Funktionentheorie, Lebesguetheorie und Gewöhnliche DGL

— Blatt 10 —

(Tutoriumsblatt)

Aufgabe 0 (Vorbereitung auf das Tutorium)

- (a) Weisen Sie anhand konkreter Beispiele nach, dass das Maximumsprinzip und der Satz von Liouville für reellwertige differenzierbare Funktionen auf R nicht gelten.
- (b) Ist $X = \{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}$ eine diskrete Teilmenge von C? Wie sieht es aus, wenn man die Null weglässt? Ist das Intervall $]0,1[\subseteq \mathbb{R}$ eine diskrete Teilmenge von C?
- (c) Wir haben den Identitätssatz als Äquivalenz dreier Aussagen formuliert. Wie lauteten diese drei Aussagen, und welche Implikation ist besonders bemerkenswert?
- (d) Kann die Funktion $f: \mathbb{R} \to \mathbb{R}$ gegeben durch f(x) = 0 für $x \le 0$, $f(x) = e^{-1/x^2}$ für x > 0 zu einer holomorphen Funktion auf \mathbb{C} fortgesetzt werden? (Man kann zeigen, dass f auf ganz \mathbb{R} , auch im Nullpunkt, beliebig oft differenzierbar ist.)
- (e) Gibt es eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ mit f(x) = 0 für $x \in \mathbb{R}$ mit -1 < x < 1 und f(x) = 1 für 2 < x < 4?

Aufgabe 1

- (a) Es sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion und $a \in \mathbb{R}^+$ eine reelle Zahl mit |f(z)| > a für alle $z \in \mathbb{C}$. Zeigen Sie, dass f konstant ist.
- (b) Benutzen Sie das Maximumsprinzip, um zu zeigen, dass keine ganze Funktion $f: \mathbb{C} \to \mathbb{C}$ mit f(0) = 2 und $|f(z)| \le 1$ für alle $z \in \mathbb{C}$ mit |z| = 1 existiert.

Aufgabe 2

Sei $G \subseteq \mathbb{C}$ ein Gebiet mit $0 \in G$. Entscheiden Sie jeweils, ob eine holomorphe Funktion $f: G \to \mathbb{C}$ mit der jeweils angegebenen Eigenschaft existiert, und begründen Sie Ihre Entscheidung.

- (a) $f(n^{-2020}) = 0$ für alle $n \in \mathbb{N}$ mit $n^{-2020} \in G$, aber $f \neq 0$
- (b) $f^{(k)}(0) = (k!)^2$ für alle $k \in \mathbb{N}_0$
- (c) $f(\frac{1}{2n}) = f(\frac{1}{2n-1}) = \frac{1}{n}$ für alle $n \in \mathbb{N}$ mit $\frac{1}{2n}, \frac{1}{2n-1} \in G$

Aufgabe 3

Sei $U \subseteq \mathbb{C}$ offen. Zeigen Sie unter Verwendung des Identitätssatzes, dass U genau dann zusammenhängend ist, wenn für je zwei holomorphe Funktionen $f, g: U \to \mathbb{C}$ die Implikation

$$fg = 0 \implies f = 0 \text{ oder } g = 0 \text{ erfüllt ist.}$$

Dieses Blatt wird vom 4. bis zum 7. Juli 2022 im Tutorium bearbeitet.

Funktionentheorie, Lebesguetheorie und Gewöhnliche DGL

— Blatt 10 —

(Globalübungsblatt)

Aufgabe 1 (5+5 Punkte)

Sei $G \subseteq \mathbb{C}$ ein beschränktes Gebiet und $\bar{G} = G \cup (\partial G)$ der topologische Abschluss von G. Außerdem sei $f : \bar{G} \to \mathbb{C}$ eine stetige Funktion mit der Eigenschaft, dass $f|_{G}$ holomorph ist. Zeigen Sie:

- (a) Die Funktion |f| nimmt auf ∂G ihr Maximum an.
- (b) Die Funktion f hat in G eine Nullstelle, oder |f| nimmt auf ∂G ihr Minimum an.

Dabei darf ohne Beweis verwendet werden, dass \bar{G} kompakt ist.

Aufgabe 2 (4+6 Punkte)

(a) Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph mit $f^{(n)}(0) = n$ für alle $n \in \mathbb{N}_0$. Bestimmen Sie für jedes $r \in \mathbb{R}^+$ den Wert des Kurvenintegrals

$$\int_{\partial B_r(1)} \frac{f(z)}{z-1}.$$

(b) Entscheiden Sie, ob eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ mit $f(\frac{1}{n}) = \frac{n}{2n-1}$ für alle $n \in \mathbb{N}$ existiert, und begründen Sie Ihre Entscheidung.

Aufgabe 3 (6+4 Punkte)

Ein Punkt $a \in \mathbb{C}$ heißt $H\ddot{a}ufungspunkt$ einer Menge $M \subseteq \mathbb{C}$, falls in jeder offenen Umgebung U von a mindestens ein Punkt aus M ungleich a existiert. (Dabei kann sowohl $a \in M$ als auch $a \notin M$ gelten.) Eine Teilmenge $M \subseteq \mathbb{C}$ heißt dicht in \mathbb{C} , wenn jedes $a \in \mathbb{C}$ ein Häufungspunkt von M ist.

- (a) Beweisen Sie die folgende Variante des Identitätssatzes: Sei $G \subseteq \mathbb{C}$ ein Gebiet, und seien $f, g : G \to \mathbb{C}$ holomorphe Funktionen. Dann sind folgende Aussagen äquivalent.
 - (i) f = g
 - (ii) Es gibt eine Menge $M \subseteq G$ mit einem Häufungspunkt in G, so dass $f|_M = g|_M$ erfüllt ist.
- (b) Es sei $f: \mathbb{C} \to \mathbb{C}$ eine nichtkonstante ganze Funktion. Zeigen Sie, dass $f(\mathbb{C})$ dicht in \mathbb{C} ist.

Abgabe: Dienstag, 12. Juli 2022, 14:15 Uhr