Funktionentheorie, Lebesguetheorie und Gewöhnliche DGL

– Lösung Blatt 7 —

(Tutoriumsblatt)

Aufgabe 0

zu (a) Die Vorgabe $\arg(z) = \frac{1}{4}\pi$ zeigt an, dass z auf der Halbgeraden liegt, die zum positiven Teil der x-Achse einen Winkel von 45° an. Bei allen komplexen Zahlen auf dieser Halbgeraden stimmen Realund Imaginärteil überein, d.h. es gilt z = s(1+i) für ein $s \in \mathbb{R}^+$. Aus $1 = |z| = s|1+i| = \sqrt{2}s$ folgt $s = \frac{1}{\sqrt{2}}$. Also ist $|z| = \frac{1}{\sqrt{2}}(1+i)$ die gesuchte komplexe Zahl.

zu (b) Das Bild von $\mathbb{C} \setminus \{0\}$ unter der Bijektion $\mathbb{C} \to \mathbb{R}^2$, $x + iy \mapsto (x, y)$ ist $\tilde{U} = \mathbb{R}^2 \setminus \{(0, 0)\}$. Also ist dies der Definitionsbereich von $f_{\mathbb{R}}$. Für alle $z = x + iy \in \mathbb{C} \setminus \{0\}$ gilt

$$\frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{(x+iy)(x-iy)} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} + i\frac{(-y)}{x^2+y^2}.$$

Somit ist $f_{\mathbb{R}}: \tilde{U} \to \mathbb{R}^2$ gegeben durch $f_{\mathbb{R}}(x,y) = (\frac{x}{x^2+y^2}, -\frac{y}{x^2+y^2}).$

zu (c) Die Jacobi-Matrix erhält man durch Bildung der partiellen Ableitungen von $(f_{\mathbb{R}})_1$ und $(f_{\mathbb{R}})_2$. Sie ist in $(x,y) \in \tilde{U}$ gegeben durch

$$(f_{\mathbb{R}})'(z) = \frac{1}{(x^2 + y^2)^2} \begin{pmatrix} y^2 - x^2 & 2xy \\ -2xy & y^2 - x^2 \end{pmatrix}.$$

Dass f auf $\mathbb{C}\setminus\{0\}$ holomorph ist, kann man daran erkennen, dass die beiden Diagonalterme übereinstimmen und die Terme abseits der Diagonalen entgegengesetztes Vorzeichen haben. (Mit anderen Worten, die Cauchy-Riemannschen Differentialgleichungen sind in jedem Punkt des Definitionsbereichs erfüllt.)

zu (d) Die Richtungsableitung $\frac{\partial f}{\partial x}$ kann an der ersten Spalte der Jacobi-Matrix abgelesen werden: Der erste Eintrag der Spalte ist der Realteil, der zweite der Imaginärteil von f. Es gilt also

$$\frac{\partial f}{\partial x}(x+iy) = \frac{(y^2-x^2)+i\cdot 2xy}{(x^2+y^2)^2}.$$

Aufgabe 1

zu (a) Nach Definition ist $f: A \to \mathbb{R}$ genau dann Lebesgue-integrierbar, wenn die Nullfortsetzung $f_0: \mathbb{R}^n \to \mathbb{R}$ von f Lebesgue-integrierbar ist. Es gilt $(f_0)^+ = (f^+)_0$ und $(f_0)^- = (f^-)_0$, denn für $x \in \mathbb{R}^n \setminus A$ sind beide Seiten der Gleichung jeweils gleich null, und für $x \in A$ gilt jeweils $f_0(x) = f(x)$, also auch $(f_0)^+(x) = f^+(x) = (f^+)_0(x)$ und $(f_0)^-(x) = f^-(x) = (f^-)_0(x)$. Es genügt deshalb, die Aussage für $A = \mathbb{R}^n$ zu beweisen. Hier folgt die Aussage direkt aus Prop. 6.12 (ii). Denn auf Grund der Vektorraum-Eigenschaft von \mathcal{L}_n sind mit f auch -f und die Nullfunktion Lebesgue-integrierbar, und nach Prop. 6.12 (ii) somit auch $f^+ = f \vee 0$ und $f^- = (-f) \vee 0$. Sind umgekehrt f^+ und f^- Lebesgue-integrierbar, also in \mathcal{L}_n enthalten, dann auf Grund der Vektorraum-Eigenschaft auch $f = f^+ - f^-$.

zu (b) Wäre $f \in \mathcal{L}_1$, dann nach Teil (a) auch die Funktion f^+ . Für jedes $x \in \mathbb{R}_+$ gilt $f(x) = f^+(x)$, insbesondere stimmen f und f^+ für jedes $n \in \mathbb{N}$ auf dem Intervall [1, n] überein. Die charakteristische Funktion $\chi_{[1,n]}$ ist nach Satz 6.20 (i) auf [1,n] Lebesgue-integrierbar, weil die konstante Funktion mit Wert 1 auf [1,n] jeweils Riemann-integrierbar ist. Nach Prop. (6.12) (iv) ist $f\chi_{[1,n]}$ ebenfalls Lebesgue-integrierbar. Für jedes $x \in \mathbb{R}$ gilt die Äquivalenz

$$\frac{x}{\sqrt{1+x^4}} \ge \frac{1}{2} \cdot \frac{1}{x} \quad \Leftrightarrow \quad 2x^2 \ge \sqrt{1+x^4} \quad \Leftrightarrow \quad 4x^4 \ge 1 + x^4 \quad \Leftrightarrow \quad 3x^4 \ge 1.$$

Die Rechnung zeigt, dass die erste Ungleichung für alle $x \ge 1$ erfüllt ist. Für das Lebesgue-Integral von f^+ erhalten wir nun für jedes $n \in \mathbb{N}$ die Abschätzung

$$\int_{R} f^{+}(x) dx \geq \int_{R} (f\chi_{[1,n]})(x) dx = \int_{1}^{n} \frac{x dx}{\sqrt{1+x^{4}}} \geq \frac{1}{2} \int_{1}^{n} \frac{dx}{x} = \frac{1}{2} \left[\ln(x)\right]_{1}^{n} = \frac{1}{2} \ln(n).$$

Aber wegen $\lim_n \ln(n) = +\infty$ steht dies im Widerspruch zur Lebegue-Integrierbarkeit der Funktion. Also ist auch f nicht Lebesgue-integrierbar.

Aufgabe 2

zu (a) Seien $z, w \in \mathbb{C}^{\times}$ und $\alpha = \arg(z)$, $\beta = \arg(w)$, $\gamma = \arg(zw)$. Dann gilt $z = |z|(\cos(\alpha) + i\sin(\alpha))$, $w = |w|(\cos(\beta) + i\sin(\beta))$ und $zw = |zw|(\cos(\gamma) + i\sin(\gamma))$ nach Definition der Polarkoordinaten. Mit Hilfe der Additionstheoreme

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$
 und $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$

erhalten wir

$$|zw|(\cos(\gamma) + i\sin(\gamma)) = zw = (|z|(\cos(\alpha) + i\sin(\beta))) (|w|(\cos(\beta) + i\sin(\beta)))$$

$$= |zw|(\cos(\alpha) + i\sin(\alpha))(\cos(\beta) + i\sin(\beta))$$

$$= |zw|(\cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) + i\sin(\alpha)\cos(\beta) + i\cos(\beta)\sin(\alpha))$$

$$= |zw|(\cos(\alpha + \beta) + i\sin(\alpha + \beta)).$$

Es folgt $\cos(\gamma) = \cos(\alpha + \beta)$ und $\sin(\gamma) = \sin(\alpha + \beta)$. Allgemein stimmen Sinus und Kosinus von zwei Winkeln φ, φ' nur dann überein, wenn sie sich um ein ganzzahliges Vielfaches von 2π unterscheiden. Damit erhalten wir $\gamma \equiv \alpha + \beta \mod 2\pi \mathbb{Z}$.

zu (b) Es gilt
$$|1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}$$
 und

$$1+i = \sqrt{2}\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = \sqrt{2}\left(\cos(\frac{1}{4}\pi) + i\sin(\frac{1}{4}\pi)\right) ,$$

also $\arg(1+i) = \frac{1}{4}\pi$. Genauso erhalten wir durch

$$\begin{array}{lcl} 1-i & = & \sqrt{2}\left(\frac{1}{\sqrt{2}}-i\frac{1}{\sqrt{2}}\right) & = & \sqrt{2}\left(\cos(\frac{1}{4}\pi)-i\sin(\frac{1}{4}\pi)\right) \\ & = & \sqrt{2}\left(-\cos(\frac{1}{4}\pi)+i\sin(-\frac{1}{4}\pi)\right) & = & \sqrt{2}\left(\cos(\frac{7}{4}\pi)+i\sin(\frac{7}{4}\pi)\right) \end{array}$$

den Wert $\arg(1-i)=\frac{7}{4}\pi$. Schließlich ist $|\frac{1+i}{1-i}|=\frac{|1+i|}{|1-i|}=\frac{\sqrt{2}}{\sqrt{2}}=1$. Zur Berechnung des Arguments setzen wir $\alpha=\arg(\frac{1+i}{1-i})$. Aus $\alpha(1-i)=1+i$ folgt nach Teil (a), dass

$$arg(\alpha) + arg(1-i) \equiv arg(1+i) \mod 2\pi \mathbb{Z}$$

gilt, also $\arg(\alpha) \equiv \arg(1+i) - \arg(1-i) = \frac{1}{4}\pi - \frac{7}{4}\pi = -\frac{3}{2}\pi$. Weil $\varphi = \frac{1}{2}\pi$ die eindeutig bestimmte reelle Zahl im Intervall $[0, 2\pi[$ mit $\varphi \equiv \frac{1}{2}\pi \mod 2\pi\mathbb{Z}$ ist, folgt $\arg(\alpha) = \frac{1}{2}\pi$.

zu (c) Sei $w_1 \in \mathbb{C}^{\times}$ eine komplexe Zahl mit $w_1^2 = 1 + i$. Dann ist $w_2 = -w_1$ die zweite komplexe Zahl mit $w_2^2 = 1 + i$. Setzen wir $\alpha_i = \arg(w_i)$ für i = 1, 2, dann gilt wegen $w_i \cdot w_i = 1 + i$ nach Teil (a)

$$2\alpha_i = \alpha_i + \alpha_i \equiv \arg(1+i) = \frac{1}{4}\pi \mod 2\pi \mathbb{Z}.$$

Es gibt also $k_1, k_2 \in \mathbb{Z}$ mit $2\alpha_i - \frac{1}{4}\pi = 2k_i\pi$, also $\alpha_i - \frac{1}{8}\pi = k_i\pi$. Nun existieren genau zwei reelle Zahlen $\varphi \in [0, 2\pi[$ mit der Eigenschaft, dass $\varphi - \frac{1}{8}\pi$ ein ganzzahliges Vielfaches von π ist, nämlich $\frac{1}{8}\pi$ und $\frac{9}{8}\pi$. Nach eventueller Vertauschung von w_1 und w_2 gilt also $\alpha_1 = \arg(w_1) = \frac{1}{8}\pi$ und $\alpha_2 = \arg(w_2) = \frac{9}{8}\pi$.

Aufgabe 3

zu (a) Die Wirtinger-Ableitungen von f sind gegeben durch

$$\frac{\partial f}{\partial z}(z) = \tfrac{1}{2} \left(\frac{\partial f}{\partial x}(z) - i \frac{\partial f}{\partial y}(z) \right) = \tfrac{1}{2} \left(\frac{\partial g}{\partial x}(z) + \frac{\partial h}{\partial y}(z) \right) + \tfrac{1}{2} i \left(\frac{\partial h}{\partial x}(z) - \frac{\partial g}{\partial y}(z) \right)$$

und

$$\frac{\partial f}{\partial \overline{z}}(z) = \tfrac{1}{2} \left(\frac{\partial f}{\partial x}(z) + i \frac{\partial f}{\partial y}(z) \right) = \tfrac{1}{2} \left(\frac{\partial g}{\partial x}(z) - \frac{\partial h}{\partial y}(z) \right) + \tfrac{1}{2} i \left(\frac{\partial h}{\partial x}(z) + \frac{\partial g}{\partial y}(z) \right)$$

Die Antiholomorphie von f im Punkt z ist also äquvialent zu

$$\frac{\partial g}{\partial x}(z) + \frac{\partial h}{\partial y}(z) = 0 \Leftrightarrow \frac{\partial h}{\partial y}(z) = -\frac{\partial g}{\partial x}(z) \qquad \text{und} \qquad \frac{\partial h}{\partial x}(z) - \frac{\partial g}{\partial y}(z) = 0 \Leftrightarrow \frac{\partial h}{\partial x}(z) = \frac{\partial g}{\partial y}(z)$$

und die Holomorphie im Punkt z zu

$$\frac{\partial g}{\partial x}(z) - \frac{\partial h}{\partial y}(z) = 0 \Leftrightarrow \frac{\partial h}{\partial y}(z) = \frac{\partial g}{\partial x}(z) \qquad \text{und} \qquad \frac{\partial h}{\partial x}(z) + \frac{\partial g}{\partial y}(z) = 0 \Leftrightarrow \frac{\partial h}{\partial x}(z) = -\frac{\partial g}{\partial y}(z).$$

Ist nun f auf ganz $\mathbb C$ sowohl antiholomorph als auch holomorph, dann gilt für jedes $z\in\mathbb C$

$$\frac{\partial h}{\partial x}(z) = \frac{\partial g}{\partial y}(z)$$
 und $\frac{\partial h}{\partial x}(z) = -\frac{\partial g}{\partial y}(z)$

also $\frac{\partial h}{\partial x}(z) = 0$. Ebenso gilt

$$\frac{\partial h}{\partial y} = -\frac{\partial g}{\partial x}$$
 und $\frac{\partial h}{\partial y} = -\frac{\partial g}{\partial x}$

und somit $\frac{\partial h}{\partial y}(z) = 0$. Aus $\frac{\partial h}{\partial x}(z) = \frac{\partial h}{\partial y}(z) = 0$ für alle $z \in \mathbb{C}$ folgt, dass h auf \mathbb{C} konstant ist. Der Nachwei der Konstanz von g läuft vollkommen analog. Insgesamt ist also die Funktion f auf ganz \mathbb{C} konstant.

zu (b) Seien \tilde{g} und \tilde{h} der Real- und Imaginärteil von $f \circ \iota$, also $(f \circ \iota)(z) = \tilde{g}(z) + i\tilde{h}(z)$ für alle $z \in \mathbb{C}$. Auf Grund der mehrdimensonalen Kettenregel ist die Ableitung der Funktion $f \circ \iota$ in einem beliebigen Punkt $z \in \mathbb{C}$ gegeben durch

$$\begin{pmatrix}
\frac{\partial \tilde{g}}{\partial x}(z) & \frac{\partial \tilde{g}}{\partial y}(z) \\
\frac{\partial \tilde{h}}{\partial x}(z) & \frac{\partial \tilde{h}}{\partial y}(z)
\end{pmatrix} = (f \circ \iota)'(z) = f'(\iota(z)) \circ \iota'(z) = \begin{pmatrix}
\frac{\partial g}{\partial x}(\bar{z}) & \frac{\partial g}{\partial y}(\bar{z}) \\
\frac{\partial h}{\partial x}(\bar{z}) & \frac{\partial h}{\partial y}(\bar{z})
\end{pmatrix} \begin{pmatrix} 1 & 0 \\
0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix}
\frac{\partial g}{\partial x}(\bar{z}) & -\frac{\partial g}{\partial y}(\bar{z}) \\
\frac{\partial h}{\partial x}(\bar{z}) & -\frac{\partial h}{\partial y}(\bar{z})
\end{pmatrix}.$$

Die Funktion fist nun auf ganz $\mathbb C$ holomorph, wenn für alle $z\in\mathbb C$ jeweils

$$\frac{\partial h}{\partial y}(\bar{z}) = \frac{\partial g}{\partial x}(\bar{z}) \quad , \quad \frac{\partial h}{\partial x}(\bar{z}) = -\frac{\partial g}{\partial y}(\bar{z}).$$

gilt. Auf Grund der soeben bewiesenen Gleichung ist dies wiederum äquivalent zu

$$\frac{\partial \tilde{h}}{\partial y}(z) = -\frac{\partial \tilde{g}}{\partial x}(z) \quad , \quad \frac{\partial \tilde{h}}{\partial x}(z) = \frac{\partial \tilde{g}}{\partial y}(z)$$

für alle $z \in \mathbb{C}$, also zur Holomorphie der Funktion $f \circ \iota$.