Definition der parametrisierten Flächen

Definition (5.11)

Eine parameterisierte \mathscr{C}^1 -Fläche ist ein Paar (A,ϕ) bestehend aus einer kompakten, zusammenhängenden, Jordan-messbaren Teilmenge $A\subseteq\mathbb{R}^2$ und einer injektiven \mathscr{C}^1 -Abbildung $\phi:A\to\mathbb{R}^3$ mit der Eigenschaft, dass $\operatorname{rg}\phi'(p)=2$ für alle $p\in A$ gilt.

Definition der Parametertransformationen

Definition (5.12)

Seien (A,ϕ) und (B,ψ) zwei parametrisierte \mathscr{C}^1 -Flächen mit derselben Spur. Eine Parametertransformation zwischen (A,ϕ) und (B,ϕ) ist ein \mathscr{C}^1 -Diffeomorphismus $\rho:A\to B$ mit $\psi\circ\rho=\phi$. Gilt det $\rho'(p)>0$ für alle $p\in A$, dann nennt man ρ orientierungserhaltend. Ansonsten gilt $\rho'(p)<0$ für alle $p\in A$, und man bezeichnet ρ als orientierungsumkehrend.

Definition der Flächenintegrale

Definition (5.15)

Sei (B,ϕ) eine parameterisierte \mathscr{C}^1 -Fläche mit kompaktem Definitionsbereich $B, f: \phi(B) \to \mathbb{R}$ eine stetige Funktion und $F: \phi(B) \to \mathbb{R}^3$ ein stetiges Vektorfeld auf B. Dann wird das Integral

$$\int_{(B,\phi)} f \, dA = \int_{B} (f \circ \phi)(x,y) \, \|\phi'(x,y)(e_1) \times \phi'(x,y)(e_2)\| \, d(x,y)$$

ein Flächenintegral 1. Art und das Integral

$$\int_{(B,\phi)} \langle F, dA \rangle = \int_{B} \langle (F \circ \phi)(x,y), \phi'(x,y)(e_1) \times \phi'(x,y)(e_2) \rangle d(x,y)$$

ein Flächenintegral 2. Art genannt. Insbesondere bezeichnet man $v_2((B,\phi)) = \int_{(B,\phi)} 1 \, dA$ als Inhalt der parametrisierten \mathscr{C}^1 -Fläche.

Orientierte stückweise \mathscr{C}^1 -Flächen

Definition (5.20)

Ein Einheitsvektorfeld auf einer Teilmenge $S\subseteq\mathbb{R}^3$ ist eine Abbildung $\nu:S\to\mathbb{R}^3$ mit $\|\nu(p)\|=1$ für alle $p\in S$. Sei nun (S,ν) ein Paar bestehend aus einer Teilmenge $S\subseteq\mathbb{R}^3$ und einem Einheitsvektorfeld ν auf S. Eine Parametrisierung von (S,ν) als stückweise \mathscr{C}^1 -Fläche ist eine endliche Familie $((A_i,\phi_i))_{i\in I}$ parametrisierter \mathscr{C}^1 -Flächen mit folgenden Eigenschaften:

- (i) Es gilt $S = \bigcup_{i \in I} \phi_i(A_i)$.
- (ii) Für jedes $i \in I$ existiert eine Jordansche Nullmenge $N_i \subseteq A_i$, so dass für alle $p \in A_i \setminus N_i$ jeweils $\phi_i'(p)(e_1) \times \phi_i'(p)(e_2)$ ein positives skalares Vielfaches von $\nu(\phi_i(p))$ ist.
- (iv) Für alle $i, j \in I$ mit $i \neq j$ gilt $\phi_i(A_i \setminus N_i) \cap \phi_j(A_j \setminus N_j) = \emptyset$.

Ein Paar (S, ν) nennen wir eine orientierte kompakte stückweise \mathscr{C}^1 -Fläche, wenn das Paar eine entsprechende Parametrisierung besitzt. Wir bezeichnen ν dann auch als Einheitsnormalenfeld auf S.

Integrale über orientierte stückweise \mathscr{C}^1 -Flächen

Definition (5.21)

Sei (S, ν) eine orientierte kompakte stückweise \mathscr{C}^1 -Fläche, $((A_i, \phi_i))_{i \in I}$ eine Parametrisierung, $f: S \to \mathbb{R}$ eine stetige Funktion und $F: S \to \mathbb{R}^3$ ein stetiges Vektorfeld. Dann ist das Flächenintegral 1. Art von f bzw. das Flächenintegral 2. Art von F definiert durch

$$\int_{(S,\nu)} f \, dA = \sum_{i \in I} \int_{(A_i,\phi_i)} f \, dA$$

bzw.

$$\int_{(S,\nu)} \langle F, dA \rangle = \sum_{i \in I} \int_{(A_i,\phi_i)} \langle F, dA \rangle.$$

Zusammenhang zwischen Flächenintegralen 1. und 2. Art

Proposition (5.22)

Sei (S, ν) eine orientierte kompakte stückweise \mathscr{C}^1 -Fläche, $((A_i, \phi_i))_{i \in I}$ eine Parametrisierung und $F: S \to \mathbb{R}^3$ ein stetiges Vektorfeld. Dann gilt für jedes $i \in I$ die Gleichung

$$\int_{(A_i,\phi_i)} \langle F, dA \rangle = \int_{(A_i,\phi_i)} F_1 \nu_1 dA + \int_{(A_i,\phi_i)} F_2 \nu_2 dA + \int_{(A_i,\phi_i)} F_3 \nu_3 dA.$$

Berspiel für eine orientzute strictweise E1 - Flüde Zylvidosberfläche Seien hr ER+ Zylinder Z = {(x,y,z) e |R3| ≥e [0, h], x2+y2≤ r2} Oberlando 5 = 02 = {(k,y,z) = R3 | z = [0,h], x2+ y2 = r2} auboes Einheitenormalen Cold 1. Fall Z €]0, h [V(x, y, 2) = 16, y) [(x, y, 0)]

V(x,y, 2) = 23

For alle Rundle pe S, teir die teur Fall zahrifft kann fix V(p) air bol Velton der Longe 1 gerählt werden Defilition ouer Parametrision φε(4 z) = (7 cos(4)) Vorduseite (2) Dodel ud Bolon 2 K= (κ, y) ε ρ² (κ²+ y² ≤ r) (Kr. p3) ml p3(x,y) = (x,y h) Dedal

 $\phi_{s}'(x,y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ (K4, p4) ml p4(x1y) = (y, x, 0) Zusammenhang zwischen Flächeninkograhen 1 und 2 Act. 1 md 2 At. 23; J (F, dA) = = [Fkvk dA] $\int \langle F, dA \rangle = \int \langle (F \circ \phi) (k, y), \phi'_{k}(k, y) (e) \times$ (A, , b,) (ez) > d(r,y)

Noch bransschung ist of (x,y)(e) > of (x,y)(22) ein positives Kelfades con Emhits normales feld also glad 1 0; (x,y) (0,) ~ 0; (x,y) (2) 1 (v 0 0) (x,y) = J(F, JA) = \(\frac{1}{k=1} \right) (F_2 \ph) (x,y).

| \phi \((x,y) \(\ext{(e1)} \right) \(\frac{1}{k=1} \right) \((\ext{(e2)}) \right) \((\ext{(e3)} \right) \(\ext{(e2)} \right) \(\ext{(e3)} \right) \\ \ext{(e3)} \\ \ext{(e

Unabhängigkeit des Integrals von der Parametrisierung

Proposition (5.23)

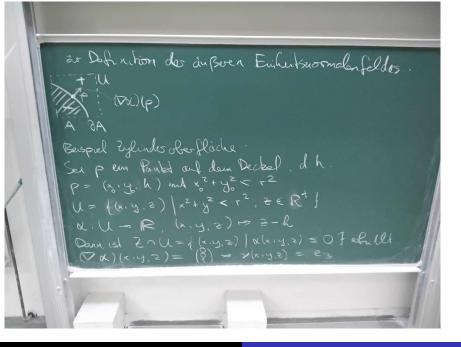
Sei (S, ν) eine orientierte kompakte stückweise \mathscr{C}^1 -Fläche, $f: S \to \mathbb{R}$ eine stetige Funktion und $F: S \to \mathbb{R}^3$ ein stetiges Vektorfeld. Dann sind die Integrale $\int_{(S,\nu)} f \ dA$ und $\int_{(S,\nu)} \langle F, dA \rangle$ unabhängig von der gewählten Parametrisierung.

Definition der äußeren Einheitsnormalenfelder

Definition (5.24)

Sei $A \subseteq \mathbb{R}^n$ eine abgeschlossene Teilmenge.

- Wir bezeichnen eine Punkt $p \in \partial A$ als glatten Randpunkt von A, wenn eine offene Umgebung U von p und eine \mathscr{C}^1 -Abbildung $\alpha: U \to \mathbb{R}$ existieren, so dass die Bedingungen $\alpha'(p) \neq 0$ und $A \cap U = \{x \in U \mid \alpha(x) \leq 0\}$ erfüllt sind.
- Man bezeichnet dann $\|(\nabla \alpha)(p)\|^{-1}(\nabla \alpha)(p)$ als äußeren Einheitsnormalenvektor der Menge A im Randpunkt p.
- Ein Vektorfeld ν auf dem Rand ∂A mit der Eigenschaft, dass ν in jedem glatten Randpunkt mit einem äußeren Einheitsnormalenvektor übereinstimmt, nennen wir ein äußeres Einheitsnormalenfeld.



Definition der Randkurven

Definition (5.25)

Sei $A \subseteq \mathbb{R}^2$ kompakt. Wir bezeichnen einen Weg $\gamma: [a,b] \to A$ als Randkurve von A, wenn folgende Bedingungen erfüllt sind.

- (i) Es gibt ein $m \in \mathbb{N}$ und eine endliche Teilmenge $\{t_1,...,t_{m-1}\}$, so dass $\gamma|_{[t_{k-1},t_k]}$ stetig differenzierbar ist, wobei $t_0=a$ und $t_m=b$ gesetzt wird.
- (ii) Es ist $\gamma([a,b]) = \partial A$, und für $t \in [a,b] \setminus \{t_0,...,t_m\}$ ist $\gamma(t)$ ein glatter Randpunkt von A.

Die Teilstücke $\gamma|_{[t_{k-1},t_k]}$ bezeichnen wir als \mathscr{C}^1 -Randkomponenten von A.

Positiv orientierte Randkurven

Proposition (5.26)

Sei $A \subseteq \mathbb{R}^2$ kompakt und $\gamma: [a,b] \to \mathbb{R}^2$ eine Randkurve von A. Dann existiert auf ∂A ein Einheitsnormalenfeld ν , dass für alle bis auf endlich viele $t \in [a,b]$ durch

$$\nu(\gamma(t)) = \pm \|\gamma'(t)\|^{-1} \begin{pmatrix} \gamma_2'(t) \\ -\gamma_1'(t) \end{pmatrix}$$

gegeben ist. Tritt in dieser Gleichung durchweg das Pluszeichen auf, dann sprechen wir von einer positiv orientierten Randkurve.

Dann ist 2011=1(x,y,z) x(x,y,z) = 07 exilt
Ew Dof der Rand kwae
8'(4)
Francisco (16)=614) Eramorang: Normalboreich in R2 bzgl y-Achse
benotige stellige Fel. (P. Y. Ca. G.] - 12? (P. T.
(b=ma)/1, no la \ = 1/2 \ \ - 1 - 0 1 \ (a) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Down best A ene positiv
Seven P, y stelling diff was Pan besited A ene positer P(x) original Pandkuras do Form

8= 8-+8++81 mit 6-: [a, b] -> 12, t -> (t, 4(t)) (8, [4(0), 4(6)] > R2, 6 > (6, t) t. [a, 6] - p², t = (a+6-t, 4(a+6-t))

γ. [4(a), γ(a)] = p², t = (a, γ(a)+γ(a)-t)

Zerlegungen in Normalbereiche

Definition (5.27)

Sei $A\subseteq\mathbb{R}^2$ eine kompakte Teilmenge und γ eine positiv orientierte Randkurve von A. Unter einer Zerlegung von A in \mathscr{C}_1 -Normalbereiche bezüglich der x-Achse verstehen wir eine endliche Familie $N_1,...,N_r$ von solchen Normalbereichen mit \mathscr{C}^1 -Begrenzungsfunktionen, so dass folgende Bedingungen erfüllt sind.

- (i) Es gilt $A = \bigcup_{i=1}^r N_i$, und für $i \neq j$ schneiden sich N_i und N_j höchstens in Randpunkten.
- (ii) Die Kurve γ und die positiv orientierten Ränder der Normalbereiche N_i können so in \mathscr{C}^1 -Komponenten zerlegt werden, dass jede Randkomponente γ_i von einem N_i entweder mit einer solchen Komponente γ übereinstimmt, oder eine Randkomponente γ_j in einem N_j mit $j \neq i$ existiert, so dass $\gamma_j = -\gamma_i$ gilt.

Beispiel fair eine Zerlegng in Normalbourke

Anmerkung:

Die Zeichnung ist für die Definition 5.27 nicht ganz passend, weil für die dargestellte Menge A keine (einzelne, zusammenhängende) Randkurve existiert. Statt dessen hat der Rand zwei Komponenten, eine innere und eine äußere. Eine passendes Bild erhält man, wenn man den Kreisring A beispielsweise an der rechten Seite auftrennt, also an Stelle von

$$A = \{(s\cos(\varphi), s\sin(\varphi) \mid s \in [r, R], \varphi \in [0, 2\pi]\}$$

die Menge

$$A_{\varepsilon} = \{(s\cos(\varphi), s\sin(\varphi) \mid s \in [r, R], \varphi \in [\varepsilon, 2\pi - \varepsilon]\}$$

für ein kleines positives ε betrachtet. Dieses Gebiet besitzt dann eine positiv orientierte Randkurve im Sinne von Prop. 5.26, und eine Zerlegung in Normalbereiche wie in Def. 5.27 beschrieben.

Definition der Divergenz

Definition (5.28)

Sei $U\subseteq\mathbb{R}^n$ offen und $F:U\to\mathbb{R}^n$ ein differenzierbares Vektorfeld. Dann nennt man die Funktion $\mathrm{div}(F):U\to\mathbb{R}$ gegeben durch

$$\operatorname{div}(F)(p) = \sum_{k=1}^{n} \partial_k F_k(p)$$
 die Divergenz von F .

Gauß'scher Integralsatz der Ebene

Satz (5.29)

Sei $A\subseteq\mathbb{R}^2$ eine kompakte Teilmenge, die eine positiv orientierte Randkurve γ und Zerlegungen in Normalbereiche sowohl bezüglich der x- als auch bezüglich der y-Achse besitzt. Sei $\nu:\partial A\to\mathbb{R}^2$ ein äußeres Einheitsnormalenfeld. Dann kann die positiv orientierte Randkurve so gewählt werden, dass für jedes stetig differenzierbare Vektorfeld F auf A die Gleichung

$$\int_{\mathcal{I}} \langle F, \nu \rangle \, ds = \int_{\mathcal{A}} \operatorname{div}(F)(x, y) \, d(x, y) \quad \text{erfüllt ist.}$$

zum Gang'schen Integralsate in de Flend