Eindeutigkeit von Inhaltsfunktionen

Satz

- (i) Es gibt genau eine Inhaltsfunktion auf \mathscr{J} , den Jordan-Inhalt.
- (ii) Für alle $A \in GL_n(\mathbb{R})$ und alle $B \in \mathscr{J}$ gilt $v(\phi_A(B)) = |\det(A)|v(B)$.

Beweis des Satzes, Teil (ii)

• Wir betrachten zunächst den Fall $A \in \mathcal{O}(n)$. Auf Grund des Lemmas ist $B \mapsto v(\phi_A([0,1]^n))^{-1}v(\phi_A(B))$ eine Inhaltsfunktion. Nach Teil (i), der Eindeutigkeit des Jordan-Inhalts, folgt daraus

$$v(\phi_A([0,1]^n))^{-1}v(\phi_A(B)) = v(B)$$

für alle $B \in \mathscr{J}$.

• Ist \bar{B}_1 die Einheitskugel vom Radius 1 um den Ursprung, dann gilt $\phi_A(\bar{B}_1) = \bar{B}_1$ wegen $A \in \mathcal{O}(n)$. Es folgt

$$v(\phi_A([0,1]^n))^{-1}v(\bar{B}_1) = v(\phi_A([0,1]^n))^{-1}v(\phi_A(\bar{B}_1)) = v(\bar{B}_1)$$

und somit $v(\phi_A([0,1]^n)) = 1 = |\det(A)|$. Dies wiederum bedeutet $v(\phi_A(B)) = |\det(A)|v(B)$, für alle $A \in \mathcal{O}(n)$ und alle $B \in \mathcal{J}$.

Beweis des Satzes, Teil (ii)

• Sei nun $D \in \mathrm{GL}_n(\mathbb{R})$ eine Diagonalmatrix mit Einträgen $\lambda_k \in \mathbb{R}^+$, $1 \le k \le n$. Wie im ersten Fall erhalten wir

$$v(\phi_D([0,1]^n))^{-1}v(\phi_D(B)) = v(B)$$

für alle $B \in \mathscr{J}$.

- Das Bild $\phi_D([0,1]^n)$ des Einheitswürfels ist ein kompakter Quader Q mit Kantenlängen $\lambda_1,...,\lambda_n$ und dem Volumen $v(Q)=\prod_{k=1}^n\lambda_k=\det(D)$. Es folgt $|\det(D)|^{-1}v(Q)=1$, was zu $v(\phi_D([0,1]^n))=|\det(D)|$ umgefort werden kann.
- Wir erhalten $v(\phi_D(B) = |\det(D)|v(B)$ für alle $B \in \mathscr{J}$ und alle Diagonalmatrizen D mit positiven Einträgen.

Beweis des Satzes, Teil (ii)

- Ist nun $A \in GL_n(\mathbb{R})$ beliebig, dann existiert auf Grund der Polarzerlegung ein $U \in \mathcal{O}(n)$ und eine symmetrische positiv definite Matrix S mit A = US.
- Auf Grund des Spektralsatzes existiert ein $V \in \mathcal{O}(n)$ und eine Diagonalmatrix D mit positiven Einträgen, so dass $S = {}^{\mathrm{t}} VDV$ gilt. Insgesamt gilt also A = WDV, mit $W = U {}^{\mathrm{t}} V \in \mathcal{O}(n)$. Auf Grund der bereits bewiesenen Gleichungen erhalten wir für jedes $B \in \mathscr{J}$ jeweils

$$v(\phi_A(B)) = v(\phi_W(\phi_D(\phi_V(B)))) =$$
 $|\det(W)|v(\phi_D(\phi_V(B))) = |\det(W)||\det(D)|v(\phi_V(B)) =$
 $|\det(W)||\det(D)||\det(V)|v(B) = |\det(A)|v(B).$

Verhalten des Riemann-Integrals bei gleichmäßiger Konvergenz

Lemma

Ist $T\subseteq\mathbb{R}^n$ Jordan-messbar und $(f_m)_{m\in\mathbb{N}}$ eine Folge Riemann-integrierbarer Funktionen $f_m:T\to\mathbb{R}$, die auf T gleichmäßig gegen eine weitere Riemann-integrierbare Funktion $f:T\to\mathbb{R}$ konvergiert, dann folgt

$$\lim_{m\to\infty}\int_T f_m(x)\,dx = \int_T f(x)\,dx.$$

Beweis: Ist $\varepsilon \in \mathbb{R}^+$ vorgegeben, dann existiert ein $M \in \mathbb{N}$ mit $|f_m(x) - f(x)| < \varepsilon$ für alle $x \in T$ und alle $m \ge M$. Für diese m folgt dann

$$|\int_{T} f_{m}(x) dx - \int_{T} f(x) dx| \leq \int_{T} |f_{m}(x) - f(x)| dx$$

$$\leq \int_{T} \varepsilon dx = \varepsilon v(T).$$

Del. Q = R" compactor Quader, f. Q - R beschrankt Z Zoleging von Q. Für jedes KEQ(Z) ein OKEK ein bel gla Prakt. KEQ(2) eine Ricmanniste Summe we I trag! Z Bop. N=1, Q=[0.1] P. R-> R x 1-> X Zm = 1 m. 2 Q(21) = {[k], k] | 15 k = m. Beispiele fri, Rumannsche Summen.

(1) With
$$a_k = \frac{k-1}{m} f_{nr}$$
 $1 \le k \le m$

$$R(f_n(a_k)_{1 \le k \le m}) = \sum_{k=1}^{m} \frac{1}{m} \frac{1}{m} = \frac{1}{m^2} \frac{1}{2(n-1)} m$$

$$= \frac{1}{2}(1-\frac{1}{m}) = \sum_{k=1}^{n} (2)$$
(2) Wahle $a_k = \frac{1}{m} f_{nr}$ $1 \le k \le m$

$$= R(f_n(a_k)_{1 \le k \le m}) = \frac{1}{2}(1+\frac{1}{m}) = \sum_{k=1}^{n} (2)$$
(3) Wahle $a_k = \frac{1}{2}(\frac{k-1}{m} + \frac{1}{m}) f_{nr}$ $1 \le k \le m$

$$= R(f_n(a_k)_{1 \le k \le m}) = \frac{1}{2}$$

Feinheit von Zerlegungen

Definition

Sei $Q \subseteq \mathbb{R}^n$ ein Quader und $\mathscr{Z} = (\mathscr{Z}_1, ..., \mathscr{Z}_n)$ eine Zerlegung von Q. Für $1 \le k \le n$ sei δ_k das Maximum der Längen der durch \mathscr{Z}_k definierten Intervalle. Dann wird

$$\delta(\mathscr{Z}) = \max\{\delta_1, ..., \delta_n\}$$

die Feinheit der Zerlegung Z genannt.

Für alle Teilquader $K \in \mathcal{Q}(\mathcal{Z})$ gilt dann $v(K) \leq \delta(\mathcal{Z})^n$.

Verhalten von Ober- und Untersummen bei Verfeinerungen

Lemma

Sei $Q\subseteq\mathbb{R}^n$ ein Quader, $f:Q\to\mathbb{R}$ eine beschränkte Funktion und \mathscr{Z} eine Zerlegung von Q. Dann existiert für jedes $\varepsilon\in\mathbb{R}^+$ ein $\delta\in\mathbb{R}^+$, so dass für jede Zerlegung \mathscr{Z}' von Q mit $\delta(\mathscr{Z}')<\delta$ die Ungleichungen

$$0 \leq \mathscr{S}_f^+(\mathscr{Z}') - \mathscr{S}_f^+(\mathscr{Z} \cup \mathscr{Z}') < \varepsilon$$

und

$$0 \leq \mathscr{S}^-(\mathscr{Z} \cup \mathscr{Z}') - \mathscr{S}^-_f(\mathscr{Z}') < \varepsilon$$

erfüllt sind.

Beweis des Lemmas

- Für $1 \le k \le n$ sei m_k jeweils die Anzahl der Zerlegungspunkte in \mathscr{Z}_k . Sei \mathscr{Z}' eine weitere Zerlegung von Q.
- Durch Hinzunahme von \mathscr{Z}_k zu \mathscr{Z}'_k werden jeweils höchstens k Intervalle der Zerlegung \mathscr{Z}'_k verändert. Es werden also höchstens $m = \prod_{k=1}^n m_k$ Quader der Zerlegung \mathscr{Z}' weiter unterteilt.
- Es ändern sich also höchstens m Summanden in der Obersumme $\mathscr{S}_f^+(\mathscr{Z}')$. Ist δ die Feinheit von \mathscr{Z}' , dann hat jedes $K \in \mathscr{Q}(\mathscr{Z})$ höchstens das Volumen δ^n . Setzen wir $s = \sup\{|f(x)| \mid x \in Q\}$, dann ändert sich jeder Summand also höchstens um den Wert $s\delta^n$, und die Summe höchstens um $ms\delta^n$.

Beweis des Lemmas

• Wählen wir für vorgegebenes $\varepsilon \in \mathbb{R}^+$ unser $\delta \in \mathbb{R}^+$ also so, dass $ms\delta^n < \varepsilon$ erfüllt ist, dann erhalten wir

$$\mathscr{S}_{f}^{+}(\mathscr{Z}') - \mathscr{S}_{f}^{+}(\mathscr{Z} \cup \mathscr{Z}') < \varepsilon.$$

Für die Untersummen läuft die Argumentation analog.

Approximation von Integralen durch Riemannsche Summen

Satz

Sei $Q\subseteq\mathbb{R}^n$ ein Quader und $f:Q\to\mathbb{R}$ eine Riemann-integrierbare Funktion. Dann existiert für jedes $\varepsilon\in\mathbb{R}^+$ ein $\delta\in\mathbb{R}^+$ mit folgender Eigenschaft: Ist \mathscr{Z}' eine Zerlegung von Q mit $\delta(\mathscr{Z}')<\delta$ und ist $a_K\in K$ für jedes $K\in\mathscr{Q}(\mathscr{Z}')$ jeweils ein beliebig gewählter Punkt, dann gilt

$$\left|\sum_{K\in\mathscr{Q}(\mathscr{Z}')}f(a_K)v(K)-\int_Qf(x)\,dx\right|\quad<\quad\varepsilon.$$

Die Summe $\sum_{K \in \mathcal{Q}(\mathcal{Z}')} f(a_K) v(K)$ wird als Riemannsche Summe bezüglich der Zerlegung \mathcal{Z}' bezeichnet.

Beweis des Satzes

- Sei $\varepsilon \in \mathbb{R}^+$ vorgegeben und $u = \int_Q f(x) \, dx$. Auf Grund der Riemann-Integrierbarkeit existiert eine Zerlegung \mathscr{Z} mit $u \mathscr{S}_f^-(\mathscr{Z}) < \frac{1}{4}\varepsilon$ und $\mathscr{S}_f^+(\mathscr{Z}) u < \frac{1}{4}\varepsilon$.
- Sei $\delta \in \mathbb{R}^+$ so gewählt, dass das Lemma mit $\frac{1}{4}\varepsilon$ statt ε erfüllt ist. Sei \mathscr{Z}' eine Zerlegung von Q mit $\delta(\mathscr{Z}') < \delta$.
- Auf Grund des Lemmas gilt

$$\mathcal{S}_{f}^{+}(\mathcal{Z}') - \mathcal{S}_{f}^{-}(\mathcal{Z}') \leq$$

$$\left(\mathcal{S}^{+}(\mathcal{Z} \cup \mathcal{Z}') + \frac{1}{4}\varepsilon\right) - \left(\mathcal{S}^{-}(\mathcal{Z} \cup \mathcal{Z}') - \frac{1}{4}\varepsilon\right) \leq$$

$$\mathcal{S}^{+}(\mathcal{Z} \cup \mathcal{Z}') - \mathcal{S}^{-}(\mathcal{Z} \cup \mathcal{Z}') + \frac{1}{2}\varepsilon \leq$$

$$\mathcal{S}^{+}(\mathcal{Z}) - \mathcal{S}^{-}(\mathcal{Z}) + \frac{1}{2}\varepsilon \leq \left(u + \frac{1}{4}\varepsilon\right) - \left(u - \frac{1}{4}\varepsilon\right) + \frac{1}{2}\varepsilon = \varepsilon.$$

Beweis des Satzes

• Sei nun $s = \sum_{K \in \mathcal{Q}(\mathcal{Z}')} f(a_K) v(K)$ eine Riemannsche Summe bezüglich \mathcal{Z}' . Es gilt sowohl

$$\mathscr{S}_{f}^{-}(\mathscr{Z}') \leq s \leq \mathscr{S}_{f}^{+}(\mathscr{Z}')$$

als auch

$$\mathscr{S}_f^-(\mathscr{Z}') \leq u \leq \mathscr{S}_f^+(\mathscr{Z}').$$

• Wegen $\mathscr{S}_f^+(\mathscr{Z}') - \mathscr{S}_f^-(\mathscr{Z}') < \varepsilon$ folgt daraus $|s - u| < \varepsilon$.

Der Transformationssatz

Satz (4.6)

Sei $G\subseteq\mathbb{R}^n$ offen, und sei $\varphi:G\to\mathbb{R}^n$ eine injektive, stetig differenzierbare Abbildung, wobei wir voraussetzen, dass det $\varphi'(t)$ entweder für alle $t\in G$ positiv oder für alle $t\in G$ negativ ist. Sei $T\subseteq G$ eine Jordan-messbare, kompakte Teilmenge und $f:\varphi(T)\to\mathbb{R}$ eine stetige Abbildung. Dann gilt

- (i) Die Bildmenge $\varphi(T) \subseteq \mathbb{R}^n$ ist Jordan-messbar.
- (ii) Die Funktion f ist auf $\varphi(T)$, die Funktion $f \circ \varphi$ auf T Riemann-integrierbar.

(iii) Es gilt
$$\int_{\varphi(T)} f(x) \ dx = \int_{T} (f \circ \varphi)(t) |\det \varphi'(t)| \ dt.$$

Beweis des Transformationssatzes, Vorbereitungen

zu (i)

- Da φ ein Homöomorphismus (sogar ein \mathscr{C}^1 -Diffeomorphismus) ist, gilt $\varphi(\partial T) = \partial(\varphi(T))$.
- Weil T Jordan-messbar und kompakt ist, handelt es sich nach Folgerung 3.5 bei ∂T um eine kompakte Jordansche Nullmenge.
- Als Bild einer kompakten Nullmenge unter einer stetig differenzierbaren Abbildung ist $\partial(\varphi(T))$ nach Folgerung 4.5 eine kompakte Jordansche Nullmenge.
- Wiederum nach Folgerung 3.5 ist $\varphi(T)$ Jordan-messbar.

Beweis des Transformationssatzes, Vorbereitungen

zu (ii)

- Dies folgt direkt aus der Tatsache, dass stetige Funktionen und beschränkte Funktionen auf Jordan-messbaren Teilmengen nach Proposition 3.11 Riemann-integrierbar sind.
- Denn nach Voraussetzung ist f stetig auf der kompakten Menge $\varphi(T)$ und damit beschränkt nach dem Maximumsprinzip.
- Daraus folgt unmittelbar, dass auch $f \circ \varphi$ auf T stetig und beschränkt ist.

Ziel: Nachweis der Ungleichung $v(\varphi(W)) \leq \int_W |\det \varphi'(x)| dx$ für einen kompakten Würfel $W \subseteq \mathbb{R}^n$ der Kantenlänge 2ℓ , $\ell \in \mathbb{R}^+$

- Sei $q \in \mathbb{N}$. Wir unterteilen W in q^n kompakte Würfel $W_{j,q}$ der Kantenlänge $\frac{2\ell}{q}$. Sei $p_{j,q}$ jeweils der Mittelpunkt von $W_{j,q}$ und $\phi_{j,q} = \varphi'(p_{j,q})$.
- Sei jeweils $j, q: G \to \mathbb{R}^n$ gegeben durch $\chi_{j,q} = \phi_{j,q}^{-1} \circ \varphi$. Auf Grund der mehrdimensionalen Kettenregel gilt

$$\chi'_{j,q}(x) = (\phi_{j,q}^{-1})'(\varphi(x)) \circ \varphi'(x) =$$

$$\phi_{j,q}^{-1} \circ (\varphi'(p_{j,q}) + (\varphi'(x) - \varphi'(p_{j,q}))) =$$

$$\mathrm{id}_{\mathbb{R}^n} + \phi_{j,q}^{-1} \circ (\varphi'(x) - \varphi'(p_{j,q}))$$

für alle $x \in W_{i,q}$.

- Als stetige Funktion auf der kompakten Menge W ist φ' dort gleichmäßig stetig. Der Abstand $\|x-p_j\|_{\infty}$ für $x\in W_{j,q}$ ist durch $\frac{\ell}{q}$ beschränkt. Es gibt deshalb eine Folge $(\tilde{\delta}_q)_{q\in\mathbb{N}}$ in \mathbb{R}^+ mit $\lim_q \tilde{\delta}_q = 0$ und $\|\varphi'(x) \varphi'(p_j)\| \leq \tilde{\delta}_q$ für alle $x\in W_{j,q}$, und alle j und q.
- Auf Grund der Gleichung auf der letzten Seite existiert auch eine Folge $(\delta_q)_{q\in\mathbb{N}}$ in \mathbb{R}^+ mit $\lim_q \delta_q = 0$ und $\|\chi'_{j,q}(x)\| \leq 1 + \delta_q$ für alle $x \in W_{j,q}$, und alle j und q.
- Für alle $x \in W_{j,q}$ erhält man, genau wie im Beweis von Satz 4.2, mit Hilfe des Mittelwertsatzes für Richtungsableitungen jeweils die Abschätzung

$$|\chi_{j,q}(x) - \chi_{j,q}(p_j)| \le$$
 $\max\{ \|\chi'_{j,q}(x)\| \mid x \in W_{j,q}\} \cdot \|x - \chi_j\|_{\infty} \le (1 + \delta_q) \frac{\ell}{a} .$

- Dies zeigt, dass die Bildmenge $\chi_{j,q}(W_{j,q})$ jeweils in einem Würfel der Kantenlänge $(1+\delta_q)\frac{2\ell}{q}$ enthalten ist.
- Es folgt $v(\chi_{j,q}(W_{j,q})) \leq (1+\delta_q)^n \left(\frac{2\ell}{q}\right)^n$.
- Weil sich die Teilwürfel $W_{j,q}$ und auch ihre Bilder nur in Randpunkten schneiden, erhalten wir die Abschätzung

$$\begin{split} v(\varphi(W)) &= \sum_{j} v(\varphi(W_{j,q})) &= \\ \sum_{j} v(\phi'(p_{j,q})(\chi_{j,q}(W_{j,q}))) &= \sum_{j} |\det(\varphi'(p_{j,q}))| v(\chi_{j,q}(W_{j,q})) \\ &\leq (1+\delta_q)^n \sum_{j} |\det(\varphi'(p_{j,q}))| \left(\frac{2\ell}{q}\right)^n \\ &= (1+\delta_q)^n \sum_{j} |\det(\varphi'(p_{j,q}))| v(W_{j,q}). \end{split}$$

- Bei der letzten Summe handelt es sich für jedes q jeweils um eine Riemannsche Summe der Funktion $x \mapsto |\det(\varphi'(x))|$ zu einer Zerlegung der Feinheit δ_q des Würfels W.
- Für $q \to \infty$ geht $\delta_q \to 0$, und auf Grund des Satzes von oben konvergiert die Folge Riemannscher Summen gegen das Integral $\int_W |\det(\varphi'(x))| \, dx$. Außerdem konvergiert der Vorfaktor $(1+\delta_q)^n$ gegen 1.
- Somit erhalten wir für $q \to \infty$ tatsächlich die Ungleichung

$$v(\varphi(W)) \leq \int_{W} |\det(\varphi'(x))| dx.$$

Ziel: Nachweis der Ungleichung

 $\int_{\varphi(W)} f(x) dx \le \int_{W} (f \circ \varphi)(t) |\det \varphi'(t)| dt$ für eine stetige, nichtnegative Funktion f auf $\varphi(W)$, für einen kompakten Würfel W

- Wir verwenden dieselbe Notation wie im 1. Schritt. Für alle j und q bezeichnet $t_q: \varphi(W) \to \mathbb{R}$ eine Funktion, die jeweils $t_q(x) = f(\varphi(p_{j,q}))$ für jeden Punkt x im Inneren einer Bildmenge $\varphi(W_{j,q})$ erfüllt.
- Für alle Punkte $x \in \varphi(W)$, die in der Vereinigung der Ränder der Bildmengen $\varphi(W_{j,q})$ liegen, fordern wir lediglich, dass $t_q(x) = f(\varphi(p_{j,q}))$ für ein j mit $x \in \varphi(W_{j,q})$ gilt.
- Da f auf $\varphi(W)$ gleichmäßig stetig ist, und auf Grund der beschränkten Ausdehnung der Bildmengen $\varphi(W_{j,q})$ nach Schritt 1, konvergiert die Funktionenfolge $(t_q)_{q\in\mathbb{N}}$ auf $\varphi(W)$ gleichmäßig gegen f. Daraus folgt

$$\lim_{q\to\infty}\int_{\varphi(W)}t_q(x)\,dx = \int_{\varphi(W)}f(x)\,dx.$$

• Weil die Funktion t_q auf den Mengen $\varphi(W_{j,q})^\circ$ jeweils konstant ist, gilt

$$\int_{\varphi(W)} t_q(x) dx = \sum_j f(\varphi(p_{j,q})) v(\varphi(W_{j,q})).$$

 Auf Grund der Ergebnisse aus dem 1. Schritt gilt die Abschätzung

$$\sum_{j} f(\varphi(p_{j,q})) v(\varphi(W_{j,q})) \leq (1+\delta_q)^n \sum_{j} (f \circ \varphi)(p_{j,q}) |\det(\varphi'(p_{j,q}))| v(W_{j,q}).$$

 Auf der rechten Seite der Ungleichung steht wiederum eine Riemannsche Summe. Lassen wir q gegen unendlich laufen, so wird die Ungleichung zu

$$\int_{\varphi(W)} f(x) dx \leq \int_{W} (f \circ \varphi)(t) |\det(\varphi'(t))| dt.$$

Ziel: Verallgemeinerung der Ungleichung von Würfeln auf beliebige kompakte Jordan-messbare Mengen

- Sei $Q \subseteq G$ ein kompakter Quader, und sei $\varepsilon \in \mathbb{R}^+$ beliebig vorgegeben. Nach Lemma 4.3 existiert eine endliche Familie $(W_j)_{j \in J}$ von Würfeln, die Q überdecken und sich höchstens in Randpunkten schneiden, mit $\sum_{j \in J} v(W_j) < v(Q) + \varepsilon$.
- Setzen wir $s = \max\{(f \circ \varphi)(t) | \det(\varphi'(t))| \mid t \in Q\}$, dann folgt

$$\int_{\varphi(Q)} f(x) \, dx \leq \sum_{j \in J} \int_{\varphi(W_j)} f(x) \, dx \leq$$

$$\sum_{j\in J} \int_{W_j} (f\circ\varphi)(t) |\det(\varphi'(t))| \, dt \leq \int_Q (f\circ\varphi)(t) |\det(\varphi'(t))| \, dt + s\varepsilon.$$

- Weil $\varepsilon \in \mathbb{R}^+$ beliebig klein gewählt werden kann, ist die Ungleichung damit für Quader bewiesen.
- Da jede Figur eine Vereinigung von Quadern ist, die sich höchstens in Randpunkten schneiden, gilt die Ungleichung damit auch für Figuren.
- Auf ähnliche Weise wie beim Übergang von Würfeln zu Quadern verwendet man nun, dass für jede kompakte Jordan-messbare Teilmenge $T\subseteq G$ und jedes $\varepsilon\in\mathbb{R}^+$ eine Figur F mit $F\supseteq T$ und $v(F)< v(T)+\varepsilon$ existiert. Dies zeigt, dass die Ungleichung auch für kompakte Jordan-messbare Teilmengen gilt.

Ziel: Umwandung der Ungleichung in eine Gleichung

• Sei $T \subseteq G$ kompakt und Jordan-messbar, und sei $\psi : \varphi(G) \to G$ die Umkehrabbildung von φ . Da auch ψ ein \mathscr{C}^1 -Diffeomorphismus, und Anwendung der bereits bewiesenen Ungleichung auf die Funktion $t \mapsto (f \circ \varphi)(t) |\det(\varphi'(t))|$ liefert

$$\int_{\psi(\varphi(T))} (f \circ \varphi)(t) |\det(\varphi'(t))| dt \leq$$

$$\int_{\varphi(T)} (f \circ \varphi \circ \psi)(x) \cdot |\det(\varphi'(\psi(x)))| \cdot |\det(\psi'(x))| dx.$$

• Wegen $\psi = \varphi^{-1}$ gilt $\psi(\varphi(T)) = T$ und $f \circ \varphi \circ \psi = f$.

• Die mehrdimensionale Kettenregel, angewendet auf $\varphi \circ \psi = \mathrm{id}_{\varphi(G)}$, liefert für alle $x \in \varphi(T)$ andererseits

$$id_{\mathbb{R}^n} = id'_{\varphi(G)}(x) = (\varphi \circ \psi)'(x)$$
$$= \varphi'(\psi(x)) \circ \psi'(x)$$

und damit

$$\begin{aligned} |\det(\varphi'(\psi(x)))| \cdot |\det(\psi'(x))| &= |\det(\varphi'(\psi(x)) \circ \psi'(x))| \\ &= |\det(\mathrm{id}_{\mathbb{R}^n})| &= 1. \end{aligned}$$

Durch Einsetzen erhalten wir

$$\int_{\mathcal{T}} (f \circ \varphi)(t) |\det(\varphi'(t))| dt \leq \int_{\varphi(\mathcal{T})} f(x) dx$$

und somit insgesamt Gleichheit.

Ziel: Verallgemeinerung auf beliebige stetige (nicht notwendigerweise nichtnegative) Funktionen $f: \varphi(T) \to \mathbb{R}$

• Mit f sind auch $f_+ = \max\{f,0\}$ und $f_- = -\min\{f,0\}$ stetige Funktionen auf $\varphi(T)$. Diese sind stetig, nichtnegativ, und es gilt $f = f_+ - f_-$. Auf Grund der Verträglichkeit des Riemann-Integrals mit Addition und Subtraktion erhalten wir

$$\int_{\varphi(T)} f(x) dx = \int_{\varphi(T)} f_{+}(x) dx - \int_{\varphi(T)} f_{-}(x) dx =$$

$$\int_{T} (f_{+} \circ \varphi)(t) |\det \varphi'(t)| dt - \int_{T} (f_{-} \circ \varphi)(t) |\det \varphi'(t)| dt$$

$$= \int_{T} (f \circ \varphi)(t) |\det \varphi'(t)| dt.$$

