kann). Daraus wiirde tv(t?) = u(t?) folgen, aber eine solche
Gleichung ist ausgeschlossen, weil der Polynomgrad von u(#?) gerade und der von tv(t?) ungerade ist,
vgl. H24T1A4 (c). Also ist f iiber K irreduzibel.

zu (c) Fiir jedes n € IN mit n > 3 sei a,, = ¥/2 € RT und K,, = Q(a,). Wir zeigen, dass jeweils
[K, : Q] = n gilt, und dass die Erweiterung K,,|Q nicht normal, und damit auch nicht galois’sch ist.
Das Polynom f,, = 2™ — 2 € Q[z] ist normiert, hat «,, als Nullstelle, und nach dem Eisenstein-Kriterium

(angewendet auf die Primzahl p = 2) ist es in Z[z] und Q[z] irreduzibel. Es handelt sich also um das



Minimalpolynom von «,, iiber @, und daraus folgt [K, : Q] = [Q(a,) : Q] = grad(f,) = n, fiir alle
n € IN.

Nehmen wir nun an, dass K, |Q eine normale Erweiterung ist. Weil f,, iiber Q irreduzibel ist und mit «,,
in K, eine Nullstelle besitzt, miisste f,, iiber K, in Linearfaktoren zerfallen. Dies wiirde bedeuten, dass
alle komplexen Nullstellen von f,, bereits in K, enthalten sind. Wegen «,, € R gilt K,, C R; laut unserer

2mi/n dann ist

Annahme wiren also alle Nullstellen reell. Bezeichnet ¢, die primitive n-te Einheitswurzel e
auch o/, = {,a, eine komplexe Nullstelle von f,,, wegen f, (o) = ((ran)*—2=(la?—2=1-2—2=0.

Laut Annahme wire also o, € R, und wegen o, € R* wiirde auch ¢, = cos(2%) + isin(2*

) in R liegen.
Es wire dann sin(2%) = 0. Aber aus n > 3 folgt 0 < 22 < 7 und sin(2%) > 0. Unsere Annahme hat also
zu einem Widerspruch gefiihrt, und folglich ist die Erweiterung K,,|Q nicht normal.

Sei nun G,, = Aut(K,); wir zeigen, dass fiir ungerades n jeweils |G,,| = 1 gilt, und |G,,| = 2 fiir gerades n.
Aus der Vorlesung (oder durch Aufgabe H24T1A4) ist bekannt, dass Aut(K,,) = Autq(K,,) = Homg(K,,)
gilt. Auf Grund des Fortsetzungssatzes und wegen K, = Q(a,,) stimmt die Anzahl der Elemente von

Homg(K,,) mit der Anzahl der Nullstellen des Minimalpolynoms pq, q = f» in K, iiberein.

Zunichst iiberpriifen wir, dass die Menge der Nullstellen von f,, in C durch N,, = {¢*a,, | 0 < k < n}
gegeben ist. Weil ¢, in C* ein Element der Ordnung n ist, sind die Elemente (¥ mit 0 < k < n alle
verschieden. Wegen «,, # 0 folgt daraus, dass IV,, aus n verschiedenen Elementen besteht, und wegen
fn(Cran) = (CFa,)™ —2 = (¢M)ka? —2 = 1% .2 — 1 = 0 sind dies alles Nullstellen von f,,. Die Anzahl
der komplexen Nullstellen von f,, ist mit Vielfachheiten genau gleich grad(f,) = n; dies zeigt, dass N,

tatsdchlich genau die Menge der komplexen Nullstellen von f,, ist.

Als néchstes ermitteln wir, viele der komplexen Nullstellen jeweils in K, liegen; wie oben gezeigt, ist dies

dann die gesuchte Anzahl |G,,|. Fiir jedes n € N mit n > 3 und 0 < k < n gilt jeweils

21 . . 27k
o, = ancos(T)Jrzansm(T).

Die Nullstellen der Sinusfunktion sind bekanntlich genau die ganzzahligen Vielfachen von . Ist also
2—75 keine ganze Zahl, dann ist (¥, also nicht reell, und erst recht gilt (¥a,, ¢ K,,. Wegen k € Z und
0<k<nist % € Z nur fir k € {0, %n} moglich. Ist n ungerade, dann % € Z also nur fiir k = 0 eriillt,
und somit |Gy,| < 1. Ist n gerade, so gilt 2% € Z genau fiir k € {0, 1n}, also ist hier |G,,| < 2. Andererseits
gilt fiir k = 0 jeweils (fa,, = o, € Ky, und fiir n gerade, k = in ist ¥ = cos(r) + isin(r) = —1 und
ebenfalls (*a,, = —a,, € K,,. Es ist also tatsiichlich |G,,| = 1 fiir ungerades und |G, | = 2 fiir gerades n,

wie oben angegeben.



Aufgabe H24T2A1

Sei R ein Ring und eine Folge (ay)n>0 von Elementen von R rekursiv definiert wie folgt:

ap=a1 =1, apy2=2an41 + ay.

(a) Sei a € R mit a? = 2. Zeigen Sie, dass dann fiir alle n > 0 gilt
2a, = (Q+a)"+(01-a)".

(b) Sei p eine ungerade Primzahl, so dass es ein & € R = I}, (der Kérper mit p Elementen) gibt mit
a? = 2. Zeigen Sie, dass die Folge (an)n,>1 periodisch ist mit einer minimalen Periode, die p — 1
teilt.

(c) Bestimmen Sie die kleinste Zahl k > 0, so dass fiir R = 7 gilt a,,+r = a, fiir alle n > 0.

eigen Sie, dass es fir R = eine ganzen Zahlen m,n > 0 mit der Eigenschatt a,, = m> + 4 gibt.
d) Zeigen Sie, d fir R = 7Z keine g Zahl 0 mit der Eig haf 614 gib

Lésung:

zu (a)  Wir beweisen die Gleichung durch vollstindige Induktion fiir alle n € INy. Es gilt sowohl
1+a)+(1-a)=1+1=2=2-qg als auch (1 +a)! + (1 —a)! =2 =2-ay, also ist die Gleichung
fiir n € {0, 1} erfiillt. Sei nun n € Ny vorgegeben, und setzen wir die Gleichung fiir alle Werte m € INg

mit m < n voraus. Dann erhalten wir einerseits

20, = dan_14+2an2 = 2(14+a)" '+20-a)" '+ (1+a)" P+ (1-a)"? =
A4+a)" 2 2l+a)+ D) +1-a)" 220 -a)+1) = (1+a)"?-3+2a)+(1—-a)"?-(3-2a)

und wegen a? = 2 andererseits

I+a)"+(1-a)" = (1+a)"?-(1+a+(1-a)"? (1-a) =
1+a)" 2 - 1+2a+a®)+(1-a)"?- (1-2a+0a?) = (1+a)"?-3+2a)+(1-a)" 2 (3-2a) ,

insgesamt also 2a, = (1 +a)™ + (1 —a)™.

zu (b) Vorweg bemerken wir: Ist £ € IN die minimale Periode der Folge (a,)n>0 und £ € IN eine beliebige
Periode (also eine Zahl mit a,4¢ = a, fiir alle n € Ny, dann muss ¢ ein Vielfaches von & sein. Denn
nehmen wir an, dies ist nicht der Fall. Durch Division mit Rest erhalten wir ¢, € INg mit 0 < r < k, so
dass ¢ = gk + r erfiillt ist. Fiir jedes n € Ny gilt dann a,4r = antt—qk = Anye = an. Somit wire r eine

noch kiirzere Periode, im Widerspruch zur Minimalitit von k.

Da p ungerade ist, ist 2 in I, invertierbar. Nach Teil (a) gilt somit a,, = 271(1 + )" +271(1 — )" fiir
alle n € Ng. Wegen o® = 2 und p > 3 ist @ # 1 und somit 1 — « € ). Ebenso ist 1+ a € IF) enthalten,

denn andernfalls wire « = —1 und 2 = o = 1, was in IF,, (wegen p > 1) ausgeschlossen ist.

Zunéchst betrachten wir den Fall, dass auch das Element 1 + o in F) liegt. Wegen |F| = p — 1 gilt

dann (1 +a)?P~!' =1 und (1 —«)?~! =1, und wir erhalten fiir alle n € N jeweils

anip = 2014+ a)""P 4271 -a)"P = 27'14a)" - I+a)P+27'1-a)" - (1-a)
= 2704 1+27'01-a)" 1 = a,.
Also ist p — 1 eine Periode der Folge (ay,)n>0, und die minimale Periode ist, wie oben festgestellt wurde,

ein Teiler davon.



zu (¢) Nach Teil (b) ist die minimale Periode & ein Teiler von 6, also k € {1,2,3,6}. In Fr gilt
agp = a; = 1, und die Rekursionsformel liefert a; = 3, a3 = 0, ay = 3, a5 = 6, ag = a; = 1. Wegen
a1 # as, a1 # az und a; # aq ist k € {1,2,3} ausgeschlossen. Also ist die minimale Periode gleich 6.
(Dass an46 = a, fir alle n € Nq gilt, ldsst sich natiirlich wegen ag = a¢ und a7 = a; auch mit Hilfe der

Rekursionsformel durch vollstindige Induktion beweisen.)

zu (d) Nehmen wir an, dass es m,n € Ny mit a,, = m® + 4 gibt. Sei (bn)n>0 die entsprechende Folge
in F7. Wegen by = ag + 7Z, by = a1 + 7Z und auf Grund der Rekursionsformeln a2 = 2a,41 + @n,
bpiz = 2b,41 + by, liefert ein einfacher Induktionsbeweis b, = a, + 7Z fiir alle n € INy. Insbesondere
wiire also b, = Mm% 4+ 4, mit mm = m + 7Z. Wir unterscheiden nun zwei Fille. Ist m = 0, dann ist b,, = 4;
andernfalls liegt m in F>, und weil dies eine Gruppe der Ordnung 6 ist, folgt b, = m° +4=1+4=5.
Aber anhand der Werte by, ..., b5, die wir unter (c) berechnet haben, und auf Grund der Periodenléinge
6 der Folge (bn)n>0, ist erkennbar, dass weder 4 noch 5 in der Folge vorkommt. Die Annahme hat also

zu einem Widerspruch gefiihrt.



Aufgabe H24T2A2

(a) Bestimmen Sie die ganze Zahl a € {0, ..., 82} mit 50%4” = a mod 83.

(b) Der Satz von Wilson besagt, dass (p — 1)! = —1 mod p fiir jede Primzahl p gilt. Bestimmen Sie
hiermit die ganze Zahl a € {0, ...,100} mit 98! = a mod 101.

Hinweis: Sie diirfen den Satz von Wilson ohne Beweis benutzen.
(¢) Im Folgenden bezeichne ¢ die Eulersche ¢-Funktion. Beweisen oder widerlegen Sie:

(i) fur alle m,n € IN mit n > m gilt p(n) > p(m);
(i) fur alle n € IN gilt ¢(2n) > (n);

(iii) fiir alle n € IN gilt p(n) | ¢(n?).

Lésung:
zu (a) Weil 83 eine Primzahl ist, gilt ¢¥? = 1 mod 83 fiir alle ¢ € Z mit 83 f ¢, nach dem Kleinen Satzes

von Fermat. Wegen 83 t 50 erhalten wir mit Hilfe der Rechenregeln fiir Kongruenzen
50747 = 50%82H! = (508?)3 . 50 = 1* - 50 = 50 mod 83.
Also ist @ = 50 die gesuchte Zahl.

zu (b) Die Zahl 101 ist eine Primzahl, und im Kérper F1g; gilt 2 -50 = 100 = —1, also (=2)~! =50
und 99 = (—2)~1 = 50. Daraus folgt 50 - 99 = 1 mod 101, und mit der Kongruenz 100! = —1 mod 101
aus dem Satz von Wilson erhalten wir
981 =1-(98) = 50-99-98! = 50 99! = 50 - (—1) - (—1)- 99! = 50 (—1) - 100 - 99! = 50 - (1) - 100!
=50 (—1)- (—1) = 50 mod 101.

Also ist auch hier a = 50 die Losung.
zu (¢) (i) Die Aussage ist falsch, denn es ist 6 > 3, aber ¢(6) = 2 = ¢(3).

zu (c) (ii) Diese Aussage ist richtig. Fiir den Nachweis stellen wir eine beliebige Zahl n € IN in der
Form n = 2" - m dar, wobei r € INyg und m € IN ungerade ist. Ist 7 = 0, dann sind 2 und n teilerfremd,
und es folgt p(2n) = ¢(2)p(n) = 1-¢(n) > ¢(n). Ansonsten gilt p(2n) = (2" m) = (2" T1) - p(m) =
27 - p(m) > 2771 p(m) = p(27)p(m) = ¢(n), also ist die Ungleichung hier ebenfalls erfiillt.

zu (c) (ili) Auch diese Aussage ist richtig. Sei n € IN vorgegeben und n = H;:1 p;j die Primfaktorzer-

legung von n, mit r € Ny, r verschiedenen Primzahlen p1, ..., p, und ey, ...,e, € IN. Dann gilt

und

Fir 1 <j <rgilt jeweils 2¢; —1=¢; +e; —1>¢; +1—1=¢; > e; — 1. Der Faktor p;jfl(pj —1) ist

also jeweils ein Teiler des Faktors p?ej _1(pj — 1), und somit ist ¢(n) ein Teiler von ¢(n?).



Aufgabe H24T2A3

(a) Es sei n € IN und es sei G eine einfache Untergruppe der symmetrischen Gruppe S,, mit |G| > 2.

Zeigen Sie, dass G bereits eine Untergruppe der alternierenden Gruppe A,, ist.

(b) Sei G eine einfache Gruppe der Ordnung 90. Zeigen Sie, dass G zu einer Untergruppe der alternie-

renden Gruppe Ag isomorph ist.

(c) Zeigen Sie, dass es keine einfache Gruppe der Ordnung 90 gibt.

Lésung:

zu (a) Aus der Vorlesung ist bekannt, dass durch die Signumsfunktion ein Homomorphismus sgn : S,, —
{£1} gegeben ist. Sei ¢ : G — {£1} dessen Einschrinkung auf die Untergruppe G von S,,. Nehmen wir
an, dass G keine Teilmenge von A, ist. Dann existiert ein o € G mit (o) = sgn(o) = —1. Setzen wir
N = ker(yp), dann ist N (als Kern eines Homomorphismus) ein Normalteiler von G. Wegen (o) # 1
ist 0 ¢ N und somit N C G. Aber auch N = {id} ist ausgeschlossen. Denn in diesem Fall wére ¢
injektiv und somit |(G)| = |G| > 2, was aber wegen ¢(G) C {£1} und |[{£1}| = 2 unmdoglich ist.
Insgesamt gilt unter unserer Annahme von oben also {id} C N C G. Aber dies steht im Widerspruch

zur Voraussetzung, dass G einfach ist. Also ist G in A,, enthalten.

zu (b) Wir erhalten diesen Isomorphismus, indem wir die Gruppe G auf ihren 5-Sylowgruppen operieren
lassen. Die Primfaktorzerlegung der Zahl 90 ist gegeben durch 90 = 2 - 32 - 5. Fiir die Anzahl vs der
5-Sylowgruppen gilt nach dem Dritten Sylowsatz vs | 18, also v5 € {1,2,3,6,9,18}, und auBerdem
vs =1 mod 5. Wegen 2,3 # 1 mod 5,9=4% 1 mod 5 und 18 = 3 # 1 mod 5 folgt v5 € {1,6}. Im Fall
vs = 1 wire die einzige 5-Sylowgruppe, die wir mit P bezeichnen, auf Grund des Zweiten Sylowsatzes
ein Normalteiler von G, und wegen 1 < |P| =5 < |G| wére {e} C P C G. Dies wiirde der Einfachheit

von G widersprechen. Also muss v5 = 6 gelten.

Sei X die Menge der 5-Sylowgruppen von G. Laut Vorlesung liefert die Operation von G auf X einen
Homomorphismus ¢ : G — Per(X), der durch ¢(g)(P) = g- P = gPg~! fir alle g € G und P € X
definiert ist, wobei - die Operation von G auf X durch Konjugation bezeichnet. Wir zeigen, dass dieser
Homomorphismus injektiv ist. Angenommen, dies ist nicht der Fall. Dann ist N = ker(¢) ein Normalteiler
von G mit {e} C N, fiir den aulerdem N C G gilt. Denn andernfalls wire ¢(g) = idx fiir alle g € G, also
gPg™ = ¢(9)(P) = idx(P) = P fiir alle g € G und P € X, also jede 5-Sylowgruppe ein Normalteiler
von G. Dies wiirde laut Zweiten Sylowsatz aber v5 = 1 implizieren, im Widerspruch zu vs = 6. So also
erhalten wir {¢} C N C G, was der Einfachheit von G widerspricht. Damit ist die Injektivitit von ¢

nachgewiesen.

Wegen | X| = v5 = 6 existiert ein Isomorphismus ¢ : Per(X) — Sg. Durch 1) = to¢ ist dann ein injektiver
Homomorphismus G — Sg definiert, und G ist somit isomorph zur Untergruppe ¥ (G) von Sg. Wegen
|G| = 90 > 2 konnen wir das Ergebnis aus Teil (a) anwenden und kommen zu dem Ergebnis, dass G

sogar isomorph zu einer Untergruppe von Ag ist.

zu (¢) Nehmen wir an, dass G eine einfache Gruppe der Ordnung 90 ist. Nach Teil (b) ist G isomorph
zu einer Untergruppe von Ag. Wir kénnen an Stelle von G somit auch diese Untergruppe betrachten und
somit direkt G < Ag annehmen. Es ist [Ag| = 3 -6! = 3720 = 360 und somit (A : G) = |‘AG6|| =300 — 4.
Laut Vorlesung liefert die Operation von G auf der Menge Ag/G der vierelementigen Linksnebenklassen

von G in Ag einen Homomorphismus ¢ : Ag — Per(Ag/G) gegeben durch ¢(0)(7G) = (o7)G fiir alle
0,7 € Ag. Wegen |Ag/G| = (Ag : G) = 4 existiert auBerdem ein Isomorphismus ¢ : Per(A4¢/G) — S4, so

dass wir durch 1) = ¢ o ¢ einen Homomorphismus Ag — S; erhalten.



Sei N = ker(¢). Laut Vorlesung ist die Gruppe Ag einfach und somit nur N = {id} oder N = Ag
moglich. Im Fall N = Ag wire 1(0) = id und somit auch (o) = idy, ¢ fiir alle 0 € Ag. Aber dann
wiirde 0G = (00id)G = (0)(id G) = ¢(0)(G) = id4, )6(G) = G und o € G fiir alle 0 € Ag gelten. Aber
dies ist wegen (Ag : G) = 4 > 1 offenbar nicht der Fall. Betrachten wir nun die Moglichkeit N = {id}.
Dann wiire ¥ injektiv und Ag somit isomorph zur Untergruppe 1(A4g) von Sy. Aber auch dies ist wegen
|Ag] = 360 > 24 = |S4| unmoglich. Unsere Annahme, dass eine einfache Gruppe der Ordnung 90 existiert,

hat also zu einem Widerspruch gefiihrt.



Aufgabe H24T2A4

Im Folgenden sei R = Z + iZ der Ring der Gauf’schen Zahlen. Ohne Beweis darf benutzt werden, dass
dies ein euklidischer Ring beziiglich der Normabbildung

N:R\{0} = N, z+iy—a®+1°

und somit insbesondere ein Hauptidealring und ein faktorieller Ring ist.

(a) Bestimmen Sie alle a € R mit N(a) <5.

(b) Schreiben Sie mit Hilfe der Teilaufgabe (a) jede der ganzen Zahlen aus {2,3,4,5,6} als Produkt

irreduzibler Elemente in R.

(c) Bestimmen Sie ein d € R mit (d) = (5 + 104,1 + 3i). Zeigen Sie, dass R/(d) ein Korper ist.

Lésung:
zu (a) Jedes a € R hat die Form a = u+ iv mit u,v € Z, und es ist jeweils N(a) = u? +v2. Offenbar ist
N(a) = 0 dquivalent zu u? +v? = 0 und u = v = 0, also ist 0 das einzige Element mit Norm 0. Ebenso

erhalt man

N(a) =1 A u2+1)2 =1 g ('LL,”U) € {(170)v(7170)3(071)7(&71)}
& a€{£l,£i}

N@) =2 & «+*=2 < *=v=1 < (u,v)c{(1,1),(-1,1),(1,1),(1,-1)}
< ae{l+id,1—i,—144,—-1—14}

N@)=4 & v+*=4 & {¥*}={0,4 < (u,v)<{(2,0),(-2,0),(0,2),(0,-2)}
& a e {£2,+2i)}

N@) =5 & u+*°=5 < {2 *}={1,4 <
(uvv) € {(2a 1)’ (_Qa 1)’ (27_1)7 (_27 _1)’ (172)a (_172)a (17_2)a (_17 _2)} ~
ae{2+i,-24i,2—i,—2—i,1+2i,—1+2i,1—2i —1 — 2i}.

Die Gleichung u? +v? = 3 besitzt keine Losung mit u,v € Z. Insgesamt besteht die gesuchte Menge also

aus 1 +4 + 444+ 8 = 21 Elementen und ist gegeben durch

{0,1,d,—1,—i,1+i,1 —i,—1+i,—1—4,2,—2,2, —2,
240, —240,2 —i,—2— 0,1+ 20, —1 4 20,1 — 20, —1 — 2i}.

zu (b) Esist 2= (1+4)(1—1). Dabeiist N(1+4) = N(1—1i) = 2 eine Primzahl, und laut Vorlesung folgt
daraus, dass die Faktoren 1 + ¢ in R irreduzibel sind. Die Zahl 3 ist bereits selbst irreduzibel in R. Dies
folgt laut Vorlesung aus der Tatsache, dass N (3) = 32 ein Primzahlquadrat ist, und dass nach Teil (a) kein
Element der Norm 3 in R existiert. Fiir die Zahl 4 existiert die Zerlegung 4 = 2-2 = (144)(1—¢)(144)(1—i),

und wie wir bereits oben festgestellt haben, sind alle Faktoren dieser Zerlegung irreduzibel.



Die Zahl 5 besitzt in R die Zerlegung 5 = (2 +14)(2 — i), und da N(2+4) = N(2 — i) = 5 eine Primzahl
ist, sind die Faktoren in dieser Zerlegung irreduzibel. Die Zahl 6 kann schliellich zerlegt werden in

6=2-3=(1+1¢)-(1—1)-3. Auch hier haben wir bereits festgestellt, dass alle Faktoren irreduzibel sind.

zu (c) Die Zahl 5+ 10i kann in der Form 5+ 10i = 5+ (14 2i) = (2+14)(2 —i)(1 +24) = i(2+4)(2 — 4)?
zerlegt werden, und wie wir in Teil (b) festgestellt haben, sind die Faktoren 244 in R irreduzibel, wihrend
1 wegen N (i) = 1 eine Einheit ist. Die Rechnung

1+3 (14302 —1)
2+i  (244)(2—1)

= +-(6+5i)) = 1+

liefert fiir das Element 1 + 3i die Zerlegung 1 + 3i = (2 + ¢)(1 + ¢) in irreduzible Faktoren. Da R laut
Angabe faktoriell ist, ist jeder grofite gemeinsame Teiler von 5 + 107 und 1 + 3¢ somit assoziiert zu 1,

2414, (1+14) oder (2+4)(1 — i), denn dies sind bis auf Assoziierte die Teiler von 1 + 3i.

Der Fall 1 ist ausgeschlossen, denn dann wéren 5 + 10¢ und 1 + 3i teilerfremd, aber offenbar ist 2 + 4
ein gemeinsamer Teiler der beiden Zahlen, der wegen N(2 + ¢) = 5 > 1 keine Einheit ist. Andererseits
kann kein Vielfaches von 1+ i ein grofiter gemeinsamer Teiler der Elemente sein, denn dann miisste 1+ 14
assoziiert zu einem irreduziblen Faktor von 5+ 107 sein. Insbesondere miisste ein solcher Faktor die Norm

N(1+1i) =2 besitzen. Aber die Faktoren 2+ ¢, 2 — ¢ und 1 + 2¢ sind alle von Norm 5.

Somit kommen wir zu dem Ergebnis, dass 2 4 i ein grofiter gemeinsamer Teiler der beiden Elemente ist.
Weil R ein Hauptidealring ist, folgt daraus die Idealgleichung (5+ 10¢,1+ 3i) = (2+41), also ist d = 2+1
ein Element mit der gesuchten Eigenschaft. Weil d irreduzibel und R ein Hauptidealring ist, handelt es
sich bei dem Hauptideal (d) um ein maximales Ideal, und daraus wiederum folgt, dass R/(d) ein Kérper

ist.

Anmerkung: Man hétte auch den Euklidischen Algorithmus verwenden koénnen, um einen ggT der
Elemente 5+ 10 und 1 + 3¢ im Ring R zu berechnen. Aber auf Grund der Aufgabenteil (a) und (b) war
es leicht, die Faktorisierung der beiden Elemente zu bestimmen, und dadurch kommt man an den ggT

schneller heran.



Aufgabe H24T2A5

Gegeben sei das Polynom f = 2% — 6 € Q[z].

(a) Es sei L C C der Zerfiallungskorper von f iiber Q. Bestimmen Sie den Grad [L : Q).

(b) Zeigen Sie, dass L|Q eine Galois-Erweiterung ist. Zeigen Sie weiter, dass die Galois-Gruppe
Gal(L|Q) einen Normalteiler der Ordnung 6 enthiélt.

(c) Entscheiden Sie begriindet, ob die Galois-Gruppe Gal(L|Q) abelsch ist.

Losung:

zu (a) Seia = v/6 € RT und ¢ = ¢™/3, eine primitive 6-te Einheitswurzel. Dann ist N = {(*a | 0 < k <
5} die Menge der komplexen Nullstellen von f. Dass es sich bei allen Elementen von N tatséchlich um
Nullstellen handelt, folgt aus der fiir 0 < k < 5 giiltigen Rechnung f(¢*a) = (¢Fa)% —6 = (¢5)*-a5—6 =
1-6—6 = 0. Weil ¢ in der Gruppe C* ein Element der Ordnung 6 ist, sind die Elemente ¢* mit 0 < k < 5
alle verschieden, und wegen o # 0 gilt dies auch fiir die Elemente ¢(*a mit 0 < k < 5. Weil f als Polynom
vom Grad 6 nicht mehr als sechs verschiedene komplexe Nullstellen besitzt, muss N also die genaue
Nullstellenmenge von f in C sein. Daraus folgt, dass der Zerfiallungskoérper L durch L = Q(NV) gegeben

ist.

Dariiber hinaus gilt Q(N) = Q(«, (). Fiir den Nachweis geniigt es zu iiberpriifen, dass N C Q(a, ¢) und
{a,(} C Q(N) gilt. Die erste Inklusion ist erfiillt, denn mit o und ¢ ist auch jedes Element der Form
¢Fa mit 0 < k <5 in Q(a, () enthalten. Fiir die zweite Inklusion geniigt es festzustellen, dass a wegen
a € N auch in Q(N) liegt, und dass wegen «,(a € N die beiden Elemente auch im Teilkorper Q(N)

von C liegen somit somit dasselbe auch fiir den Quotienten ¢ = %‘ gilt.

Nun bestimmen wir noch den Erweiterungsgrad [L : Q]. Auf Grund der Gradformel gilt

[L:Q] = [Q(0:Q = [Q)Q): Q)] [Qa): Q]

Das Polynom f ist normiert, besitzt a als Nullstelle, und ist auf Grund des Eisenstein-Kriteriums (an-
gewendet zum Beispiel auf die Primzahl 2) irreduzibel in Z[z] und Q[z]. Es handelt sich also um das
Minimalpolynom von « iiber @, und daraus folgt [Q(«) : Q] = grad(f) = 6. Nun iiberpriifen wir noch,
dass das sechste Kreisteilungspolynom ®g € Z[z] das Minimalpolynom von ¢ nicht nur iiber Q, son-
dern auch iiber Q(«) ist. Bekanntlich ist ®g normiert, und weil ¢ eine primitive 6-te Einheitswurzel
ist, gilt ®6(¢) = 0. Wére ®g iiber Q(«) reduzibel, dann miisste wegen grad(®s) = ¢(6) = 2 die Null-
stelle ¢ bereits in Q(«) liegen. Aber dies ist ausgeschlossen, denn wegen a € R gilt Q(a) C R, aber

¢ = cos(3m) + isin(§) ist wegen sin(37) # 0 keine reelle Zahl.

Also ist ®¢ tatsichlich das Minimalpolynom von ¢ iiber Q(a), und wir erhalten [Q(a)(¢) : Q(a)] =
grad(®g) = 2. Ingesamt erhalten wir [L: Q] =2-6 = 12.

Hinweis: Das sechste Kreisteilungspolynom ist gegeben durch ®s = 22 — x + 1. Durch Einsetzen sieht

man leicht, dass w = % + % —3 eine primitive sechste Einheitswurzel ist. Wegen cos(%w) = % und
sin(ir) = 1v/3 stimmt diese mit der komplexen Zahl ¢ iiberein.



zu (b)  Aus der Tatsache, dass L Zerfillungskorper eines Polynoms f € Qz] ist, folgt direkt, dass
es sich bei L|Q um eine normale Erweiterung handelt. Als normale Erweiterung ist L|Q insbesondere
algebraisch, und wegen char(Q) = 0 folgt daraus wiederum, dass L|Q auch separabel ist. Insgesamt ist

L|Q also eine Galois-Erweiterung.

Sei G = Gal(L|Q). Um zu zeigen, dass G einen Normalteiler der Ordnung 6 besitzt, betrachten wir den
Zwischenkérper K = Q(¢). Weil ¢ eine primitive sechste Einheitswurzel ist, ist das sechste Kreisteilungs-
polynom ®¢ das Minimalpolynom von ¢ iiber Q. Daraus folgt [K : Q] = grad(®s) = 2. Sei N = Gal(L|K)
die zu K korrespondierende Untergruppe von G. Laut Galoistheorie gilt (G : N) = [K : Q] = 2. Weil
L|Q eine Galois-Erweiterung ist, gilt auBerdem |G| = [L : Q] = 12. Wegen |G| = (G : N) - |N| ist die

Ordnung von N gleich |N| = '?" =12 — 6. Wegen (G : N) = 2 ist N dariiber hinaus ein Normalteiler
(G:N) 2

von G.

zu (¢) Wire G abelsch, dann miisste jede Untergruppe von G ein Normalteiler sein. Sei K1 = Q(«) und
U = Gal(L|K;) die korrespondierende Untergruppe. Ist U ein Normalteiler von G, dann muss K7 |Q laut
Galoistheorie eine normale Erweiterung sein. Demnach miisste jedes {iber Q irreduzible Polynom, das in
K eine Nullstelle besitzt, iiber K7 bereits in Linearfaktoren zerfallen. Das Polynom f besitzt in K; die
Nullstelle «, und wir haben in Teil (a) festgestellt, dass es tiber @ irreduzibel ist. Wiirde f iiber K; in
Linearfaktoren zerfallen, dann miissten alle komplexen Nullstellen bereits in K liegen. Wegen a € R
gilt K1 C R; somit wiren alle komplexen Nullstellen von f reell. Aber wie wir oben gesehen haben, ist
¢ nicht-reell, und wegen o € RT gilt dasselbe fiir die Nullstelle (o von f. Die Annahme, dass G abelsch

ist, fiihrt also zu einem Widerspruch.



Aufgabe H24T3A1

Fiir einen Korper K sei

GK) = a,be K

o o =
o = O
— o

(a) Zeigen Sie, dass G(K) eine abelsche Untergruppe von GL3(K) ist.

(b) Fiir eine Primzahl p sei F, der Kérper mit |F,| = p. Entscheiden Sie begriindet, zu welchem
direkten Produkt zyklischer Gruppen G(IF),) isomorph ist.

Hinweis: Hauptsatz fiir endliche abelsche Gruppen

(c) Fiir eine Primzahl p sei F,2 der endliche Korper mit F,» = p?. Entscheiden Sie begriindet, zu

welchem direkten Produkt zyklischer Gruppen G(IF,2) isomorph ist.

Lésung:
zu (a) Um zu zeigen, dass G(K) eine Untergruppe ist, stellen wir zuniichst fest, dass die Einheitsmatrix
E, das Neutralelement von GL3(K), in G(K) enthalten ist, denn diese erhélt man, indem man a =b =10

setzt. Seien nun A, B € G(K) vorgegeben,

1 0 a 1 0 c
A=10 , B=10 1 d
0 0 1 0 0 1
mit a,b,c,d € K. Die Rechnung
1 0 a 1 0 1 0 a+c
AB = 01 b 0 d = 0 1 b+d
0 0 1 0 0 0 0 1

zeigt, dass auch AB in G(K) enthalten ist. Aus

—a
b s

1
0
0 1

oS RO
_ o Q9

1
0
0

S = O
|
>

10
=10 1
0 0

= o O

1
=F folgt A '=|o0
0

o = O

1

also ist auch A~! in G(K) enthalten. Damit ist die Untergruppen-Eigenschaft nachgewiesen. Die Rech-

nung
1 0 ¢ 1 0 a 1 0 c+a
BA = 0 1 d 01 b = 0 1 d+0 = AB
0 0 1 0 0 1 0 0 1

zeigt, dass zwei beliebige Elemente aus G(K) vertauschbar sind, es sich bei G(K) also um eine abelsche

Gruppe handelt.



zu (b) Sei A € G(F,) wie oben vorgegeben, mit a,b € F,,. Wir iiberpriifen durch vollstédndige Induktion,
dass fiir alle m € INy die Gleichung

1 0 ma
A™ = 0 1 mb
0 0 1

gilt. Fiir m = 0 ist dies offenbar der Fall, denn A° ist nach Definition die Einheitsmatrix, und wegen
ma = mb = 0 stimmte auch die Matrix auf der rechten Seite mit der Einheitsmatrix iiberein. Sei nun

m € INg vorgegeben, und setzen wir die Gleichung fiir m voraus. Dann erhalten wir

1 0 ma) (1 0 a 1 0 ma+a 1 0 (m+1a
AMTL =A™ A = 01 mb|]|O0O 1 b = 0 1 mb+bd = 0 1 (m+1)b
00 1 00 1 0 0 1 0 0 1

Wegen pa = pb = 0 in F, ist A? wiederum die Einheitsmatrix. Dies zeigt, dass die Orndung jedes

Elements in G(K) ein Teiler von p ist.

Da es fiir die Eintrige in a und b jeweils p Wahlmoglichkeiten gibt, ist G(K) eine Gruppe der Ordnung
p?, und nach Teil (a) ist diese auerdem abelsch. Aus dem Hauptsatz iiber endliche abelsche Gruppen
folgt, dass G(K) isomorph zu einem Produkt zyklischer Gruppen mit Primzahlpotenzordnungen > 1 ist.
Damit erhalten wir G(K) = Z/p*Z oder G(K) = Z/pZ x Z./pZ. Im ersten Fall hitte G(K) ein Element
der Ordnung p?, weil 1 in Z/p2Z ein solches Element ist. Aber p? ist kein Teiler von p, somit widerspricht

dies unserer Feststellung von oben. Damit bleibt G(K) & Z/pZ x Z/pZ als einzige Moglichkeit.

zu (¢) Die Gruppe G(IF,2) ist diesmal eine abelsche Gruppe Ordnung p*, weil es diesmal fiir die
Eintréige a und b jeweils p> Wahlmoglichkeiten gibt. Die einzigen Moglichkeiten, die Zahl p* als Produkt
von Primzahlpotenzen gréfier als 1 darzustellen, sind p-p-p-p, p°>-p-p, p° - p, p? - p? und p*. Aus
dem Hauptsatz iiber endliche abelsche Gruppen folgt somit diesmal, dass G isomorph zu einer der fiinf

Gruppen

G = (Z/p2)* , Gy=7/p*Z x (Z/pZ)* , G3=7Z/p’ZxZ/pZ
Gy =7Z/p*Z x Z)p°Z , Gs=17/p*Z

ist. Mit Ausnahme der ersten enthilt jede dieser Gruppen ein Element mit Ordnung grofler als p: die
Gruppe G das Element (1,0,0) der Ordnung p?, die Gruppe G3 das Element (1,0) der Ordnung p?,
die Gruppe G4 das Element (1,0) der Ordnung p? und die Gruppe G5 das Element 1 der Ordnung p*.
Dieselbe Rechnung wie in Teil (b) zeigt aber, dass auch fiir alle A € G(IF,2) jeweils A? = E gilt, es also

nur Elemente gibt, deren Ordnung p teilt. Also muss G isomorph zu G sein.



Aufgabe H24T3A2

Sei R der Restklassenring Z[x]/(z® + ).

(a) Zeigen Sie, dass R zum Produktring Z x Z[i] isomorph ist.
(b) Geben Sie sdmtliche Einheiten des Rings Z x Z[i] an.

(c) Bestimmen Sie alle Elemente a,b € Z, so dass die Restklasse von z2 + az + b in R eine Einheit ist.

Lésung:

zu (a) Wir beweisen die Isomorphie R & 7 x Z[i] mit Hilfe des Homomorphiesatzes und definieren
dafiir einen geeigneten Ringhomomorphismus. Die Abbildung ¢ : Z — Z x ZJi], ¢ — (c,c) ist ein
Ringhomomorphismus, denn es gilt ¢o(1) = (1,1) = 1zxzp), wolc+d) = (c+d,c+d) = (c,c) + (d,d) =
wo(c) + wo(d) und @o(cd) = (cd,ed) = (c,¢) - (d,d) = @o(c)po(d) fir alle ¢,d € Z. Auf Grund der
universellen Eigenschaft des Polynomrings existiert ein Ringhomomorphismus ¢ : Z[x] — Z x Z[i] mit

©lz = ¢o und ¢(x) = (0,1).

Nun iiberpriifen wir die Voraussetzungen des Homomorphiesatzes. Fiir den Nachweis der Surjektivitét
sei (u,v + iw) € Z x Zli] vorgegeben, mit u,v,w € Z. Es gilt ¢(1) = (1,1), p(z) = (0,i) und p(z?) =
(0,4?) = (0, —1). Fiir alle a,b, c € Z erhalten wir damit

ola+br+cr?) = ap(l)+bp(z)+cp(z?) = (a,a)+(0,ib) +(0,—c) = (a,a—c+ib).

Weiter gilt die Aquivalenz (a,a — ¢ +ib) = (u,v +iw) © a =uAa—c=vAb=w, was zu a = u,
b= w, c = u — v umgeformt werden kann. Setzen wir g = u + wx + (u — v)2?, dann erhalten wir somit

o(g) = (u,u — (v —v) +iw) = (u, v + iw), wodurch die Surjektivitéit nachgewiesen ist.

Nun iiberpriifen wir noch, dass der Kern von ¢ mit dem Hauptideal (23 + ) {ibereinstimmt. Mit
1 : Zz] - Z und ¢s : Z[zx] — Z]i] bezeichnen wir die beiden Komponenten von ¢. Nach Defini-
tion gilt ¢1(c) = pa(c) = c fir alle ¢ € Z, auBerdem p1(z) = 0 und @a(x) = 4. Also ist ¢ der
Auswertungshomomorphismus auf Z[z] an der Stelle 0 und ¢y der Auswertungshomomorphismus an der

Stelle i. Fiir jedes f € Z[z] gilt somit die Aquivalenz

feker(p) & o(f) =0zxzy < (f(0),f() =(0,0) < [f(0)=0AFf()=0.

Nun ist # das Minimalpolynom von 0 iiber @, und x? + 1 ist das Minimalpolynom von i iiber Q (denn
dieses Polynom ist normiert, hat ¢ als Nullstelle und ist als viertes Kreisteilungspolynom irreduzibel in
Q[z]). Die Gleichung f(0) = 0 ist somit fquivalent zu x | f, und f(i) = 0 ist fquivalent zu (22 +1) | f
in Q[z]. Weil 22 + 1 und = in Q[z] teilerfremd sind, gilt dariiber hinaus die Aquivalenz

| fAE+Df & 2@+ [f e @+a)lf

wobei auch hier die Teilbarkeit in Q[x] gemeint ist. Nun ist 3 + z als normiertes Polynom in Z[z]
aber primitiv, und somit ist die Teilbarkeit (z® + x) | f in Q[z] dquivalent zur Teilbarkeit in Z[x].
Dies wiederum ist gleichbedeutend mit f € (23 + ), wobei (2® + x) das Hauptideal in Z[z] bezeichnet.
Insgesamt haben wir damit die Aquivalenz f € ker(¢) < f € (2% + z) und damit ker(¢) = (2% + 2)
nachgewiesen. Damit sind alle Voraussetzungen des Homomorphiesatzes iiberpriift, und wir erhalten den

gewiinschten Isomorphismus R = Z[z]/ker(p) = Z x Z]i].



zu (b) Aus der Vorlesung ist bekannt: Sind R und S beliebige Ringe, dann ist die Einheitengruppe von
R xS gegeben durch (Rx S)* = R* x.S*. Aulerdem ist bekannt, dass Z* = {£1} und Z[i]* = {£1, £i}
gilt. Es folgt

(Z x Z[)* = Z*xZ* = {+1}x{£],+i} =
{(17 1)7 (1’ i)’ (la _1)(17 _i)’ (_17 1)’ (_Li)v (_1’ _1)7 (_17 _l)} =
{(a,b) | a,b € {£1}} U{(a,ib) | a,b € {£1}}.

zu (¢) Sei I = (23 + z). Der Isomormphismus ¢ : R — Z x Z]i], den uns die Anwendung des
Homomorphiesatzes aus Teil (a) liefert, ist gegeben durch @(f+1) = ¢(f) = (f(0), f(4)) fiir alle f € Z[x].
AuBerdem haben wir in Teil (a) gesehen, dass fiir alle u, v, w € Z das Polynom u +wx + (u — v)z? durch
¢ auf (u,v + iw) abgebildet wird. Da die Einheiten in R genau die Urbilder der Einheiten in Z x Z]i]

unter @ sind, miissen wir also lediglich die Urbilder der acht in Teil (b) gefundenen Elemente bestimmen.

Fiir alle a,b € {1} gilt jeweils ¢(a + (a — b)z%2 + I) = ¢(a + (a — b)x?) = (a,b); dies zeigt, dass die
Restklassen der vier Polynome 1, 1 4+ 2z, —1 — 2z und —1 Einheiten in R sind. Auflerdem gilt fiir alle
a,b € {1} auch @(a + bx + ax?® + I) = ¢(a + bz + az?) = (a,ib). Damit sind die Restklassen der vier
Polynome 1+z 422, 1 —2+22, —1+2—22 und —1 —x — 22 ebenfalls Einheiten in R, und auf Grund der
Voriiberlegung gibt es keine weiteren Polynome mit dieser Eigenschaft. Es gibt also genau zwei Paare

(a,b) € Z? mit der Eigenschaft, dass 22 + az + b+ I in R eine Einheit ist, ndmlich (1,1) und (—1,1).



Aufgabe H24T3A3

Sei f = 292442024 € Z[x]. Wir definieren die Iterierten von f als fo = x und f,,41 = f(fn) = £20244+2024
fiir n > 0. Zeigen Sie:

(a) f ist irreduzibel.
(b) Fiir alle n > 1 gilt f,,(0) = 2024 mod 20242.

(¢c) fn ist irreduzibel fiir alle n > 0.

Lésung:

zu (a) Die Zahl 2024 hat die Primfaktorzerlegung 2024 = 23-11-23. Weil die Primzahl 11 den konstanten
Term von f nur einfach teilt, der Leitkoeffizient 1 von 11 nicht geteilt wird und alle anderen Koeffizienten
gleich null sind, liefert das Eisenstein-Kriterium die Irreduzibilitit von f in Z[z]. (Genauso gut hitte

man natiirlich auch die Primzahl 23 nehmen kénnen.)

zu (b)  Wir beweisen die Aussage durch vollstindige Induktion iiber n. f1 = f(f1) = f = 220%* + 2024,
also f1(0) = 2024 und damit auch f1(0) = 2024 mod 20242. Sei nun n € IN beliebig, und setzen wir die

Aussage fiir n voraus. Dann erhalten wir
Fut1(0) = £,(0)%9% + 2024 = 2024292* 4 2024 = 0 + 2024 = 2024 mod 2024* |

wobei wir im vorletzten Schritt verwendet haben, dass 2024™ fiir alle m > 2 durch 20242 teilbar ist und

somit 2024™ = 0 mod 20242 gilt.

zu (¢) Unser Ziel ist der Nachweis, dass das Eisenstein-Kriterium auf alle Polynome f,, mit n > 1 und
die Primzahl 11 angewendet werden kann. Wir bemerken vorweg, dass f, fiir alle n > N nicht-konstant
und normiert ist: Fiir f; = f ist dies unmittelbar klar. Ist nun n € IN, und setzen wir die Aussage fiir
fn voraus, dann ist mit f,, auch f2°%4 nicht konstant, und damit ist auch f,,; = f2°24 + 2024 kein

f2024 f2024 f'2024
n n n

konstantes Poylnom. Mit f,, ist auch nicht normiert, und weil nicht konstant ist, ist mit

auch das Polynom f,,1 = f2°%* + 2024 normiert.

1

Fiir jedes n € IN sei nun f, jeweils das Bild von f,, in IFy;[z]. Wir zeigen durch vollstindige Induktion,
dass f, fiir alle n > 1 ein Monom ist. Weil f,, normiert ist, folgt daraus, dass alle Koeffizienten von f,
mit Ausnahme des Leitkoeffizienten durch 11 teibar sind. Offenbar ist f; = 22924 42024 = 220%* + 0 =
22924 ¢ FFy4[z] ein Monom. Sei nun n € IN vorgegeben, und setzen wir f,, = 2 fiir ein d € IN voraus.
Dann folgt f,1 = f20%4 + 2024 = (29)20%4 + ( = 220244,

Sei nun n € IN beliebig vorgegeben. Das Polynom f, ist normiert, und alle Koeffizienten von f,, mit
Ausnahme des Leitkoeffizienten sind durch 11 teilbar. Weil 112 ein Teiler von 20242 ist, erfiillt der
konstante Term ag von f,, nach Teil (b) die Kongruenz ag = f,(0) = 2024 = 88 mod 112. Weil 88 durch
11, aber nicht durch 112 teilbar ist, gilt auch 11 | ap und 112 | ap. Damit sind alle Voraussetzungen des

Eisenstein-Kriteriums erfiillt, und f,, ist in Z[z] irreduzibel.



Aufgabe H24T3A4

Sei f =%+ 2% — 2r — 1 € Q[r] und a € C eine beliebige Nullstelle von f.

(a) Zeigen Sie durch Polynomdivision, dass f(z? — 2) durch f teilbar ist.
(b) Zeigen Sie, dass a und a? — 2 verschiedene Nullstellen von f sind.

(c) Zeigen Sie, dass Q(a)|Q eine Galois-Erweiterung ist, deren Galois-Gruppe zu Z/3Z isomorph ist.

Lésung:

zu (a) Auf Grund des binomischen Lehrsatzes ist (22 — 2)% = 26 — 62% + 1222 — 8, und (22 — 2)% =
x* — 422 + 4. Auf diese Weise erhilt man f(2? — 2) = 25 — 52 + 622 — 1. Die Polynomdivision ergibt
f(z? —2) = fg mit g = 2® — 22 — 22 + 1. (Aus Zeitgriinden verzichten wir hier auf die Ausfiihrung.)

zu (b)  Wegen f(z? —2) = fg gilt f(a® —2) = f(a) - g(a) = 0- g(a) = 0. Dies zeigt, dass mit a auch
a® — 2 eine komplexe Nullstelle von f ist. Nehmen wir nun an, es gilt a = a®> — 2, waszu a> —a —2 =0
dquivalent ist. Die Elemente 1, a, a® wiren also im Q-Vektorraum Q(a) linear abhingig. Dies fiihren wir

zu einem Widerspruch.

Dazu stellen wir zunéchst fest, dass das Polynom f in @Q irreduzibel ist. Denn andernfalls hétte f wegen
grad(f) = 3 eine rationalen Nullstelle c. Weil f in Z[x] liegt und f normiert ist, wiire ¢ dariiber hinaus
ganzzahlig und ein Teiler des konstanten Terms —1 von f, also ¢ € {£1}. Aber wegen f(1) = und
f(=1) = sind %1 keine Nullstellen von f. Damit ist die Irreduzibilitit nachgewiesen. Da f auflerdem
normiert ist und a eine Nullstelle von f ist, handelt es sich bei f um das Minimalpolynom von a iiber Q.
Laut Vorlesung gilt: Ist L|K eine Korpererweiterung, o € L ein {iber K algebraisches Element, g = pq, x

und n = grad(g), dann sind bilden die Elemente 1, «, ...,a" !

eine n-elementige Basis von K(a) als K-
Vektorraum; insbesondere sind sie iiber K linear unabhéngig. In unserer Situation bedeutet das wegen
grad(f) = 3, dass die Elemente 1,a,a? im Q-Vektorraum Q(a) linear unabhingig sind. Die Annahme
a = a® —2 hat also zu einem Widerspruch gefiihrt, und folglich sind @ und a? — 2 verschiedene Nullstellen

von f.

zu (¢) Um zu zeigen, dass Q(a)|Q eine normale Erweiterung ist, iiberpriifen wir, dass Q(a) ein
Zerfallungskorper des Polynoms f iiber @ ist. Wegen f(a) = f(a? —2) = 0 sind 2 — a und = — (a® — 2)
Teiler von f im Polynomring Q(a)[x]. Wegen a # a? — 2 sind diese aulerdem teilerfremd; daraus folgt,
dass f vom Produkt (z — a)(x — (a® — 2)) geteilt wird. Es existiert also ein Polynom h € Q(a)[x] mit
f = (x—a)(x—(a®—2))h, und wegen grad(f) = 3 ist grad(h) = 3—2 = 1. Damit ist nachgewiesen, dass f
iiber Q(a) in Linearfaktoren zerfiillt. Auflerdem wird Q(a) iiber Q von den Nullstellen des Polynoms f in
Q(a) erzeugt, da unter anderem a eine Nullstelle von f und bereits {a} ein Erzeugendensystem von Q(a)
iiber @ ist. Damit ist gezeigt, dass Q(a) tatsiichlich ein Zerfdllungskorper von f iiber @ ist. Als normale
Erweiterung ist Q(a)|Q insbesondere algebraisch, und wegen char(Q) = 0 folgt daraus wiederum, dass

Q(a)|Q auch eine separable Erweiterung ist. Insgesamt ist Q(a)|Q damit eine Galois-Erweiterung.

Bereits in Teil (b) haben wir festgestellt, dass f das Minimalpolynom von a iiber Q ist. Weil die Erwei-
terung Q(a)|Q zudem galois’sch ist, erhalten wir |Gal(Q(a)|Q)| = [Q(a) : Q] = grad(f) = 3. Als Gruppe
der Primzahlordnung 3 ist Gal(Q(a)|Q) zyklisch und somit isomorph zu Z/37Z. A



Aufgabe H24T3A5

27

Sei (16 = €75 .

(a) Zeigen Sie, dass Q(C16)|Q(7) eine Galois-Erweiterung vom Grad 4 ist.
(b) Bestimmen Sie das Minimalpolynom von (6 iiber Q(%).

(c) Entscheiden Sie begriindet, ob die Galois-Gruppe von Q(¢16)|Q(i) zu Z/47Z oder zu Z/27. x Z./2Z

isomorph ist.

Losung:

zu (a) Laut Vorlesung ist Q((16)|Q als Kreisteilungserweiterung eine Galois-Erweiterung. Allgemein
gilt: Ist M|K eine Galois-Erweiterung, und ist L ein Zwischenkérper von M|K, dann ist auch M|L eine
Galois-Erweiterung. Nun ist Q(i) ein Zwischenkérper von Q((16)|Q, wegen i = et = (s € Q(Cp)-
Also ist auch Q(C16)|Q(i) eine Galois-Erweiterung. Allgemein gilt: Ist n € IN und ¢, = e+, dann ist
Q(¢,)|Q eine Erweiterung von Grad ¢(n). Daraus folgt [Q(C16) : Q] = ¢(16) = 8. Wegen i = (4 gilt auch
[Q>) : Q) = p(4) = 2. Auf Grund der Gradformel gilt

8 = [Q(Ce):Q = [Q(Gs):QH]-[QG):Q = [Q(CIG) 1 Q)] - 2

und somit [Q(C16) : Q(i)] = § = 4.

zu (b)  Auf Grund der Gleichung ({s —i = 0 ist (16 eine Nullstelle des Polynoms f = z* —i € Q(i)[z].
Sei g = fi¢,6,q(i), das Minimalpolynom von (6 iiber Q(i). Wegen f € Q(i)[z] und f(Ci6) = 0 ist g ein
Teiler von f in Q(i)[z]. AuBlerdem sind f und g beide normiert, und es gilt gradg = [Q(%)(¢16) : Q(2)] =
[Q(Ci6) : Q(i)] = 4 = gradf. Dies zeigt, dass f und g iibereinstimmen und somit x* — i das gesuchte

Minimalpolynom ist.

zu (¢) Aus der Vorlesung ist bekannt, dass die Elemente von Gal(Q((16)|Q) alle durch o,(¢16) = (¥
gegeben sind, wobei a die ganzen, zu 16 teilerfremden (also ungeraden) Zahlen durchliuft. Dabei ist
04 = oy fiir a,b € Z\ 27 genau dann erfiillt, wenn die Bilder von a und b in (Z/16Z)* iibereinstimmen.
Wegen (Z/16Z)* = {1,3,5,7,9,11,13,15} ist also

Gal(Q(¢i6)|Q) = {o1,03,05,07,09,011,013,015}.

Weil Q(i) ein Zwischenkérper von Q((16)|Q ist, handelt es sich bei G = Gal(Q((16)|Q(7)) um eine
Untergruppe von Gal(Q(¢16)|Q) mit Ordnung [Q((16) : Q(¢)] = 4, bestehend aus genau den Elementen
o € Gal(Q(¢16)|Q) mit olgy) = idg), was zu o(i) = i dquivalent ist. Nun ist fiir alle a € Z \ 2Z die
Gleichung i = 0,(i) dquivalent zu (is = 0a(Cig) = 0a(Ci6)* = (¢f)" = (i§, was wegen ord(Cis) = 16
in C* zu 16 | (4a — 4) dquivalent ist, und dies wiederum zu 4 | (a — 1) und @ = 1 mod 4. Das Urbild
der Untergruppe G unter dem Isomorphismus (Z/16Z)* — Gal(Q((16)|Q), a + 16Z — o, ist somit die
Untergruppe von (Z/16Z)* gegeben durch {1,5,9,13}. Wegen 52 =25 =9 # 1 und 5* = (5%)2 = 92 =
81 =1 ist 5 ein Element der Ordnung 4 in der Untergruppe von (Z/16Z)*. Dies zeigt, dass auch G ein
Element der Ordnung 4 enthilt, und wegen |G| = 4 folgt daraus G = Z/47Z.



Aufgabe F25T1A1

Sei p eine Primzahl, ¥, = Z/pZ der Korper mit p Elementen und G = GLy(IF)).

(a) Zeigen Sie, dass fiir die Anzahl der Elemente in G gilt: |G| = p(p — 1)%(p + 1).

(b) Bestimmen Sie die Ordnung des Elements T' € G gegeben durch

!

(¢c) Zeigen Sie, dass es mehr als eine p-Sylowgruppe in G gibt.

(d) Sei nun speziell p =3 und H = (T) = {T* | k € Z}. Zeigen Sie, dass der Normalisator
N={9€eG|g-H=H-g}von H in G aus den oberen Dreiecksmatrizen in G besteht.
Folgern Sie, dass G genau vier 3-Sylowgruppen besitzt.



Aufgabe F25T1A2

Fiir b € Z \ {0} betrachte man R, = {{xr € Q|a € Z und k € No} C Q.

(a) Zeigen Sie, dass Ry, ein Teilring von @ und damit ein kommutativer Ring mit Eins ist.

(b) Zeigen Sie, dass fiir die Einheitengruppe von R gilt:

a

(Ry)* = {bk

a € Z, und es existieren ¢ € Z \ {0} und ¢ € Ny mit ac = be}

(c) Zeigen Sie, dass Ry ein Hauptidealbereich ist, und dass jedes Ideal a von R}, die Form a = Ryw fiir
ein w € Z hat.



Aufgabe F25T1A3

Sei A € M3 q eine 3 x 3-Matrix, deren charakteristisches Polynom y 4 € Q[x] irreduzibel iiber @ ist. Seien
a € C eine Nullstelle von x4 und Q(«) der davon erzeugte Zwischenkérper Q@ C Q(«) C C. Betrachten
Sie die Multiplikation mit «, also die Abbildung ¢ : Q(a) — Q(a), v — ay.

(a) Zeigen Sie, dass ¢ eine Q-lineare Abbildung ist.

(b) Bestimmen Sie die darstellende Matrix B von ¢ beziiglich der Basis 1,a,a? von Q(a) als Q-
Vektorraum und zeigen Sie, dass deren charakteristisches Polynom identisch mit dem von A ist,

also x4 = xp in Q[z] gilt.

(c) In der Situation von (b), zeigen Sie, dass die beiden Matrizen A und B, betrachtet in M3 ¢, dhnlich

sind.



Aufgabe F25T1A4

Sei G eine endliche Gruppe und p eine Primzahl, die die Gruppenordnung |G| teilt. Seien ferner

F, = Z/pZ der Kérper mit p Elementen und I die Einheitengruppe von IF,,. Wir definieren
M = {geGlord(g) =p}

als die Menge aller Gruppenelemente, deren Ordnung gleich p ist.

(a) Zeigen Sie, dass durch )\ x M — M, ([a], g) — g* eine Gruppenoperation definiert ist.

(b) Sei g € M ein beliebiges Element. Zeigen Sie, dass der Stabilisator (IF,), = {[a] € TS | g* = g}

von g trivial ist, also mit {[1]} {ibereinstimmt.

(c) Folgern Sie, dass |M| ein Vielfaches von p — 1 ist.



Aufgabe F25T1A5

Betrachten Sie das Polynom f = x'5 — 7 € Q[x].

(a) Sei L|Q ein Zerfallungskoérper von f. Bestimmen Sie den Korpergrad [L : Q).
(b) Zeigen Sie, dass die Galoisgruppe G = Gal(L|Q) einen Normalteiler der Ordnung 15 besitzt.

(c) Seia € L eine Nullstelle von f. Zeigen Sie, dass die Kérpererweiterung Q(«)|Q (o) den Korpergrad
[Q() : Q(a®)] = 5 besitzt.



Aufgabe F25T2A1

(a) Sei n € N und R ein Ring. Ein Element w € R ist eine n-te Einheitswurzel in R, wenn w" = 1
gilt, und eine primitive n-te Einheitswurzel, wenn zusétzlich fiir alle 1 < m < n gilt, dass w™ —1 €
R* (also eine Einheit in R) ist. Zeigen Sie, dass (die Restklasse von) 7 in Z/100Z eine vierte

Einheitswurzel, aber keine primitive vierte Einheitswurzel ist.

(b) Bestimmen Sie die Ordnung der Einheitengruppe von Z/2025Z, und zeigen Sie, dass diese nicht
zyklisch ist.



Aufgabe F25T2A2

Sei p eine Primzahl.

(a) Sei g ein Primteiler von 2P — 1. Zeigen Sie: ¢ = 1 mod p.

Hinweis: Betrachten Sie die Ordnung von 2 € (Z/qZ.)*.

(b) Zeigen Sie: Es gibt eine Galois-Erweiterung K,|Q mit Gal(K,|Q) = Z/pZ.

Hinweis: Betrachten Sie Teilkorper von geeigneten Kreisteilungskérpern.



Aufgabe F25T2A3

Sei K ein Koérper mit algebraischem Abschluss K, sei f € K[z] normiert und sei L = K(a) mit einer
Nullstelle o € K von f.

(a) Zeigen Sie: Ist [L : K| = grad(f), dann ist f irreduzibel in K[z].

(b) Seijetzt f € K|x] irreduzibel, und sei weiter g € K|[x]. Wir nehmen an, dass das Polynom g — « in
Lx] irreduzibel ist. Zeigen Sie, dass dann f(g(x)) € K[z] in K|[z] irreduzibel ist.
Hinweis: Sei B € K mit g(8) = a. Zeigen Sie K(3) = L(f).



Aufgabe F25T2A4

Sei G eine Gruppe der Ordnung 2025 = 3% - 52. Seien Us, US zwei verschiedene 5-Sylowgruppen von G.
(a) Bestimmen Sie die Anzahl der 5-Sylowgruppen von G.

(b) Sei U die von der Teilmenge Us U U erzeugte Untergruppe von G. Zeigen Sie: Dann gilt U = G.
Hinweis: Wieviele 5-Sylowgruppen kann eine echt zwischen Us und G liegende Untergruppe haben?



Aufgabe F25T2A5

Sei p eine Primzahl und I, der endliche Kérper mit p Elementen. Sei weiter
0
o - a
b a

(a) Die Menge G ist eine Untergruppe von GLo(F,).

aeF;,beFP}.

Zeigen Sie:

(b) Die Gruppe G enthélt eine zyklische Untergruppe H,_1 der Ordnung p — 1 und eine zyklische
Gruppe H), der Ordnung p.

(c) Die Gruppe G ist zyklisch.



Aufgabe F25T3A1

Sei n € IN, sei K ein Korper, sei M, i der Ring der n x n-Matrizen iiber K, und sei A € M, k.
Bekanntlich ist das Minimalpolynom von A das eindeutig bestimmte normierte Polynom pa € Kx]

minimalen Grades, das p1a(A) = Oy, , erfiillt.
(a) Sei m € N und B € M, i. Desweiteren sei C' € M4, x die Blockdiagonalmatrix
A 0
C = .
0 B
Beweisen Sie, dass uc ein kleinstes gemeinsames Vielfaches von p4 und pp ist.

(b) Entscheiden Sie begriindet, ob es eine Matrix A € Mg g mit charakteristischem Polynom z% + x4
und Minimalpolynom p4 vom Grad 5 gibt.



Aufgabe F25T3A2

(a) Sei F3 der Korper mit drei Elementen, und sei G die Menge der oberen Dreiecksmatrizen in M3 p,
mit Finsen auf der Hauptdiagonalen. Zeigen Sie, dass G eine nicht-abelsche Untergruppe von

GL3(TF3) der Ordnung 27 ist.

(b) Bestimmen Sie 12 paarweise nicht-isomorphe Gruppen der Ordnung 2025.



Aufgabe F25T3A3

(a) Zerlegen Sie die Polynome 2° —y% und 2%y +23y3 +2y° im faktoriellen Ring Q[z, y] in Primfaktoren.

Hinweis: Es sind jeweils vier Primfaktoren.

(b) Finden Sie alle Paare von Polynomen (f,g) € Q[z,y]? mit

fo@® =) +g - @Py+2PyP+2y°) = 0.



Aufgabe F25T3A4

Fiir a € Z sei f, = 2* + az? + 1 € Q[z]. Mit Gal(f,|Q) werde im Folgenden die Galoisgruppe des in C
enthalten Zerfillungskorpers von f, tiber Q bezeichnet.

(a) Finden Sie ein a € Z, so dass Gal(f,) nur aus der Identitiit besteht.

(b) Finden Sie ein a € Z, so dass Gal(f,) nur aus der Identitédt und der komplexen Konjugation besteht.

(¢) Bestimmen Sie den Isomorphietyp von Gal(f,) im Fall a = —1.



Aufgabe F25T3A5

Sei R = Z[V3], sei K = Q(v/3), und sei Nx : K — Q die Normabbildung, die gegeben ist durch
Ng(a+bv3) = a? — 3 fiir alle a,b € Q.

(a) Beweisen Sie, dass es zu # € R und y € R\ {0} ein Element ¢ € R gibt mit [Nk (§ —¢)[ <1.
Hinweis: Schreiben Sie % in der Form a + bv/3 mit a,b € Q.

(b) Sei Ng : R — Z die Einschriinkung der Abbildung Nk . Zeigen Sie, dass R beziiglich der Abbildung
|Ng| ein euklidischer Ring ist, d.h. zu zwei Elementen z,y € R mit y # 0 gibt es Elemente ¢, € R
mit z = qy + r und |Ng(r)| < |Nr(y)|.



