Teil II. Funktionentheorie

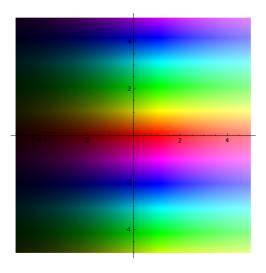
Gegenstand:

Untersuchung komplex differenzierbarer Funktionen $f:U\to\mathbb{C}$ auf offenen Teilmengen $U\subseteq\mathbb{C}$

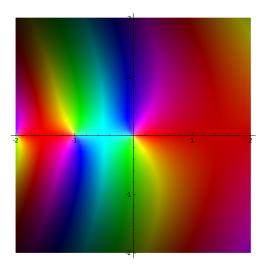
Warum Funktionentheorie?

- Komplex differenzierbare Funktionen besitzen gegenüber "nur" reell differenzierbaren viele bemerkenswerte Eigenschaften (Analytizität, Permamenzprinzip, lokale Konformität, Gebietstreue) und insgesamt eine reichhaltigere Theorie (Beispiel Singularitäten).
- bieten neuen Zugang zu Problemen der reellen Analysis (Beispiel: Residuensatz ⇒ Integralrechnung)
- wichtiger historischer Zugang zur Analysis und zum Funktionsbegriff
- viele Querverbindungen zu anderen Gebieten der Mathematik (Topologie, Funktionalanalysis, Zahlentheorie)

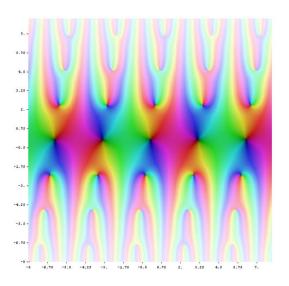
Graphische Darstellungen komplexer Funktionen: Exponentialfunktion



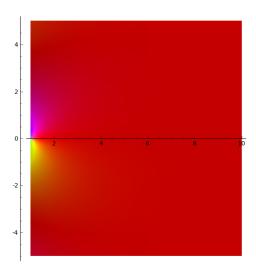
Graphische Darstellungen komplexer Funktionen: Gammafunktion



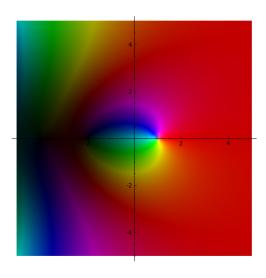
Graphische Darstellungen komplexer Funktionen: Thetafunktion



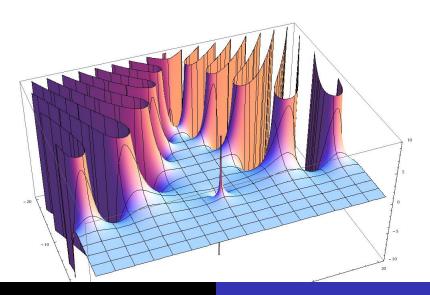
Graphische Darstellungen komplexer Funktionen: Zetafunktion ohne analytische Fortsetzung



Graphische Darstellungen komplexer Funktionen: Zetafunktion mit analytischer Fortsetzung



Graphische Darstellungen komplexer Funktionen: Zetafunktion, dreidimensionale Darstellung des Betrags



§ 1. Komplexe Differenzierbarkeit

Wiederholung: Eigenschaften komplexer Zahlen

- \bullet Der Körper $\mathbb C$ der komplexen Zahlen bildet einen Erweiterungskörper von $\mathbb R.$
- Es gibt ein ausgezeichnetes Element $i \in \mathbb{C} \setminus \mathbb{R}$ mit $i^2 = -1$, die sogenannte imaginäre Einheit.
- Jedes Element $z \in \mathbb{C}$ kann auf eindeutige Weise in der Form z = a + ib mit $a, b \in \mathbb{R}$ dargestellt werden. Man nennt a den Real- $\operatorname{Re}(z)$ und b den Imaginärteil $\operatorname{Im}(z)$ von z.
- Auf $\mathbb C$ ist eine Abbildung $\iota:\mathbb C\to\mathbb C$ gegeben durch $\iota(a+ib)=a-ib$ für alle $a,b\in\mathbb R$, die sogenannte komplexe Konjugation. Für jedes $z\in\mathbb C$ nennt man $\bar z=\iota(z)$ die zu z konjugierte komplexe Zahl.

Wiederholung komplexe Zahlen (Forts.)

- Es gilt ι(z + w) = ι(z) + ι(w), ι(zw) = ι(z)ι(w) und
 ι(ι(z)) = z für alle z, w ∈ C sowie ι(x) = x für alle x ∈ R.
 An Stelle von ι(z) ist auch die Schreibweise z̄ für die konjugierte komplexe Zahl gebräuchlich.
- Für jedes $z \in \mathbb{C}$ nennt man $|z| = \sqrt{z\overline{z}} \in \mathbb{R}_+$ den komplexen Absolutbetrag (kurz Betrag) von z. Ist z = a + ib mit $a, b \in \mathbb{R}$, dann gilt $|z|^2 = a^2 + b^2$. Weiter gilt $|z| = 0 \Leftrightarrow z = 0$, |zw| = |z||w| und $|z + w| \le |z| + |w|$ für alle $z, w \in \mathbb{C}$.

Argument und Polarkoordinaten

Satz (1.1)

Für jede komplexe Zahl $z\in\mathbb{C}\setminus\{0\}$ gibt es ein eindeutig bestimmtes $\varphi\in\mathbb{R}$ mit $0\leq\varphi<2\pi$, das sogenannte Argument $\arg(z)$ von z, mit der Eigenschaft

$$z = |z|(\cos\varphi + i\sin\varphi).$$

Das Paar $(|z|, \varphi)$ bezeichnet man als die Polarkoordinaten von z.

Die Festlegung des Arguments φ auf das halboffene Intervall $[0,2\pi[$ ist willkürlich gewählt. Häufig wird statt dessen auch $\varphi\in]-\pi,\pi]$ gefordert.

Konvergente Folge und Cauchyfolgen in C

Eine Folge (z_n)_{n∈ℕ} in ℂ konvergiert gegen eine Zahl z ∈ ℂ,
 d.h. es gilt

$$z = \lim_{n \to \infty} z_n$$
,

wenn für jedes $\varepsilon \in \mathbb{R}^+$ ein $N \in \mathbb{N}$ existiert, so dass $|z_n - z| < \varepsilon$ für alle z_n mit $n \ge N$ erfüllt ist.

• Von einer Cauchyfolge in $\mathbb C$ spricht man, wenn es für jedes $\varepsilon \in \mathbb R^+$ ein $N \in \mathbb N$ gibt, so dass $|z_m - z_n| < \varepsilon$ für alle $m, n \in \mathbb N$ mit $m, n \geq N$ gilt.

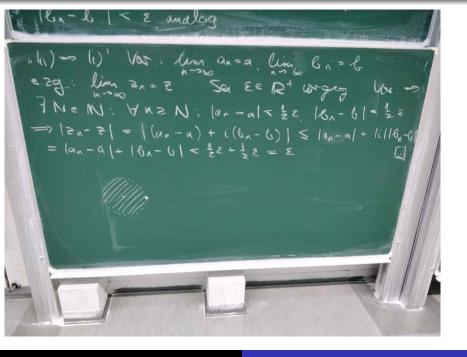
Konvergenz in $\mathbb C$

Proposition (1.2)

Sei $(z_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb C$ und $z\in\mathbb C$ ein weiteres Element. Es sei $z_n=a_n+ib_n$ und z=a+ib die Zerlegung der Zahlen in Real- und Imaginärteil, mit $a_n,b_n,a,b\in\mathbb R$. Dann sind die folgenden Aussagen äquivalent.

- (i) Die Folge $(z_n)_{n\in\mathbb{N}}$ konvergiert in \mathbb{C} gegen z.
- (iu) Es gilt $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$.

Ebenso ist $(z_n)_{n\in\mathbb{N}}$ genau dann eine Cauchyfolge in \mathbb{C} , wenn $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ beides Cauchyfolgen in \mathbb{R} sind.



Vollständigkeit von ${\mathbb C}$

Satz (1.3)

Der Körper $\mathbb C$ der komplexen Zahlen ist vollständig, d.h. die Cauchyfolgen in $\mathbb C$ sind genau die konvergenten Folgen.

Stetigkeit und Grenzwerte in ${\mathbb C}$

Sei $U \subset \mathbb{C}$ und $f: U \to \mathbb{C}$ eine Funktion.

(i) Die Funktion f ist stetig im Punkt $z \in U$, wenn für jede Folge $(z_n)_{n \in \mathbb{N}}$ in U, die gegen z konvergiert, jeweils

$$\lim_{n\to\infty} f(z_n) = f(z) \text{ erfüllt ist.}$$

(ii) Sei nun $w \in \mathbb{C} \setminus U$ und $b \in \mathbb{C}$. Wir bezeichnen b als Grenzwert der Funktion f für $z \to w$ und schreiben

$$\lim_{z\to w} f(z) = b \quad ,$$

wenn eine Folge $(z_n)_{n\in\mathbb{N}}$ mit $\lim_{n\to\infty} z_n = w$ existiert und für jede solche Folge jeweils $\lim_{n\to\infty} f(z_n) = b$ gilt.

Die Topologie auf $\mathbb C$

- (i) Für jedes $w \in \mathbb{C}$ und $r \in \mathbb{R}^+$ bezeichnen wir die Menge $B_r(w) = \{z \in \mathbb{C} \mid |w z| < r\}$ als offenen Ball vom Radius r um den Punkt w.
- (ii) Wird in der Ungleichung |w-z| < r das "<" durch " \leq " ersetzt, dann sprechen wir von einem abgeschlossenen Ball, der mit $\bar{B}_r(w)$ bezeichnet wird.
- (iii) Wir bezeichnen eine Teilmenge $U \subseteq \mathbb{C}$ als offen, wenn für jedes $z \in U$ ein $\varepsilon \in \mathbb{R}^+$ mit $B_{\varepsilon}(z) \subseteq U$ existiert.

Komplexe Differenzierbarkeit

Definition (1.4)

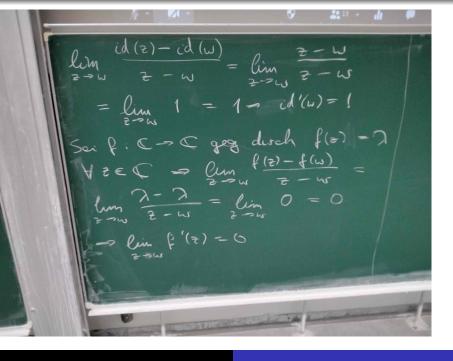
Sei $U \subseteq \mathbb{C}$ offen und $w \in U$. Wir bezeichnen eine Funktion $f: U \to \mathbb{C}$ als komplex differenzierbar im Punkt w, wenn der Grenzwert

$$\lim_{z \to w} \frac{f(z) - f(w)}{z - w}$$

existiert. Wir bezeichnen diese gegebenenfalls als die komplexe Ableitung f'(w) von f im Punkt w. Ist f in jedem Punkt $z \in U$ komplex differenzierbar, dann bezeichnen wir f als holomorphe Funktion auf der Menge U.

Konstante Funktionen und Identität

- (i) Die Ableitung der Abbildung $id : \mathbb{C} \to \mathbb{C}$, $z \mapsto z$ ist konstant gleich 1. Es gilt also id'(z) = 1 für alle $z \in \mathbb{C}$.
- (ii) Ist $f: \mathbb{C} \to \mathbb{C}$ konstant, gibt es also ein $\lambda \in \mathbb{C}$ mit $f(z) = \lambda$ für alle $z \in \mathbb{C}$, dann folgt f'(z) = 0 für alle $z \in \mathbb{C}$.



Summen-, Produkt- und Quotientenregel

Proposition (1.5)

Sei $U\subseteq\mathbb{C}$ offen, und seien $f,g:U\to\mathbb{C}$ Abbildungen. Sind f und g in einem Punkt $z\in U$ komplex differenzierbar, dann auch die Funktionen f+g und fg. Es gilt

$$(f+g)'(z) = f'(z)+g'(z)$$
 und $(fg)'(z) = f'(z)g(z)+f(z)g'(z)$.

Gilt darüber hinaus $g(z) \neq 0$ für alle $z \in U$, dann ist auch $\frac{f}{g}$ im Punkt z komplex differenzierbar, und es gilt

$$\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{g(z)^2}.$$

Die komplexe Kettenregel

Proposition (1.6)

Seien $U,V\subseteq\mathbb{C}$ offene Teilmengen und $f:U\to\mathbb{C}$ und $g:V\to\mathbb{C}$ Abbildungen, wobei wir $f(U)\subseteq V$ voraussetzen. Ist f in einem Punkt $z\in U$ und g im Punkt w=f(z) komplex differenzierbar, dann ist auch $g\circ f$ in z komplex differenzierbar, und es gilt

$$(g \circ f)'(z) = g'(f(z)) \cdot f'(z).$$

Richtungsableitungen C-wertiger Funktionen

Ist $U\subseteq \mathbb{C}$ offen, $f:U\to \mathbb{C}$ eine Funktion und $w=u+iv\in U$ ein vorgegebener Punkt, dann bezeichnen wir mit

$$\frac{\partial f}{\partial x}(w) = \partial_1 f(w)$$
, $\frac{\partial f}{\partial y}(w) = \partial_i f(w)$

die Richtungsableitungen von f im Punkt w bezüglich der Richtungen 1 und i. Nach Definition gilt

$$\frac{\partial f}{\partial x}(w) = \lim_{t \to 0} \frac{f(w+t) - f(w)}{t} = \lim_{x \to u} \frac{f(x+iv) - f(u+iv)}{x - u}$$

und

$$\frac{\partial f}{\partial y}(w) = \lim_{t \to 0} \frac{f(w+it) - f(w)}{t} = \lim_{y \to v} \frac{f(u+iy) - f(u+iv)}{y - v}$$

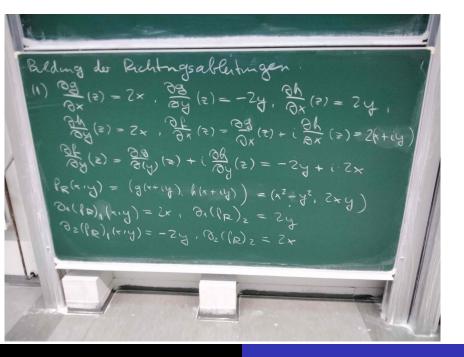
wobei die Grenzwerte jetzt bezüglich einer reellen Variablen (t bzw. x oder y) gebildet werden.

Darstellung durch Real- und Imaginärteil

Schreiben wir f in der Form f=g+ih mit reellwertigen Funktionen $g,h:U\to\mathbb{R}$, dann gilt offenbar

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial x} + i \frac{\partial h}{\partial x}$$
 und $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial y} + i \frac{\partial h}{\partial y}$.

Bop. fin die Zerlegung in Real- und Tmaginarteil = f=g+ih mil g, h : C-IR geg duch $g(x+iy) = x^2 - y^2$, h(x+iy) = 2x y(2) complexe Konjugation $L: C \rightarrow C$, $z = x + i \cdot y$ $L: C \rightarrow C$, $z = x + i \cdot (-y)$



Darstellung durch partielle Ableitungen

Die Abbildung $\iota:\mathbb{C}\to\mathbb{R}^2$, $x+iy\mapsto(x,y)$ ist ein Isomorphismus von \mathbb{R} -Vektorräumen. Setzen wir nun

$$f_{\mathbb{R}} = \iota \circ f \circ \iota^{-1}$$
,

dann gilt

$$f_{\mathbb{R}}(x,y) = (g(x+iy), h(x+iy)).$$

Ist $w = u + iv \in \mathbb{C}$, dann sind die partiellen Ableitungen der Komponenten von $(f_{\mathbb{R}})_1$ gegeben durch

$$\partial_1(f_{\mathbb{R}})_1(u,v) = \frac{\partial g}{\partial x}(w)$$

und

$$\partial_2(f_{\mathbb{R}})_1(u,v) = \frac{\partial g}{\partial v}(w).$$

Die Jacobi-Matrix von $f_{\mathbb{R}}$

Ebenso gilt

$$\partial_1(f_{\mathbb{R}})_2(u,v) = \frac{\partial h}{\partial x}(w)$$
 und $\partial_2(f_{\mathbb{R}})_2(u,v) = \frac{\partial h}{\partial y}(w)$.

Ist $f_{\mathbb{R}}$ an der Stelle (u, v) sogar total differenzierbar, dann gilt

$$f'_{\mathbb{R}}(u,v) = \begin{pmatrix} \frac{\partial g}{\partial x}(w) & \frac{\partial g}{\partial y}(w) \\ \frac{\partial h}{\partial x}(w) & \frac{\partial h}{\partial y}(w) \end{pmatrix}.$$

Definition der reellen Differenziebarkeit

Definition (1.7)

Sei $U\subseteq \mathbb{C}$ offen. Eine Funktion $f:U\to \mathbb{C}$ wird reell differenzierbar im Punkt $w\in U$ genannt, wenn sie als Funktion auf dem \mathbb{R} -Vektorraum \mathbb{C} in w total differenzierbar ist.

Hinreichend dafür ist die Existenz und Stetigkeit der Ableitungen

$$\frac{\partial f}{\partial x}(w)$$
 und $\frac{\partial f}{\partial y}(w)$

oder (gleichbedeutend) die Existenz und Stetigkeit von

$$\frac{\partial g}{\partial x}(w)$$
, $\frac{\partial g}{\partial y}(w)$, $\frac{\partial h}{\partial x}(w)$ und $\frac{\partial h}{\partial y}(w)$.

Komplexe Differenzierbarkeit impliziert reelle Diff'barkeit

Proposition (1.8)

Ist $f:U\to\mathbb{C}$ im Punkt $w\in U$ komplex differenzierbar, dann ist sie im selben Punkt auch reell differenzierbar. Die totale Ableitung von f in w ist durch die lineare Abbildung $\mathbb{C}\to\mathbb{C}$, $z\mapsto f'(w)z$ gegeben.

Boweis con Prop. (18). geg: f. U=C, U=C offen, we U vor: I ist in is complex diff' box zzq. f ist in w reell diff' bor also Dies total diff borr, wenn O al normer lim te R-Vektomraum behrachtel wird der (2) - f(u) = lim (2) - f(u) = lim f(W+z) - f(W) Setze $\varphi(z) = \frac{f(\omega+z) - f(\omega)}{f'(\omega)} = \frac{f'(\omega)}{f'(\omega)}$

Dann gell also lim (9/21=0)

Definiere $Y(z) = z(9/z) \Rightarrow \lim_{z\to 0} \frac{Y(z)}{z} = 0$ => lim +(2) = 0 Abelow ist (*) aquivalent zu f(z+w) = f(z) + f'(w) z + 7(z) - f it is a total different mul Allering \$. C > C, 2 m f'(W) & cut Felloteon Y(2)

Die Cauchy-Riemannschen Differentialgleichungen

Satz (1.9)

Sei $U\subseteq\mathbb{C}$ offen, $f:U\to\mathbb{C}$ eine Funktion und $w\in U$ ein Punkt, in dem f reell differenzierbar ist. Dann sind folgende Aussagen äquivalent.

- (i) Die Funktion f ist in w komplex differenzierbar.
- (ii) Es gelten die Cauchy-Riemannschen Differentialgleichungen

$$\frac{\partial h}{\partial y}(w) = \frac{\partial g}{\partial x}(w)$$
 und $\frac{\partial h}{\partial x}(w) = -\frac{\partial g}{\partial y}(w)$.

Sind diese Bedingungen erfüllt, dass ist die komplexe Ableitung von f im Punkt w gegeben durch

$$f'(w) = \frac{\partial g}{\partial x}(w) + i \frac{\partial h}{\partial x}(w).$$

Jacobi-Makrix con PR an des Selli (x, y): (2x - 2y) (2y 2x) 20 Dies ist genan die Doostellngsmatrix der I lm. ACC. C - C, W -> 27 U bigl des Basis (1, i) (f'(z) = 2z) z = x + iy => 2z.1 = 2z = 2x + i2y 27 i = 2(x+iy) i = -2y + 2xi