§ 6. Einführung in die Lebesguesche Integrationstheorie

Definition (6.1)

Sei V ein \mathbb{R} -Vektorraum bestehend aus reellwertigen Funktionen auf einer Menge X. Ein positives Funktional auf V ist dann eine lineare Abbildung $\phi:V\to\mathbb{R}$ mit der Eigenschaft, dass $\phi(f)\geq 0$ für alle $f\in V$ mit $f\geq 0$ gilt.

Definition der Halbnormen

Definition (6.2)

Eine Abbildung $p:V\to\mathbb{R}_+$ auf einem \mathbb{R} -Vektorraum V wird Halbnorm auf V genannt, wenn die Bedingungen $p(\lambda v)=|\lambda|p(v)$ und $p(v+w)\leq p(v)+p(w)$ für alle $v,w\in V$ erfüllt sind.

Jede Halbnorm definiert eine Topologie auf V.

Der Abschluss eines Untervektorraums

Lemma (6.3)

Ist (V,p) ein \mathbb{R} -Vektorraum mit einer Halbnorm und $U\subseteq V$ ein Untervektorraum, dann ist auch der Abschluss \bar{U} von U in V ein Untervektorraum.

- Eine Halbnorm induziert (im Gegensatz zu einer Norm) keine Metrik auf V.
- Dennoch ist die Konvergenz auch hier ein sinnvoller Begriff.
 Der Grenzwert einer konvergenten Folge ist aber nicht mehr eindeutig bestimmt.
- Der Begriff der stetigen Abbildung zwischen einem halbnormierten und einem metrischen Raum ist auf naheliegende Weise definiert.

V R- Vertorraum, U & V, p Halbnorm and V U = Absilius um U begl p Seien V. WE I and DE R 15-803 229. V+WE J, ZVE J OBd A 2+0 Ser EE R+ vorgog zoige BE,P(v+w) =

yeV|P(y-(v+w)) < E) enthalt em Element ans U. V. WE U = JVEBE, p(V) n U,

Seien V. WE U nd DE R weges TN'E BEZP(W) n U V', W'EU, UEV - V'+W' ∈ U, an Bodom. p((v'+w')-(v+w)) = p(v-v'+w-w') ≤ p(v· v')+p(w- 4') < 1/2 ε + 1/2 ε = ε » ν'ι ω'ε

Der zentrale Fortsetzungssatz

Satz (6.4)

Sei (V,p) ein \mathbb{R} -Vektorraum mit einer Halbnorm, $(W,\|\cdot\|)$ ein Banachraum, $U\subseteq V$ ein Untervektorraum und $\phi:U\to W$ eine stetige lineare Abbildung. Dann existiert genau eine stetige Fortsetzung von ϕ zu einer Abbildung $\bar{\phi}:\bar{U}\to W$, und diese Abbildung ist wiederum linear.

Beweis ion Sate 6 4: (V, p) halbrorniesten R-Vektonaum USV DO U-> W steringe lun. Abl. in evier Banachraum W 239. Es gilt une and bestrimmte stetige Fortseting &. U-> W Emdentiglant: Ang , 4, 4': U - W and statige Fortsetungen con \$. Soi NE (V) = + (V) = + (V) Fir follow ne N grift es ein un in

Un Bynp (V) Damit Gt (un)non ene Folge in U, die bryl p gegen v konvergnot. Y, Y' sind stetry in v = $\psi(u) = \lim_{n \to \infty} \psi(u_n) =$ = lum 4'(4,) = 4'(V) Enthere Seive I wrong Wille (wie oben) ene Folge (un) 10 N in U de gogen v konsegiet Beh (P(uy)) HEIN St ene Cauchy. W-W it said in Nullpull EE P' WY 99 - JSEP' muit

P(u) < S -> 10(u) 1 < E \ u \ \(\mathcal{L} \) (un) new boroughed gegen V = 7NEN. P(un-v) < 18 / n > N P(v-un) < \$8+ 28 = 8 \ \ n, n > N 5.0. - 1 p(un) -p(um) 11 = 1 p(un -um) 11 < E (= Beh.) W is wilstanding (da Bunachraum) 1EIN => lim p(un) = w fir ein we W udry -Definiere num \$\(\phi(\v)\) := W (Rest siche Steriet)

Der Raum der stetigen Abbildung mit kompaktem Träger

- Für jedes $n \in \mathbb{N}$ sei \mathscr{C}_n die Menge aller stetigen Funktionen $f : \mathbb{R}^n \to \mathbb{R}$ mit kompaktem Träger.
- Ist $Q \subseteq \mathbb{R}^n$ ein Quader mit $Q^{\circ} \supseteq \operatorname{supp}(f)$, dann ist die Nullfortsetzung von f auf Q eine Riemann-integrierbare Funktion.
- Das Riemann-Integral $\int f(x) dx$ ist unabhängig von der Wahl des Quaders Q.

Verbände als spezielle Halbordnungen

- Eine halbgeordnete Menge (X, \leq) nennt man einen Verband, wenn für alle $x, y \in X$ die Teilmenge $\{x, y\}$ ein Infimum und ein Supremum besitzt.
- Man bezeichnet das Infimum mit $x \wedge y$, das Supremum mit $x \vee y$.

Eigenschaften des Raums \mathscr{C}_n

Proposition (6.5)

- (i) Die Menge \mathscr{C}_n ist ein \mathbb{R} -Vektorraum, mit der punktweisen Addition und Multiplikation.
- (ii) Die Menge \mathscr{C}_n ist bezüglich der Halbordnung definiert durch $f \leq g \Leftrightarrow \forall x \in \mathbb{R}^n : f(x) \leq g(x)$ ein Verband, mit $(f \wedge g)(x) = \min\{f(x), g(x)\}$ und $(f \vee g)(x) = \max\{f(x), g(x)\}$ für alle $x \in \mathbb{R}^n$.
- (iii) Die Abbildung $I: \mathscr{C}_n \to \mathbb{R}$, $f \mapsto \int_{\mathbb{R}^n} f(x) dx$ ist ein positives lineares Funktional, und es gilt $|I(f)| \le I(|f|)$ für alle $f \in \mathscr{C}_n$.

Majoranten und Obersummen

Definition (6.6)

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine beliebige Funktion und $(g_m)_{m \in \mathbb{N}}$ eine Folge in \mathscr{C}_n mit $g_m \geq 0$ für alle $m \in \mathbb{N}$. Wir bezeichnen die Reihe $\sum_{m=1}^\infty g_m$ als Majorante von f, wenn die Bedingungen

$$|f| \le \sum_{m=1}^{\infty} g_m$$
 und $\sum_{m=1}^{\infty} I(g_m) < +\infty$

erfüllt sind. Die reelle Zahl $\sum_{m=1}^{\infty} I(g_m)$ bezeichnen wir dann als Obersumme von f.

- Es bezeichne $\widehat{\mathscr{L}_n}$ die Menge aller Funktionen $f:\mathbb{R}^n\to\mathbb{R}$, die eine Majorante besitzen.
- Für jedes $f \in \widehat{\mathscr{L}}_n$ sei $||f||_1$ das Infimum der Menge aller Obersummen von f.

Summierbarkeitseigenschaft von $\|\cdot\|_1$

Proposition (6.7)

Sei $(g_m)_{m\in\mathbb{N}}$ eine Folge in $\widehat{\mathscr{L}}_n$ mit $\sum_{m=1}^\infty \|g_m\|_1 < +\infty$ und $f: \mathbb{R}^n \to \mathbb{R}$ eine Funktion mit der Eigenschaft $|f| \leq \sum_{m=1}^n |g_m|$. Dann ist auch f in $\widehat{\mathscr{L}}_n$ enthalten, und es gilt $\|f\|_1 \leq \sum_{m=1}^\infty \|g_m\|_1$.

Der Raum $\widehat{\mathscr{L}}_n$ als halbnormierter \mathbb{R} -Vektorraum

Folgerung (6.8)

- (i) Ist $f \in \widehat{\mathcal{L}_n}$ und $g : \mathbb{R}^n \to \mathbb{R}$ beschränkt, dann liegt auch fg in $\widehat{\mathcal{L}_n}$, und es gilt $\|fg\|_1 \le \|f\|_1 \cdot \|g\|_{\infty}$.
- (ii) Die Menge $\widehat{\mathscr{L}_n}$ ist ein \mathbb{R} -Vektorraum, der \mathscr{C}_n als Untervektorraum enthält, und $\|\cdot\|_1$ ist eine Halbnorm auf $\widehat{\mathscr{L}_n}$.

Beweis on Folgoing 6.8, Teil (iii) zeige In it an R-Veletorraum genigh . In it in Unterveloperraum in R-Veletorraumalles Fld. R" - R Die Nell Det O augt im Ln, denn Z gm beddend aus gn = 0 Hm = N it are Majorane Soven non f. gt lin und ne R vorgage fige l'n = fig haben Majoranten

zege In it in R- Veletorraum genigh In it in Unter relation roum in R-2 Am, 2 gm By. 5 (for + gm) st Hayorante und = I(Pm+gm) = 5 (I(fm)+I(gm)) = $\sum_{m=1}^{\infty} I(f_m) + \sum_{m=1}^{\infty} I(g_m) < + \infty \quad (\Rightarrow Beh.)$ also: Itg & D. Beweis ion if & d. analog 3/20 mod dos 118+911, 5 181, + 11911, gill. gangle zzg. Fit jedes Ec Rt grot es and Obersumvon ftg kleiner als 11fh, + 19h, + 2 (dem downs folgt 11 f+ g 11 = 11 f 1/1 + Nach Def von 11 fly gebt es ené Majo rante & fm con f mit & I(fm) Sei < If 1, + & E, und elseuso exil Majorunte Z gm won g unit Z I(gm) < 11911,+ == > = I(Pm+gen) = 5 T(Pm) + 5 T(gm) < 11 fly + 11g /17 E Rest siche Steript

Der Satz von Dini

Satz (6.9)

Sei X ein kompakter metrischer Raum und $(f_m)_{m\in\mathbb{N}}$ eine monoton wachsende Folge stetiger Funktionen $f_m:X\to\mathbb{R}$. Sei $f:X\to\mathbb{R}$ eine stetige Funktion mit der Eigenschaft, dass $(f_m)_{m\in\mathbb{N}}$ punktweise gegen f konvergiert. Dann konvergiert $(f_m)_{m\in\mathbb{N}}$ auch gleichmäßig gegen f.

Stetigkeit der Integralfunktion bezüglich der Halbnorm

Proposition (6.10)

- (i) Für jedes $f \in \mathcal{C}_n$ mit $f \ge 0$ gilt $I(f) = ||f||_1$.
- (ii) Das positive lineare Funktional $I: \mathscr{C}_n \to \mathbb{R}$ ist stetig bezüglich der Halbnorm $\|\cdot\|_1$.

rante 5 fm con p mi Beweis wa Rop 6.10: zuli) gog. fe en f > 0 Die Reihe Sign geg durch gn = f gm= 0 firm = 2 ist (offersedothich eve Majorante con f, somit ist I(F) ene Obersumum => 11 fly = I(f) much Def. von 18/1 Zu zeisen Se Hod I(p) = Ifly Sei & gm me had tajorante un f zzg

Detrouve fai jedes in joweils Rm = PN (59E) Prop. 6.5 (ii) - hu & - en tuen vla: Supp (hm) & supp (f) aborprafe: hm > & purposeise Ser EE Rt, XE R" Zgm(x) = f(x) $\Rightarrow f(x) = \frac{1}{2} g_{k}(x) = f(x) = \frac{1}{2} f(x)$ $\Rightarrow f(x) = \frac{1}{2} g_{k}(x) = f(x) + \frac{1}{2} f(x)$ $\Rightarrow f(x) = \frac{1}{2} f(x) = \frac{1}{2} f(x) + \frac{1}{2} f(x)$ (Am) men monotor w., puto. bonvegent regen f. 8. km alle storig cate v. Dini

pundhoreise glachma Big and supp (f), dam Lemma 414 = Enlie) Bh. I dank Con stedy Ozgl Sei f E Ch und (gm) new und lum 1 gm - P/1

Definition des Lebesgue-Integrals

- Es sei \mathscr{L}_n der Abschluss von \mathscr{C}_n im halbnormierten Raum $(\widehat{\mathscr{L}}_n, \|\cdot\|_1)$.
- Nach Satz 6.4 existiert eine eindeutige Fortsetzung \bar{I} der Funktion $I: \mathcal{C}_n \to \mathbb{R}^n$ auf \mathcal{L}_n .

Definition (6.11)

Wir nennen die Elemente von \mathcal{L}_n die Lebesgue-integrierbaren Funktionen auf dem \mathbb{R}^n , und für jedes $f \in \mathcal{L}_n$ wird

$$\int_{\mathscr{L}} f(x) \, dx = \bar{I}(f)$$

das Lebesgue-Integral von f genannt.

Ausformulierung der Definiton

- Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ ist genau dann Lebesgue-integrierbar, wenn f in $\widehat{\mathscr{L}_n}$ liegt und eine Folge $(f_m)_{m \in \mathbb{N}}$ in \mathscr{C}_n mit $\lim_m \|f_m f\|_1 = 0$ existiert.
- Das Lebesgue-Integral von f ist in diesem Fall durch den Grenzwert

$$\int_{\mathscr{L}} f(x) dx = \lim_{m \to \infty} \int f_m(x) dx$$
 gegeben.

• Für alle $f \in \mathcal{C}_n$ stimmt $\int_{\mathscr{L}} f(x) dx$ mit dem Riemann-Integral I(f) überein. (Wir werden sehen, dass dies für alle Riemann-integrierbaren Funktionen gilt, nicht nur für die stetigen.)

Eigenschaften des Raum \mathcal{L}_n

Proposition (6.12)

- (i) Die Menge \mathcal{L}_n ist ein Untervektorraum von $\widehat{\mathcal{L}}_n$.
- (ii) Sind $f, g \in \mathcal{L}_n$, dann sind auch die Funktionen |f|, $f \wedge g$ und $f \vee g$ in \mathcal{L}_n enthalten.
- (iii) Sei $f \in \mathcal{L}_n$ und $g : \mathbb{R}^n \to \mathbb{R}$ beschränkt. Ist g zusätzlich stetig oder $g \in \mathcal{L}_n$, dann folgt $fg \in \mathcal{L}_n$.

Rechenregeln für das Lebesgue-Integral

Proposition (6.13)

- (i) Seien $f, g \in \mathcal{L}_n$ und $\lambda \in \mathbb{R}$. Dann gilt $\int_{\mathscr{L}} (f+g)(x) dx = \int_{\mathscr{L}} f(x) dx + \int_{\mathscr{L}} g(x) dx \text{ und } \int_{\mathscr{L}} (\lambda f)(x) dx = \lambda \int_{\mathscr{L}} f(x) dx.$
- (ii) Für alle $f \in \mathcal{L}_n$ gilt $\left| \int_{\mathscr{L}} f(x) dx \right| \leq \int_{\mathscr{L}} |f(x)| dx = ||f||_1$.
- (iii) Ist $f \in \mathcal{L}_n$ und $(f_m)_{m \in \mathbb{N}}$ eine Folge in \mathcal{L}_n mit $\lim_m \|f_m f\|_1 = 0$, dann ist $\lim_m \int_{\mathscr{L}} f_m(x) dx = \int_{\mathscr{L}} f(x) dx$.
- (iv) Aus $f \ge 0$ folgt $\int_{\mathscr{L}} f(x) dx \ge 0$.
- (v) Sei $f \in \mathcal{L}_n$ und $g : \mathbb{R}^n \to \mathbb{R}$ beschränkt und außerdem stetig oder in \mathcal{L}_n enthalten. Dann gilt die Abschätzung $|\int_{\mathscr{L}} f(x)g(x) \, dx| \leq ||g||_{\infty} \int_{\mathscr{L}} |f(x)| \, dx$.